
ERTC Computing 2003, Milan, Italy Page 1 of 27 ABB

Improvement in the Performance of Online Control Applications

via Enhanced Modeling Techniques

Nunzio Bonavita♣, Riccardo Martini, Ted Matsko
ABB Automation

Keywords: Process Control, MPC, Neural Networks, SPC, Plant Optimisation

1 Introduction: Role of Modeling in Process Control

Modern process control is based on process modeling. Advanced process control (APC),
real time optimization (RTO), process monitoring, operator training simulation, abnormal
situation management (ASM) and fault detection and isolation (FDI) are all based on some
kind of process modeling. Models are a very effective way to embed “knowledge” in
process automation, which has increased its “autonomy” level, growing more and more from
“reactive” to “proactive” [1], [2].

Before entering any discussion about models, it is probably appropriate to define what is
meant by the word in this context. We will refer to the following, generally accepted
definition, taken by Denn’s book [3]: “A mathematical model of a process is a system of
equations whose solution, given specific input data, is representative of the response of the
process to the corresponding set of inputs”. It is possible to identify two main approaches to
model building:

a. Fundamental or first principle models where a description of the process (and the
related automation) is created starting from fundamental laws

b. Empirical models (or data-driven) where the models are developed through a fitting-
like procedure over the actual plant live data.

Modelling is a goal-oriented activity: it is performed to answer specific questions, so it
should be always taken into account that there is not a “always winning” technique and that
no one model is appropriate for all situations [4].

First principle models always provide a causal relationship, while an empirical model may
not. The empirical model may just imply that the same driving forces move both the input
and output variables, and that the underlying theoretical model provides the relationship. So
the user must insure that the underlying process does not change behaviour if an empirical
model is used. In practice, full theoretical models are very expensive to derive and only used
in full-scale optimisation projects. Process control applications usually employ empirical
models [5].

♣ Author to whom all the correspondence should be sent. Address is:
 Nunzio Bonavita, ABB Solutions, Via Hermada, 6, 16154 Genova, Nunzio.Bonavita@it.abb.com

ERTC Computing 2003, Milan, Italy Page 2 of 27 ABB

The two approaches do not compete: not only do they supplement each other very efficiently
(for example, using empirical models to determine unknown parameters in rigorous,
equation-based models), but they also work better in different areas.

Although the landscape is quite varied, it is possible to classify project applications in the
process industry:

1. Equation-based models are more common in “plant-wide” applications, where the
interest is related to the description of the plant behavior as a whole;

2. Data-driven models are the reference technology where there is a need for an
accurate description of process units with less emphasis on the interactions among
them and much stronger requirements on specific details or custom conditions that
are not easily known a-priori (just think of equipment wear and tear).

Essentially class 1 includes engineering and training simulators, and real-time closed loop
plant optimizers (RTCLO), while class 2 includes most of the typical advanced applications
from multivariable process control to inferential measurements, from fault detection and
isolation to quality and process performance monitoring.

Empirical models are not new to APC. In fact they are quite common and well accepted,
having faded into the background of current interest and development activities. There is
still fertile ground for making improvements in the modeling technology of APC
applications though.

This paper deals with empirical models and with the possibility to exploit recent technical
improvements to overcome some of the present drawbacks.

First we will look at the role of the model in the most common APC technique, Model
Predictive Control. The most common techniques used today were selected for their
compatibility with the computers of the mid-1980’s. Alternate formulations developed in
the 1960’s, but never commercially exploited, can now play a part bringing better
performance to APC.

In the second section, we will examine tools to exploit the abundance of process and
laboratory data archived in plant information systems for prediction and monitoring
purposes. Excellent commercial tools are available to build highly accurate empirical
inferential product quality models, but they lack practical features needed for heavy-duty
online application, thus resulting in a much less pervasive presence of process models than it
could and should be.

The third part, §4, will describe a suite of products aiming to push a little further the
envelope in the APC market . Combining a set of pre- and post- model building tools, with
the actual regression engines, provides an overall increase in model utility and robustness.
Finally some details on two applications will be given in §5.

2 Improvements in Modeling for Model Predictive Control

2.1 Some Background Information on MPC
Multivariable control first came into common use in the 1980’s when several independent
sources all began converging on a basic architecture. The key to this architecture is the use

ERTC Computing 2003, Milan, Italy Page 3 of 27 ABB

u

h

y

ySP y

h

+
+

+
-

-+ PLANT

MODEL

CONTROL

CALC

Figure 2.1- Standard MPC Structure

of an internal linear dynamic model in the controller calculation. The algorithm computes an
estimate of process disturbances acting on the process variables being controlled. The
disturbance estimate, the process variable setpoints and feedforward signal levels become
inputs to the controller calculation. With these inputs and the process model, the controller

is able to calculate the required values
for the independent, manipulated
variables. This structure is illustrated
in Figure 2.1

In the controller error minimization
calculation, the model helps predict
future values of the process variables.
This led to the names Internal Model
Control (IMC) and Model Predictive
Control (MPC). The MPC algorithms
became the first large-scale
deployment of computer based
multivariable process controllers ([6],

[7]). To make the calculations efficient and convenient, the algorithms use discrete impulse
response models. These models can predict the values of future process outputs through the
discrete convolution equation. The equation is fairly simple to program and lends itself to
incorporation in the optimisation algorithms needed to calculate the values of future MVs,
while minimizing process variable deviations.

MPC algorithms have become the dominant method for dealing with interactive chemical
process control problems. They supplanted a technique of using control function blocks.
This technique combined feedback PID controllers with feedforward control and decoupling
controllers. The basic elements of this method were easier for plant personnel to understand,
but the overall schemes were very difficult to manage, especially when constraints come into
play. Constraints could enter the problem when actuators saturate or when a process limit is
active through a high/low selector function block. The schemes fell apart under the
complexities of larger systems and under the conditional behaviour required by varying sets
of active constraints. MPC on the other hand, has proven to be very flexible in expanding to
large systems and in handling complicated constraint scenarios. An enhancement that first
appeared in the early 1990’s posed the controller optimisation problem as a multi-objective
optimisation, where each stage of the optimisation problem added a new constraint while
adhering to the optimal solution for previously solved higher ranked constraints [8]. This
innovation made tuning the controllers with varying sets of active constraints much easier.

After the move to multi-objective algorithms, there has been little else to point to as an
improvement in MPC or as an alternative to MPC. Advances in computing technology have
lead to wider availability of dynamic process modelling tools for the chemical and petroleum
related industries. The increased availability of rigorous high fidelity models has not lead to
a generally accepted way to use these models for process control. One reason is difficulty in
getting the dynamic model to match the plant. There are many details in the model that are
needed for process control, which are not necessarily needed for design work, but design
work is often the original intent of the model. For instance, details about the valves are often
inaccurate and need to be gathered from plant operating data. A second reason is selection
of the control architecture. In a linear system, an output disturbance could be modelled by a
bias. In a nonlinear system, that choice is not so obvious. The mathematical approaches to

ERTC Computing 2003, Milan, Italy Page 4 of 27 ABB

solving the problems also vary. Brute force integration of Open Equation physical systems,
as the inner layer of a gradient algorithm computing control moves, is a difficult procedure.
The alternate formulation combining the physical, time and control equations into a single
objective via collocation produces daunting numerical problems.

Thus MPC is the algorithm of choice for most control problems. This does not mean that
there are not shortcomings. There are actually several problems that have not been
addressed by the market, as development has tended to be stagnant.

