Computational Statistics - Spring 2025

This page contains an outline of the topics, content, and assignments for the semester. Note that this schedule will be updated as the semester progresses and the timeline of topics and assignments might be updated throughout the semester.

WEEK

DATE

TOPIC

MATERIALS

CODE

DUE

1 Tue, Jan 14

What to cover in this class?

πŸ”—Syllabus




Thu, Jan 16

Introduction to Statistical Computing πŸŽ₯ Lecture 2

πŸ“šChapt 1-A

RπŸ‘©β€πŸ’»



Fri, Jan 17

Review Probability
and Statistics

πŸ’»Review Probability
πŸ“–Introduction to Statistics ebook


πŸ“ HW 0 or
Learn R in R

2 Tue, Jan 21

β›ˆ Sever Weather - No Class





Thu, Jan 23

Probability and Statistics Review πŸŽ₯ Lecture 3

πŸ“šChapt 2-A

RπŸ‘©β€πŸ’»


3 Tue, Jan 28

Regression πŸŽ₯ Lecture 4

πŸ’»Regression

R ShinyπŸ‘©β€πŸ’»



Thu, Jan 30

Regularization in Regression
Method of Estimations πŸŽ₯ Lecture 5

πŸ’»Ridge and Lasso
πŸ“šπŸ’»Chapt 2-B




Fri, Jan 31

D2L✍️

πŸ“ HW 1 at 11:50 pm
Solution

4 Tue, Feb 4

Methods ofGenerating Random Vars. πŸŽ₯ Lecture 6

πŸ“šChapt 3-A

RπŸ‘©β€πŸ’»



Thu, Feb 6

More on Generating RV’s πŸŽ₯ Lecture 7

πŸ“šChapt 3-B



5 Tue, Feb 11

K-means Clustering πŸŽ₯ Lecture 8

πŸ’»Clustering-A

RπŸ‘©β€πŸ’»



Thu, Feb 13

Hirarchical Clustering πŸŽ₯ Lecture 9

πŸ’»Clustering-B




Fri, Feb 14

D2L✍️

πŸ“ HW 2 at 11:50 pm
Solution

6 Tue, Feb 18

Vizualization πŸŽ₯ Lecture 10

πŸ“šChapt 5

RπŸ‘©β€πŸ’»



Thu, Feb 20

Monte Carlo Integration πŸŽ₯ Lecture 11

πŸ“šChapt 6-A

RπŸ‘©β€πŸ’»


7 Tue, Feb 25

Variance Reduction πŸŽ₯ Lecture 12

πŸ“šChapt 6-B




Thu, Feb 27

Importance Sampling and Var. Red. πŸŽ₯ Lecture 13
Developing an R package

πŸ“šChapt 6-C
πŸ“–R package




Fri, Feb 28

D2L✍️

πŸ“ HW 3 at 11:50 pm
Solution

8 Tue, Mar 4

Developing an Interactive Shiny App πŸŽ₯ Lecture 14

πŸ“–Shiny

RπŸ‘©β€πŸ’»



Thu, Mar 6

Object Oriented Programming in R πŸŽ₯ Lecture 15

πŸ“–OOP

RπŸ‘©β€πŸ’»



Fri, Mar 7

D2L✍️

πŸ“ HW 4 at 11:50 pm
Solution


Tue, Mar 11

🌴 Spring Break





Thu, Mar 13

🌴 Spring Break




9 Tue, Mar 18

Monte Carlo Methods πŸŽ₯ Lecture 16

πŸ“šChapt 7-A

RπŸ‘©β€πŸ’»



Thu, Mar 20

More on Monte Carlo Methods πŸŽ₯ Lecture 17

πŸ“šChapt 7-B
πŸ“šπŸ’»Chapt 7-C



10 Tue, Mar 25

Bootstrap πŸŽ₯ Lecture 18

πŸ“šChapt 8-A

RπŸ‘©β€πŸ’»



Thu, Mar 27

More on Bootstrap and Jackknife πŸŽ₯ Lecture 19

πŸ“‘Chapt 8-B
πŸ–₯️Chapt 8-C
πŸ“šChapt 9

RπŸ‘©β€πŸ’»



Fri, Mar 28

D2L✍️

πŸ“ HW 5 at 11:50 pm
Solution

11 Tue, Apr 1

Density Estimation πŸŽ₯ Lecture 20

πŸ“šChapt 12

RπŸ‘©β€πŸ’»



Thu, Apr 3

Numerical Methods in R πŸŽ₯ Lecture 21

πŸ“šChapt 13-A

RπŸ‘©β€πŸ’»



Fri, Apr 4

D2L✍️

πŸ“ HW 6 at 11:50 pm
Solution

12 Tue, Apr 8

More on Numerical Methods πŸŽ₯ Lecture 22
Optimization in R

πŸ“šChapt 13-B




Thu, Apr 10

More on Optimization πŸŽ₯ Lecture 23

πŸ“šChapt 14-A

RπŸ‘©β€πŸ’»



Fri, Apr 11

[D2L✍️]

πŸ“ [HW 7] at 11:50 pm

13 Tue, Apr 15

Expectation-Maximization Algorithm πŸŽ₯ Lecture 24

πŸ“‘Chapt 14-B

RπŸ‘©β€πŸ’»



Thu, Apr 17

🐰 Easter Break




14 Tue, Apr 22

Programming Topics πŸŽ₯ Lecture 25

πŸ“šChapt 15

RπŸ‘©β€πŸ’»



Thu, Apr 24

Presentation by Dr. Yu
Deep Learning in R πŸŽ₯ Lecture 26

πŸ’»APST-ADP
πŸ’»DLiR-A

RπŸ‘©β€πŸ’»


15 Tue, Apr 29

Fully Connected Networks (FCN) πŸŽ₯ Lecture 27

πŸ’»DLiR-B




Thu, May 1

Convolutional Nueral Nets (CNN) πŸŽ₯ Lecture 28

πŸ’»DLiR-C



16 Mon, May 5

Final Project

πŸ“ƒ25 MIN Presentations : 10:30 am - 12:30 pm
Evaluation - Group A
Evaluation - Group B
Evaluation - Group C
Evaluation - Group D