2.2 Problems that Occur with MPC Models
As stated earlier, the common
MPC packages employ impulse
response models. When they
display the models to engineers,
it is common to integrate the
impulse response models,
converting them to step response
models, as illustrated in Figure
2.2. These models contain a
great number of coefficients.
The model identification
software packages have many
degrees of freedom to use in
calculating the models. This in
fact does not represent the real
system very well, because the real system would have only a few parameters in a linearized
set of differential equations. If the data collected from the plant was perfect, this abundance
of coefficients would be no problem, but that is not the case. Process data collected from
plant step tests always carries process noise and the effect of unmeasured disturbances.

The general result is that these
extra coefficients begin to fit the
noise, as shown in Figure 2.3.
The variation in these coefficients
affects the MPC algorithm,
resulting in unnecessary
manipulation of the controller
outputs. The engineer must now
make a tradeoff, detune the
controller, or fix the model.
Since detuning is undesirable,
most modelling algorithms
provide a smoothing function.
This is not cost-free because
filtering usually tends to attenuate
the model gain, see Figure 2.4,

and in extreme cases can change the dynamics. The resulting filtered model will not match
the real plant, requiring detuning of the MPC algorithm that the smoothing was supposed to
avoid.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31 41 51 61 71 81 91

Series1

Figure 2.2 - Typical Step Response Model

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31 41 51 61 71 81 91

Series2

Figure 2.3 - Actual Step Response Identified

ERTC Computing 2003, Milan, Italy Page 5 of 27 ABB

One reason this step
response looks ragged is that
the model identification does
not have the ability to deal
with process noise. This
type of model does not
include parameters to
estimate the effect of the
noise, see Figure 2.5. There
is nothing explicit in the
model formulation or the
identification algorithm that
allows some of the
prediction error to be
explained by disturbances.

All disturbances or noise added to
the process (v) then bias the model
coefficients. When you have a lot
of model coefficients, there is plenty
of opportunity to try and explain the
noise with the model, instead of
accepting a smoother model and
some prediction error. To mitigate
this problem, large data sets are
needed, which require greater
engineering effort collecting plant
data.

2.3 State Space Models - An Alternate to Impulse and Step Response Models
For a long time the control literature has described modern control algorithms based on a
flexible type of multivariable model. The model was based on linear differential equations
that mapped the relationships between process inputs and process outputs through use of
intermediate variables, called the state vector. This type of model was called a state space
model. MPC algorithms came along after state space models were introduced, but did not
use this type of model.

State space models became linked to optimal control theory for aerospace applications and
did not include many of the practical control objectives that were part of the design basis of
MPC. The result was that state space models were ignored for a long time by the process
industries, but recent enhancements in new algorithms have changed that [10].

The equations that represent a discrete-time state space model are presented in equation 2.1

eq. 2.1

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

1 11 21 31 41 51 61 71 81 91

Series1
Series2
Series3

Figure 2.4 - Attenuation of Model

u

y

y

v

+
+

+

-

PLANT

MODEL

Min (y – y)
By selecting the Model step
response coefficients

 x

 x

Figure 2.5 - Model Identification

ERTC Computing 2003, Milan, Italy Page 6 of 27 ABB

where x – is the state vector
 u – is the process input or control effort vector
 d – is a vector of measured disturbance variables, or feedforwards
 w,v – are noise vectors
 z – is the vector of process variables
 y – is the vector of process variables with measurement noise
 A, Bu, Bd, and C – are gain matrices
 k – is the time in number of sampling intervals

This form of a model may not be
familiar to many chemical engineers
that work with MPC. A simple
example can draw parallels to other
model representations. In Figure 2.6,
the inlet and outlet flows affect the
level. The inlet flow, F1, is manipulated
by a flow controller. The outlet flow is
not controlled, but is set by a hand
valve. The differential equation
defining this system is given in equation
2.2

eq. 2.2 dL/dt = (F1- F2)/a

 F2 = b*L

where: L – is the level
 F1 – is the flow into the tank
 F2 – is the flow out of the tank
 a – is the area of the cross-section of the tank
 b – is a constant related to the hand valve position

This is the continuous time differential equation, but we are interested in discrete-time state
space models. To get there, first substitute for F2 in the first equation, then a first order
approximation could be used to represent dL/dt as (L(k+1) – L(k))/T, where T is the
sampling time. The result is equation 4.3.

eq. 2.3 L(k+1) = (1-T*b/a)*L(k) + (T/a)* F1 (k)

This is exactly the form of equation 2.1, where the model matrices are A= (1-T*b/a), Bu=
(T/a), C = 1 and the state variable is the level, L. This is a scalar example, but this
generalizes to the multivariable case. Here, we started with the equations of the process and
computed the state space model. In an application to a real process unit, it is not typical to
have a fundamental model available. In that case we need to identify the coefficients in the
A, B and C matrices from plant step test data.

LT

FT-2

FC-11

Figure 2.6 - Tank Level Model

ERTC Computing 2003, Milan, Italy Page 7 of 27 ABB

Figure 2.7 – State Space Model Step Responses

2.4 Model Identification with State Space Models
Identification with state space models was difficult in the past, but now a technique called
sub-space identification makes the task easier [9]. Looking back at equation 2.1, we can see
that the equation can be applied repeatedly to predict the values of x over a given time period
if x(0), u(k), d(k) are available. Subspace identification first constructs the state data from
the input output data, then uses regression equations to select the best values for the
individual elements of the matrices. If the algorithm tried to directly find A, B and C, there
would be some difficulties because there is not a unique solution to the problem. Given one
set of A, B and C that work, a transformation could find A’, B’ and C’ that work equally
well. The sub space method uses a two step method. The first computes a regression of the
states, x, as a function of earlier values of y and u. Once the state sequence is known,
ordinary linear regression is used to estimate the A, B and C matrices.

Because the states are not measured directly (unless the C matrix has rows that are all zeros
and a single 1), the states are not real model output variables as the level is in the above
example. There has always been a question of how many states should be used to describe a
process. Sub space identification solves this problem by sweeping over a range of the
number of states. Within a commercial implementation of the sub space identification
algorithm, the user can select several models and compare their prediction ability, then select
the best one for use in the controller.

There is sometimes a concern that
state space models built through
identification will become very large.
As an example, the sub space
identification algorithm used in the
ABB controller was tested with the
Shell Heavy Oil fractionator model.
This is a simple model of a
fractionator tower with 3 draws and 2
pumparounds as process inputs and 5
temperatures and 2 analysers as
process outputs, to make a 7x5
system [11]. Each transfer function
has deadtime. The resulting state
space model fit the data very well,
using only 15 states. That is less
than one state per original transfer
function, including deadtime. The
simulated step responses for this example are shown in Figure 2.7.

What is happening is that the dominant harmonics are being picked up by a small A matrix
and are mapped to the process variables through the C matrix. This is not unlike the hidden
layer in a neural network.
This leads to a specific advantage over the problems defined in Section 2.2. Because the
model is fit with a small number of states, there are not sufficient degrees of freedom to
create the noisy type of step responses shown in Figure 2.3. It is not necessary to filter the
data heavily or augment the objective function of the identification algorithm with penalty
functions.

ERTC Computing 2003, Milan, Italy Page 8 of 27 ABB

When the disturbances entering the
process are not jagged high frequency
noise, the step response algorithms can
bias the process gain and mis-identify
the dynamics. The state space model
has an advantage to overcome these
problems. The identification can use an
estimator to compensate for these
disturbances. See Figure 2.8. In this
diagram, noise is added to the process
as either an input (w) or output (v)
disturbance. The estimator predicts the
estimated value of x(k+1) from
equation 2.1, with one substitution.

eq. 2.4 Bu*w(k) = K*(ŷ(k)-y(k))

where K is the estimator gain matrix (Kalman filter).

The identification algorithm picks values for A, Bu, Bd, C and K to minimize the error
between y and ŷ. This error can be made small, by manipulating the values of K, without
biasing the A and B matrices.
The result is that state space models are less sensitive to unmeasured disturbances that occur
during step testing.

2.5 Large Applications Increase the Problems not Just the Problem Size
There is a tendency for MPC applications to get bigger and cover a larger scope of the
process. Part of the justification for this is economic. If the MPC algorithm is trying to
maximize feedrate, the complexity of a large controller is offset by the improved economic
opportunity. Bigger more complex problems are being shoe-horned into the same
technological solution. The multi-objective optimisation techniques giving true ranked
constraints help to make tuning easier for large problems, but other areas have not been
improved.

With controllers spanning several unit operations, the intermediate storage between units is
now part of the control problem. This includes distillation tower vessel bottoms and reflux
drums, flash drums between reactors and separation sections, and hold-up in reactor vessels.
The step response type models are poorly formulated for representing levels. Levels are
integrating variables. If a flow in or out of the vessel changes, creating an imbalance in the
mass balance, the level variable will ramp up or down. A finite length step response cannot
represent this behaviour. This is a problem for model identification and for formulation of
the prediction equations within the control algorithm.

To address this, integrating variables receive special treatment in MPC algorithms. The
special treatment is really a work-around. Internally the derivative of the level is controlled,
which is modelled by using the impulse response model of the level as the step response
model for the level’s derivative. Then a pseudo cascade loop, hidden from the user, resets
the target for the derivative to control the integrating variable. This formulation results in
aggressive behaviour, because the level controller makes large moves in the level derivative

y

y

v

+
+

+

-

PLANT

MODEL

Estimator

u

w

x

x

x

+

+

Min (y – y)

By selecting
A, B, C, K
Matrices

x

Figure 2.8 - Model Identification with Disturbances

ERTC Computing 2003, Milan, Italy Page 9 of 27 ABB

target. Additionally, this formulation increases the chances of fitting the level noise with the
model parameters. The level’s derivative is in fact much noisier than the level.

2.6 Working with Integrators using State Space Models
If we look back at Figure 2.6 and replace the hand valve with a second flow controller FC-2,
the equation describing the system is simply

eq. 2.5 dL/dt = (F1- F2)/a

and there is no simplification for F2. Using a first order approximation for the derivative
again, the difference equation becomes

eq. 2.6 L(k+1) = L(k) + (T/a)*(F1(k)- F2(k))

If we subsitute d/dt = s in equation 2.5 to create the LaPlace transform, we would recognize
the form of an integrator.

eq. 2.7 L(s) = (F1 (s) – F2 (s))/(a*s)

When the A matrix has a value of one on the diagonal, the equations are describing an
integrator. State space models can represent integrators naturally. Therefore the control
algorithm does not need to create any special structures to handle integrators, unlike the
problem described in Section 2.5.

2.7 Large Applications Encompass Feedforward Variables

In section 2.5 we discussed integrators as
one of the problems with a large controller
scope. A second attribute of larger
controllers involves the loss of
feedforward variables. This can be
illustrated by looking at Figure 2.9 and
Figure 2.10. In the first diagram, a process
unit, possibly a distillation tower, has a
feedforward configured from the tower
feed analyser. In this case, when the
composition of the tower feed changes
(AT-1), the controller will make
compensating moves with the manipulated
variables.

In the second diagram, there are now two unit operations configured in the MPC application.
The analyser on the bottom of the first tower is now an MPC CV. If this is configured as a
single MPC problem, the MVs on the first tower affect both AT-1 and AT-2. AT-1 is not
independent of the MVs, so AT-1 cannot be a feedforward variable for AT-2. AT-1 is a
valuable source of disturbance information for AT-2 and now it is lost. It has changed from
an independent feedforward variable for AT-1 to an intermediate variable in the model.

AT 1

AT

T

AT

TC

FC

PC

TC

MV

FF

PV

CV

ATPC

Figure 2.9 - Composition Feedforward

ERTC Computing 2003, Milan, Italy Page 10 of 27 ABB

u

y 1

w

+
+ 1

s+1
1 . -10S

2s+1

y 2

e

Figure 2.11 – Intermediate variables

Figure 2.12 – Effect of Intermediate PV

An alternative is to configure two
smaller MPC applications, one for
each tower. This would work and AT-
1 could be a feedforward to AT-2, but
any constraints in the second tower
cannot be helped by MVs controlling
the first tower.
This predicament is due to the SISO
(single in single out) nature of step
response models used by MPC
combined with the inherent
assumption of output noise. There is
no relationship or mapping between
CVs.

2.8 Taking Advantage of Intermediate Variables
Figure 2.10 showed an MPC application that spanned two process units. The intermediate
analyzer contains
valuable
information for
modeling the
downstream
analyser. With a
state space model,
engineering tools
are available to
impose structure
on the model. Take the process model in Figure 2.11 as an example, where the variable y2 is
an intermediate variable.

The top half of Figure 2.12
shows the results of closed
loop MPC control of y1
measuring only y1, while w
acts as a step disturbance.
When the disturbance input v
makes a step change, y2 will
respond before y1, so this is
something to take advantage
of. In the second example,
y2 is configured in the
controller as a PV or
predictive variable. Because
y2 has no deadtime, the
estimator immediately sees
the disturbance, predicts the
effect on y1 and the
controller moves u much
quicker, as seen in the lower
half of Figure 2.12.

AT 1

AT

T

AT

TC

FC

ATPC

TC

ATPC

MV

FF

PV

CV

Figure 2.10 - Composition as Controlled Variable

ERTC Computing 2003, Milan, Italy Page 11 of 27 ABB

The intermediate variable y2 is faster than y1 based on the structure in Figure 2.11, but it is
not necessary that intermediate variables act as inputs to downstream CVs. The Kalman
filter estimator is capable of inferring the effect of a disturbance on y1 in the future, if it is
measured on y2 now.

3 Enhancing Prediction and Monitoring Capability by Merging Statistics
and Modeling Techniques

A second common use of empirical models is related to the estimation of unknown or
unmeasured quantities and to the assessment of equipment or process conditions.

In this category fall applications like software sensors, used to continuously infer vital
parameters like product qualities or pollution content, and fault detection and isolation,
where the outcome of models are compared with the actual measurement in order to identify
changes early or incumbent failures. Additionally, it includes also statistical techniques like
Statistical Process Control (SPC) designed to promptly spot production problems and/or
variations.

Different from control applications, it is not common to have devoted experiments or step
test data collection campaigns for this type of model. Data is usually acquired from process
historians or other data repositories. There are a number of impending difficulties, which will
be quickly summarized in the following sections.

3.1 Dealing with large datasets.
It is so easy to extract process data that the engineer is left with much more than he really
needs and has to remove data that could be detrimental to the model. Let’s consider model
inputs. Many plant measurements are often available, but for empirical model building “less
is better”. So the problem is to find the minimum number of inputs able to maximize both
model performance and model robustness. What is the number? Which inputs should be
selected?

Luckily the statisticians have created proven methodologies to facilitate answering these

questions. Probably the most
important technique is Principal
Component Analysis (PCA). PCA is
a very effective methodology, able to
separate the signal from the noise in
a process, revealing how many (and
possibly which) variables are
responsible for the former and how
many for the latter [12].

From a mathematical standpoint, it is
a projection-based technique able to
reduce the dimensionality of a
problem through the construction of
orthogonal latent variables (named

PC1

PC2

X

Y

Z

Figure 3.1 – Example of PCA of a 3D dataset

ERTC Computing 2003, Milan, Italy Page 12 of 27 ABB

principal components – PC) that are a weighted linear combination of the original variables.
They are computed so that the first PC provides the direction of largest variation in data. The
second PC indicates the largest one in a direction which is orthogonal to the first, and so on.
(for more details on PCA see [13]). Figure 3.1 provides a simplified view of the first two
PCs in a 3d example. Given n records, each one made up of k variables, the (nxk) correlation
matrix of the standardized variables1, X, can be calculated and decomposed into the p
eigenvectors (with p=min{n,k}). Usually only the first r eigenvectors (corresponding to the r
largest eigenvalues) should be retained for the model, forming the loading matrix P, while
the remaining (p-r) eigenvectors will form the residual matrix E, assumed to explain the
process noise, as described in equation 3.1:

eq. 3.1 Ept....ptptX TTT ++++= rr2211

An example showing how a pre-processing utility embedded into the modeling toolkit may
help the process engineer to quickly understand how many degrees of freedom exist in the
problem is given in § 5. Analysis of the most important PC tells a lot about which variables
should be selected as model inputs. Remaining uncertainties in model structure could be
resolved by comparing several models built with the most promising candidates. Automatic
model building and effective comparison metrics would be a desirable feature for the control
engineer.

A second issue is related to dataset partitioning. It is important that the available data is
properly divided into modeling and validation sets, each set covering all operational cases.
This must be done properly or the model assessment will be biased by data that does not
represent the process. Figure 3.2 shows a rather extreme example of how splitting the data
set incorrectly could lead to wrong conclusions. A model trained on data collected in period
A, is not in the position to provide good predictions when plant is operating in period B. The
opposite risk happens when the split is made so that the resulting data sets are not

independent. A typical example is
represented by a 1-1 splitting, when
consecutive records are sent
alternatively to the modeling and the
validation sets. While this seems like a
good way to have records from any
operating mode in both the datasets,
this will result in a poor validation set,
which is too close to the modelling set
(unless each record is taken with
appropriate time between samples).
In this case, proper help for the
engineer would be a statistical tool
capable of comparing and assessing the
consistency of the different datasets.
Once more, the solution is providing

simple rules-of-thumb able to spot possible statistical traps and numerical shortcomings.

1 Y is the standardized variables of y if: Y = (y-µy)/σy

Period
“A”

Period
“B”

Pr
od

uc
t Q

ua
lit

y

Model Building
Data

Validation Data

Figure 3.2 – Improper Splitting of a Data Set

ERTC Computing 2003, Milan, Italy Page 13 of 27 ABB

3.2 The “Garbage-in-Garbage-out” rule.
A second problem comes, paradoxically, from the effectiveness of the actual number
crunching techniques. Modern data mining tools are able to find a solution to the problem “in
any case”. Unfortunately, very often the solution found is not a really good one for the
problem. It is what is known as the “garbage-in-garbage-out” rule. If you feed your software
with wrong data, it will provide the wrong answer. Outliers, correlated inputs, auto-
correlation, re-arrangement of variables due to process time delays are dangerous
occurrences which may spoil the results of the most powerful algorithm.
This moves the emphasis from model development to data analysis and pre-processing.
While domain competence and expertise is a must [14], statistical analysis and engineering
tools can reduce the burden on the control engineer. A problem is that they require numerical
and statistical skills that often exceed the typical process engineer’s background.

While a comprehensive treatment of these problems is outside the scope of this paper, their
non-triviality is evident in the following short example about outlier identification and
removal.
Measurement errors in the context of sampled, measured variables are simply the difference
between what is measured and what is the true value of the variable, that is,

Eq. 3.2 [[[[]]]]kkkkk)w()b()g()x()y(++++++++++++====

where: y is measured; x the true value; e = g + b + w is the error due to the measurement;
and k denotes the k-th value of the time series. Equation 3.2 represents an additive error
model with:

1. Gross Errors denoted as (g)k
2. Systematic Bias denoted as (b)k
3. Random Errors (noise, normal or uniformly distributed) denoted as (w)k

The trickiest and most dangerous class of error is the Gross Error, which includes the
following two subclasses of GEs:

1. Sensor failure related GEs. These result in a sustained GE that is characterized by
a non-continuous, dynamic response such as a step function for the measured
variable and often a noise-free signal that exhibits steady state behaviour.

2. Sensor fault related GEs (Outliers). These result in short GEs that are
characterized by a non-continuous, dynamic response such as an impulse or an
impulse-like response. Outliers may be distinguished from noise by the
amplitude of the peaks.

Figure 3.3 shows the different
effects of the two kinds of GEs on
plant data: any process engineer
is, unfortunately, very familiar
with similar charts and knows
how this impacts any effort to
build reliable models out of such
data.

Luckily today, statistical methods
are available to supplement the
engineer’s judgment in order to

0 5 10 15 20 25 30 350

2

4

6

8

10

12

14

16

18

sample

0 50 100 150 200 250 300 350 400
20

25

30

35

40

sample number

te
m

pe
ra

tu
re

 in
 C

Figure 3.3 – Sensor Failures and Outliers Gross Errors

ERTC Computing 2003, Milan, Italy Page 14 of 27 ABB

obtain good data for model building purposes. Filtering of high frequencies, de-mean and de-
trend, interpolation, manual/automatic substitution in case of bad quality, automatic
identification of spikes and outliers, rearrangement of variable values to tackle delays, ability
to identify correlations /autocorrelation in variables are some of the tasks that a good tool
should provide. A must for this type of tool is a full visual approach. Regardless of how
powerful the tool is from a purely mathematical point of view, the engineer needs to be able
to visually verify and validate process data and preview any change/filtering to it.

3.3 When should a model be considered a good model?
Deciding when a model is good is an additional challenge. In theory a perfect model should
be able to fully reproduce the behaviour of the modelled system. But certainly noise should
be out of the picture, because it adds randomness that has to be avoided and the model
should not fit it. So how do you tell when the model is improving and when it is just chasing
the noise? What is the minimum error squared between modelled and measured output that
we would like to see, given that we have just said that the ‘zero’ is not our target? This is
something similar to what described in §2.2. There is a clear need to accept a simpler model
with some prediction errors, rather than struggling to obtain more complex ones, which
“look better” on training datasets, only because the noise was modelled. Usually avoiding
overfitting requires expertise and a lot of iteration on different datasets in order to properly
tune the model. A common technique is to perform simultaneous predictions both on a
training and on an unrelated test set, checking and comparing the results while gradually
increasing model complexity. Figure 3.4 shows a chart of the average squared error on both
modeling and test set, against model complexity. When the error on the test set starts to
increase, it is a good signal that the algorithm is fitting the noise. The problem is that this
procedure requires a lot of iterations and book-keeping in order to properly identify the
optimal degree of complexity.

Building data-driven models out of good, meaningful data is pretty quick and easy. This
allows the engineer to try several possible structures and approaches with the final result of

spending time just “fine tuning” a
multiplicity of models, looking for an
optimum whose identification may
result controversial (different metrics –
R2, mean square error, maximum square
error, etc. - may provide different
hierarchies). This is made worse by the
fact that developing a model is always a
three-step approach: build your model
on a fraction of your data, assess it
against a second data-set, then rebuild
your model on the whole dataset.

Facilities able to assist the user with automatic model building and proper comparison tools
could greatly reduce development time and drive the inexperienced user safely towards
comfortable results. A highly desirable feature would provide automatic model building
using a group of possible inputs, permutation rules and scripting. Smart algorithms can
emulate the try-and-test procedure that engineers do when they try using different input
combinations. This way, the engineer may use his time for higher level tasks and let the

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Test Set

Modeling

Figure 3.4 – Model Overfitting

ERTC Computing 2003, Milan, Italy Page 15 of 27 ABB

XT XT SAMPLE

TAKEN

YI

LAB

Data Capture, Validation, ComparisonData Capture, Validation, Comparison

INFERENTIAL
MODEL

INFERENTIAL
MODEL

PB

BIAS

ΣΣΣΣ ΣΣΣΣ

Steady State
Verification

Steady State
Verification

CUSUM
Shewart

Test

CUSUM
Shewart

Test

MEASURED
PRODUCT
PROPERTY
& TIME TAG

FilterFilter

XT MEASURED &
CALCULATED

INPUTS

INFERRED
PROPERTY

PREDICTION
 ERROR

Fig. 3.5 – Typical Bias Update Scheme

software generate and train multiple models based on his instructions; then, later he can
compare models based on their prediction and select the model with the best performance
(also taking into account his process knowledge). This process requires good tools for model
comparison, both from a numerical and visual point of view.

3.4 On-line implementation.
Putting a model on-line is not just a matter of reading and writing back and forth to the basic
automation system, but to seamlessly integrate it, so that the operator may fully benefit from
it. Issues that need to be carefully revised and taken into account are on-line data filtering
both of inputs and outputs. Inputs must be filtered to remove noise. Outputs may use a
moving average to increase reliability and decouple downstream applications from
calculation noise. Other considerations are bad quality management, writing back to the
DCS with related issues like proper displays and alarm generation.

But maybe the trickier issue in configuring the model is how to take advantage of
incorporate periodically available data. Often empirical models are used to estimate variables
available only sporadically from plant laboratories or analysers. Using this information to
correct and update the prediction is an obvious improvement, but it is necessary to identify
and avoid use of errant lab analysis, preventing the calculation of an incorrect model bias.
Implementing this identification and filtering logic may is so complex that many works
available in the literature have simply given up this opportunity to improve the accuracy of
their application.

To improve the model’s estimate using laboratory data or field analysers, the model output
value could be corrected by a bias. The bias value should be determined by the difference
between the estimated and the
measured value. Since
analysis results often involve
errors that have a Gaussian
distribution, the “tails” of this
distribution must be avoided
or the bias calculation will be
faulty. Programming logic
must implemented in order to
detect and remove statistically
unreliable data. Statistical
Process Control strategies,
which control average and
variances of absolute values
and differences, are very
effective in identifying acceptable input data. The whole system may also require operator
acknowledgements and interactions that should be implemented on the standard operator
console to make it easier for him/her to accept the technology. Figure 3.5 presents a typical
bias update scheme.

3.5 Protecting the Value of Your Modeling Investment
Models are an important asset for plant operation. Sometimes models have been built and
validated over the lifetime of the process, representing a significant engineering effort worth
protecting. Legacy models that were once on-line, may not have received the proper

ERTC Computing 2003, Milan, Italy Page 16 of 27 ABB

maintenance to keep them on-line. This can easily result from upgrades to the DCS or
replacement of an old process computer.

Many process engineering departments have some very useful models that have never run
on-line, but reside in some spreadsheet or stand-alone VB application. In some cases, many
years of operating experience are distilled in these models. In other cases, they are brand
new models developed by an enthusiastic young engineer using the latest mathematical
modelling software packages. But the tools that were used to build the models may have no
connectivity capability. So whether the model building procedure was long and arduous or
quick and pioneering, the result is the same: relegation to an off-line status.

The typical process model users are engineers, whose prime interest is not process control or
information technology, but process operations and product quality. Present software
technology allows removal of most of the barriers among components, languages and
equipment. Existing models and custom software can therefore be converted with minimal
effort into components (like DLLs and COM objects) that can be easily integrated online
using an open platform. So a good modeling package not only allows the engineer to easily
build new models, but it will also allow him to host his existing orphaned applications
without a great deal of effort and no custom coding. The modeling environment will provide
real-time data access for inputs, input validation, calculation scheduling and graphical
display of outputs for the operator for the existing model.

4 The OptimizeIT APC Control Suite: an Innovative Approach to APC

4.1 Why Another Commercial Product Suite?

The authors of this paper have significant experience in APC project work. Their
current company is a large process control company that worked with many of the
APC software vendors through license agreements. This experience has allowed
first hand experience with these packages, including knowledge of their
shortcomings.

The process control community has not taken advantage of the advances in
modeling technology. As described in sections 2 and 3, there are approaches to
building better models for on-line applications and to avoid these problems. How
could integrating these advances in modelling technology affect the control
engineer and the plan operator?

1. The improvement in modelling technologies can lead to improvements in
process control performance. This should lead to better economic
performance on existing applications and should create new opportunities
where the ROI was not adequate with the prior technology. Furthermore,
the new technologies should make problems feasible that were previously
considered technically too difficult to try. So wider application and better
performance are the first effect.

2. With software that is easier to use, with prevalent availability of live and
historical process data and with computer power no longer an issue for these
types of on-line applications, on-line modelling should proliferate for
simpler applications. For instance, the control engineer should be able to

ERTC Computing 2003, Milan, Italy Page 17 of 27 ABB

build an inferential model whenever he wants or needs one, with a simple
toolkit that his plant owns.

With this in mind, the authors have been involved in designing and developing new
APC products within the ABB IndustrialIT framework, as their company has
determined that the APC business is best approached by having the best software
solutions. The new products include the technology enhancements previously
discussed, as well as including many features to improve ease of use. This
comprehensive new suite provides components that work together for all APC
project activities.

The suite includes:

• MPC
• Neural networks
• PCA, MLR and PLS Regression
• SPC and MvSPC
• Control Loop Tuning
• Control Loop Auditing

Providing a comprehensive suite allows the application engineer to build control
solutions without worrying about writing programs or connecting applications on
multiple platforms. Some features of the suite are:

• Support OPC as the I/O standard and ODBC for database import
• Standard project navigation window in all on-line and off-line tools
• Common data editing and pre-processing tools
• Enhanced trend element, common across all programs

These features should decrease the time the engineer spends learning about the
package, and increase the amount of time the engineer spends using the package.

The packages are also accommodating. There are a great number of proprietary
models running in plants running on old platforms and written in old languages like
Fortran. In these cases new modelling technology is not needed, but a user-friendly
container to execute an old model is needed. A standard wrapper is provided to
integrate these applications into a modern architecture.

Not diminishing the usefulness of Fortran, the driving force in the suite is new
technology coming from R&D. ABB has a commitment to R&D through the
Corporate Research Centre and much of the new technology inside the APC suite
was first developed within the R&D group. An example of the innovations built
into the suite is the outlier removal strategy in the data processing tool. The
strategy applies wavelet analysis to pinpoint data that contaminates information
content of the data set [16]. This type of research is typically only funded in large
forward thinking organizations, which may explain why APC technology has not
moved along faster.

In the following paragraphs, the two main products of the APC suite are described.

ERTC Computing 2003, Milan, Italy Page 18 of 27 ABB

4.2 OptimizeIT Predict & Control (P&C)
OptimizeIT Predict & Control is a multivariable, model predictive control software package.
The P&C software suite includes on-line components for control and operator interaction and
off-line components for controller configuration, dynamic model identification, tuning and
analysis. The controller operates through existing instrumentation and control equipment so
there is no major investment or interruption of production required.

P&C includes four general types of variables:
� Process Inputs

(1) Manipulated variables (MVs) which are adjusted by the controller.
(2) Feedforward disturbance variables (FFs) which represent measurable

disturbances used for feedforward predictions.
� Process Outputs

(3) Controlled variables (CVs) which include controlled variables with setpoint
targets or constraint variables with min/max limits, and measurable variables that
are used to improve the estimates of the controlled process variables.

(4) Prediction variables (PVs) that provide additional feedback information that
improves disturbance estimation, resulting in quicker, more accurate corrective
action

The P&C control algorithm is based on a state space model representation of the process.
The state space model is used to predict the effects over time of independent process inputs
(MVs and FFs) on dependent process output variables
(CVs and PVs). The model allows the controller to
account for process dynamics (e.g. deadtimes and lags)
between changes in the independent variables and
expected changes in the dependent variables, see
Figure 4.1.

P&C provides flexibility in treating a combination of
setpoint control and constraint control objectives for
multiple variables. Each controlled process variable
may include a setpoint target and/or constraint limits
(defined as absolute min/max values or min/max
deviations from setpoint). Priorities are also assigned
to the constraints, so the controller can calculate
appropriate moves to prevent or minimize violations of
the highest priority constraints, before lower priorities
are considered. The controller can accommodate
controlled variables that are based on intermittently
sampled data, such as analyser or laboratory data.

The P&C algorithm also offers a 3-degrees of freedom
control design in which setpoint, feedforward, and
feedback control responses can each be tuned independently in the time domain. This
provides significant application design flexibility and leads to very robust process handling
from more accurate controller commands.

The controller includes a static optimisation stage to drive MVs towards desired targets when
the control problem has extra degrees of freedom available. The desired targets for the MVs

Figure 4.1 - Controller
Predictions

ERTC Computing 2003, Milan, Italy Page 19 of 27 ABB

may be set by various sources (e.g. plant supervisors, operators, engineers, external software
such as RTO). Alternately, an economic objective function can be configured into P&C in
terms of the MVs and CVs. The controller then drives to the economic optimum instead of
MV targets.

Internal Model and Estimator
P&C includes a state estimation algorithm to dynamically estimate the state variables at each
time step by applying the process input measurements (MVs and FFs) to the model and then
defining corrections to the states based on the CV prediction errors (the difference between
measured value and the value predicted by the model). New state estimates are generated
and used to improve the current and future predictions for all the CVs (reducing CV
prediction error). Therefore, the state space model allows for earlier detection and faster
controller response to unmeasured disturbances, when compared to other competing MPC
technologies.

The state space technology also offers the ability to incorporate additional process
measurements (PVs) as feedback to improve the estimates of the disturbances. This is a
unique feature offered by P&C because the state space methodology provides an integrated
model representation. The state estimator utilizes all the current measurements (CVs and
PVs) to detect unmeasured disturbances and predict their future effects on the CVs. Notice
that the measurements are considered as “feedback” to the state estimator, but the new state
estimates are also used in the controller calculations for the future, so the PVs provide a
feedforward effect in the controller.

Engineering Tool
The P&C off-line engineering tools are included as a separate software component to support
controller configuration, modeling, tuning, analysis, and simulation. The modelling tool
includes several methods for developing state space models. Models may be defined from
plant test data using a two step procedure of subspace identification followed by prediction
error identification. There are many tools available to the user for reviewing the results of
the modelling package and for selecting between multiple models that the user may generate.
Models may also be defined by the user in terms of transfer function representations or may
be imported.

The control tuning and analysis package
provides the user with many plots to evaluate
controller performance, including closed loop
response to setpoint changes and disturbance
inputs. Robustness under modelling error is
treated. Both time domain and frequency
domain tools are available.

The online controller comes with a built-in real-
time simulator. The simulator may use the
model that the controller is using, or the user
may specify a different model to test the
robustness of his tuning parameters. The simulator may run faster than real-time for
engineering studies, or as slow as real-time for operator training sessions.

Figure 4.2 Modeling Tools

ERTC Computing 2003, Milan, Italy Page 20 of 27 ABB

Operator Interface
The controller may use OPC to link all operating parameters to a DCS console, or the
operator can use the P&C Operator Interface client. The client runs on Windows 2000
systems and may be run remotely from the control server on a PC in the control room or on
the same computer as the operator’s DCS console.

The operator interface provides tabular displays for the operator to control all daily aspects
of the application. The displays are configurable. Detailed displays are available for
individual variables. User configurable trending is also available, with plotting of future CV
predictions and planned MV movement. There are engineering displays for online tuning.

4.3 OptimizeIT Inferential Modeling Platform
OptimizeIT Inferential Modelling Platform (IMP) is an innovative software package for the
development and deployment of data-driven advanced applications. It is based on two
separate environments:

� IMP Model Builder for application design and development
� IMP On-line for on-line project deployment and monitoring

IMP features latest generation data analysis and modelling technologies developed in house
or selected from technology leaders around the world. The user is able to exploit a rich
collection of highly sophisticated tools for data analysis and pre-processing available at his
fingertips. Part of them, like basic statistical insight and Principal Component Analysis
facilities, comes from a special agreement with InControl Technologies Inc. (Houston, TX).
All the different tools are embedded in an intuitive working environment based on the latest
HMI concepts, which remove any hurdles for the inexperienced user.
IMP is designed to be an open modelling environment where new tools may be easily hosted
and put to work. However IMP features some latest generation toolkits, which allow building
models through several technologies including:
� Neural Networks
� Multiple Linear Regressions
� Calculation Scripts

The Neural Network engine is a customized version of Ward Systems Group's Neuroshell®
Predictor, one of the most referenced Neural Network packages available on the market [17].
It contains one of the most sophisticated prediction algorithms available today, yet it is
designed to be extremely effective with minimum intervention by the user.
It features two different prediction algorithms:

� a highly sophisticated neural network;
� a statistical estimator driven by a genetic algorithm;

The first modelling technique is a feedforward net, proprietary to Ward Systems Group,
which is not based on the classic back propagation algorithm. It dynamically and
automatically grows hidden neurons, trains very fast and has excellent generalization
capabilities. Hidden neurons are connected to previously added hidden neurons, eliminating
the need to pre-specify a distinct number of hidden layers.

One of the most time consuming tasks in developing neural models is the iterative training
and testing procedure, needed to identify the model with the best performance, which doesn't

ERTC Computing 2003, Milan, Italy Page 21 of 27 ABB

Fig. 4.3 – Input Selection Facility

over-fit the data (see [18] and [19] for details on Neural Network training and testing issues).
One of the salient advantages of the IMP/Neuroshell neural method is that it can actually be
tuned after it is trained in order to provide more or less generalization. This allows the user
to decouple the training activity from the testing activity, offering a big advantage both in
development time and in the accuracy and reproducibility of the method.

The genetic training method combines a genetic algorithm with the well-known General
Regression Neural Net. GRNN is a statistical estimator, originally developed in the statistics
literature and known as the Parzen kernel regression [20]. It was subsequently introduced to
the neural network community by Donald Specht [21]. It trains everything in an out-of-
sample mode, essentially doing a "one-hold-out" technique, also called "jack knife" or "cross
validation". This method is therefore extremely effective when you do not have many
patterns for training. The genetic training method takes a little longer to execute, but it also
reveals the relative importance of each of your inputs.

Common to the two training methods is the capability of removing two of the most
frequently heard complaints about prediction systems, i.e. that they are too hard to use, and
that they are too slow.

IMP embeds Neuroshell’s features in a process control oriented environment, unleashing all
the power of neural network modelling, without most of the related drawbacks and
nuisances. Highly automated, yet very simple procedures allow the user to simultaneously
build several models and then to compare the results.

Let’s assume that we have n potential model inputs. IMP classifies them as m “always used”,
p that “could be used” and r that should be never used. Based on this classification the
following algorithms are available for automatic development of models:

1. Full permutation of inputs. IMP generates and trains all the models automatically
taking into account all the possible permutations. This will produce (2p) models with
a number of inputs ranging from m to
m+p

2. Smart identification of useful inputs.
IMP starts training the biggest model
with all the (m+p) possible inputs.
Based on a computed “input
importance factor” and some pre-
defined rules and thresholds, it
reduces the number of inputs by
removing the least significant ones
step by step, until it reaches a
stopping condition.

3. Iterative improvement. IMP starts
training the biggest model with all
the (m+p) possible inputs. It then
starts generating all cases using n-1
inputs and evaluates the results in
terms of R2 and average error (both
test and train set). Based on
performances of the generated n-1 nets, IMP identifies the input that has the least

ERTC Computing 2003, Milan, Italy Page 22 of 27 ABB

impact on the model This input is removed and the procedure is restarted. Rules on
thresholds and minimum number of inputs are set to stop the procedure.

4. Guided randomised. IMP starts training the biggest model with all the (m+p) possible
inputs. It then removes a randomly chosen input and builds a new model. Model
results (R2 and avg err) are compared to the original model,. If the model is performs
better, it is considered as the reference model and the procedure is executed again.
Otherwise the new model is deleted, another input is chosen and the procedure starts
again.

5. Script-based training. IMP generates and trains models based on a scripting language.
Both the inputs and the model details are defined by the engineer through the
scripting language and the model generation and training is automatically performed
in a unique session

This way, most of the model building activity is completely automatic, even to the point of
executing overnight. The engineer needs to check the results and accept the most convenient
and best performing models, using the many available comparison facilities.

IMP would be not a true data-driven applications environment if limited only to model
building. In fact IMP includes powerful tools for process and quality monitoring, allowing
the user to quickly implement SPC control charts and even MvSPC [22]. This is particularly
efficient in monitoring complex processes with just a single number, the Hotelling T2
statistic (refer to [23] and [24] for more details on Hotelling T2 background). IMP exploits
well-referenced statistical calculation routines from InControl, seamlessly embedded into its
software architecture.

IMP On-line is designed to quickly and efficiently implement applications involving process
models. The engineer only needs to physically connect his PC to the network, browse the
OPC Servers available and select the tags he wants to read or write back to the DCS. With no
need to write a single line of code, he may specify the preferred options concerning a large
number of possible configuration details, including bad quality management, tag limits,
engineering units/conversions and tag filtering.

Seamless integration of bias update strategies was given particular attention. Any online
implementation of inferential models is usually coupled with a periodic recalibration
strategy. This strategy computes the difference between the prediction and available physical
measurements (like lab analysis) and treats it statistically to determine the inferential model
bias. The bias is then added to the model output, to improve its accuracy and avoid any
model drift in case of failure in input sensors.

IMP features built-in routines to allow straightforward implementation of biasing. First of
all, it allows connection to external repository of lab data (LIMS) through use of ODBC for
automatic collection of lab analysis. It then allows implementation of various bias
calculation strategies. Different equations and different timing for bias computation can be
set up for any configured prediction; different filtering and data validation strategy can be
selected and customized to fit the specific client needs. Straightforward integration at DCS
level is possible through use of the built-in OPC connection.

ERTC Computing 2003, Milan, Italy Page 23 of 27 ABB

5 First applicative examples

5.1 A Refinery Application
The MPC algorithm discussed above was
recently implemented to a refinery
application.
The process unit selected for the
application was a crude unit. The main
objective of the application was quality
control of the crude unit product streams.
The product quality control layer
employed the inferential modeling
techniques discussed in this paper,
specifically the neural network models.
Controlling the product draw
temperatures enforced the inferential
quality objectives.

There were three temperatures controlled
to setpoint, along with additional temperature constraint variables. These variables were
controlled using seven manipulated variables, as illustrated in Figure 5.1. The control
configuration is summarized in Table 8.1

Controlled Variables Manipulated Variables FeedForward
1. Kerosene Draw Temperature 1. Ovhd Temperature SP 1. Feed Rate
2. Lt. Diesel Temperature 2. Kerosene Draw Rate SP
3. Hvy. Diesel Temperature 3. Lt. Diesel Draw Rate SP

Constraint Variables
4. Hvy. Diesel Draw Rate SP

4. Ovhd TC Max Valve Position 5. Middle Pumparound Flow SP
5–7.Stripper LC Max Valve Positions 6. Bottom Pumparound Flow SP
8. Heater Max Tube Wall Temp 7 Heater Outlet Temperature SP
9. Heater Max Tube Wall Temp

Table 8.1 – Controller Configuration

If there were no constraints active, the three draw temperatures used three of the seven
degrees of freedom. The overhead temperature will have an MV target that is a function of
the naphtha quality control. That leaves 3 extra degrees of freedom that are used to move the
process to a more desirable economic
operating point. The pump arounds will
maximize heat recovery unless other
constraints are encountered that affect
quality control. The operator sets the heater
MV target.

This is a fairly typical crude unit
configuration, but the flexibility of the state
space controller was able to provide superior
performance to overcome an operational
problem. The heater fuel BTU content was

T

RESI

FC

Fuel

KER

Color Code
MVs,
FF,
CVs w/SP
CVs w/HL/LL,
PVs

TC

TC

F

T

Hvy.

Lt. DSL
F

T

FC F

NAP

FC

T

MP

BP

Figure 5.1 - Crude Unit MPC Strategy

y
Sub

Model

Sub
Model

MV1- MV6 SPs

TC SP
for

Heater

TC PV
for

Heater

Figure 5.2 Model with Intermediate PV

ERTC Computing 2003, Milan, Italy Page 24 of 27 ABB

Figure 5.3 – Controller Performance

Figure 5.4 – PCA Helps in Identifying Degrees of
Freedom

Figure 5.5 – Lower Order Model

not very stable, causing consistent 3°C to 4°C peak to peak temperature swings in the heater
outlet temperature. The period of
oscillation was on the order of 30 to 40
minutes and the base controls could not be
adjusted to eliminate the disturbance.

To improve the temperature control of the
draws, the heater outlet temperature was
added to the model as a PV. This made the
controller structure very good at predicting
a process input disturbance. To do this, a
special model was built using a model
connection tool, resulting in the structure
shown in Figure 5.2.
The resulting temperature control is seen in
Figure 5.3, showing very good
improvement over the pre-existing control.

On the same unit, four different inferential
models have been built to provide real-
time estimation of the ASTM 90% point
for the following four products:
� Light Diesel
� Heavy Diesel
� Kero
� Heavy Naphtha

All the models were built using neural
network technology. This application may
represent a good example to illustrate how

merging a statistical data analysis tool and modeling capability in a single environment may
greatly simplify model development.
Let’s consider the Light Diesel (LD)
case. A control engineer can easily
identify at least 25 different process
variables potentially affecting LD
production quality. Which one should be
chosen? As explained in § 3.1, PCA is
an important ally to the engineer. Figure
5.4 shows the results of a PCA on
process data, providing evidence that 8
‘rearranged’ inputs are enough to justify
more than 90% of dataset variance. Using
this information and the related
eigenvector components, it is
straightforward to identify the most
significant variables for the model.
Figure 5.5 graphically illustrates the Neural Network prediction results using this set of
inputs.

ERTC Computing 2003, Milan, Italy Page 25 of 27 ABB

Plant
Network

Plant & Lab
Information

ABBStrömbergDistribution
ABBStrömbergDistribution

Unix - based
Consoles

Applicatio
Server IMP

On-line

Figure 5.6 – Crude Processing System Architecture

Figure 5.7 – Crude Processing Results

5.2 An Oil&Gas Application
A second interesting application has been completed on an offshore platform located in
Northern Europe, which processes the crude oil coming from several local sub-sea wells and
from some submarine oilfields located a few Km from the platform.
The crude oil treatment involves the separation of the feed containing oil, gas and water to
obtain oil and gas to be exported. The process can be divided in 3 main parts:

• Crude oil treatment
• Gas treatment and compression
• Condensate treatment

The treated oil, blended with the
condensate product coming from
the condensate treatment, is stored
in cells and offloaded into tankers
for the export; the gas is
compressed and exported.

The APC application is related to
the implementation of inferential
sensors to provide real-time
estimation of the quality of the
exported products. The two
predicted quality parameters are the
C4

- content and the RVP (Reid
Vapor Pressure) in the crude oil
going to the storage cells.

The project was organized in the following steps:

• preliminary process study and target definition
• data collection
• data treatment and elaboration and Neural Network modeling
• off-line validation
• on-line implementation and commissioning

Process data, collected from the plant
historian and the LIMS, were re-
organized, filtered and pre-processed in
order to obtain “clean” and useful
training, test and validation datasets,
employed for model building and
assessment. Finally the best models were
shipped back to the plant for final
commissioning, realized through the
powerful IMP On-line facilities. The
target architecture is shown in Figure 5.6
The PC hosting the Neural Network
models is connected to the ABB AC 450
DCS through OPC technology; exchange
between the Application Server and OPC
is performed through use of TCP/IP

ERTC Computing 2003, Milan, Italy Page 26 of 27 ABB

Figure 6.1 – Predictive Emission Monitoring with IMP

functionalities. The client components run on the Application Server and are accessed from
PCs using the PCAnywhere application.
The Operators monitor model results through dedicated displays on their Operating Stations,
while process engineers manage the application by means of the IMP Monitor software
located on the hosting PC. Figure 5.7 shows the typical screen used to check and manage the
bias update mechanism.

6 Conclusion and future developments
The paper has highlighted some existing problems, which have prevented wider penetration
of model-based techniques into industrial process automation. Analysis of new modeling
techniques couched in a modern software environment and supported by the latest statistical
methods has shown that these problems no longer stand in the way of model deployment.
Software products implementing these techniques were discussed and actual implementation
examples reviewed. New modeling solutions lie at the process engineer’s fingertips.

As the nightcap, we offer one more example illustrating that on-line empirical process
models will proliferate if they are easy to use. Figure 6.1 shows the results of a neural
network prediction for solvent emissions in a polymer stripping operation. With new and
better tools, there are many possibilities to use multivariable control and process modelling
in places that are not traditionally considered.

The ambitious goal is to extend modeling beyond the traditional APC & Optimization
domain. This will result in a number of innovative and sometimes unusual applications.
Fault detection, process and equipment monitoring, quality control and prediction, predictive
maintenance, sensor and analyzer validation, energy optimization are possible areas of
interest for advanced modeling-intensive applications. As a final example about smart,
smaller scale projects, it’s possible to mention an application presently under development at
a polymer plant in Europe.
The customer has a problem with the
final stage of the process where the
finite, extruded product is steam-
stripped to remove hexane. Mobile
analyzers are used in “monitoring
campaigns” to assess the amount of
pollution vented into atmosphere with
the steam. Obviously this is far from
optimum because the analyzers are
connected to the plant no more than
20% of the operating time. However
using the data stored during these
campaigns it has been straightforward
to identify a model, which could be
easily put on-line for real-time
continuous emission monitoring purposes. Figure 6.1 shows the excellent accuracy the
Neural Network model is able to provide. Environmental applications are actually one of the
most exciting targets for modeling techniques, their use being recommended also by
important environmental authorities [25].

ERTC Computing 2003, Milan, Italy Page 27 of 27 ABB

Acknowledgement.
The authors would like to thank Mrs. Emanuela Pavan and Mr. Ken Praprost from ABB and
Mr. Steve Ward from Ward Systems Group for their highly valuable help towards the
writing of this paper.

References

[1] Samad T and Weyrauch J: “Automation, control and complexity: an integrated approach”, John Wiley and

Sons, 2000
[2] Bonavita N, Martini R: “Overcoming the Hurdles in Chemical Process Automation, part I”, Chemical

Processing, Nov. 2002, pp. 31-35
[3] Denn M., “Process Modeling”, Pitman Publishing, MA, 1986
[4] Marlin, T.E., “Process Control: Designing Processes and Control Systems for Dynamic Performance”,

McGraw-Hill International Editions, 1995
[5] Bonavita N, Matsko T: “Neural Network Technology Applied to Refinery Inferential Analyzer Problems”,

Hydrocarbon Engineering, December 1999, pp. 33 – 38
[6] Garcia C, Prett D, Morari M: “Model Predictive Control: Theory and Practice a Survey”, Automatica, Vol. 25,

No. 3. Pp. 335-348, 1989
[7] Qin SJ, Badgwell TA: “A Survey of Industrial Model Predictive Control Technology”, “Control Engineering

Practice”, 11, 2003 pp. 733-764
[8] Idcom-M Multivariable Predictive Control Version 3.1 Control Reference Manual, Setpoint Inc.
[9] Van Overschee P., DeMoor B. “Subspace Identification for Linear Systems: Theory-Implementation-

Applications”, Kluwer Academic Publishers 1996
[10] Lundh Michael, Molander Mats, “State Space Models in Model Predictive Control”, ABB White Paper
[11] Froisy JB, Matsko T. “Idcom-M Application to the Shell Fundamental Control Problem”, AIChE Annual

Meeting, November 1990
[12] Martin E., Morris J., Lane S.: “Monitoring Process Manufacturing Performance”, IEEE Control Systems

Magazine, October 2002, pp. 26 - 39
[13] Jackson J.E. :“A Users Guide to Principal Component Analysis”, New York, John Wiley and Sons, 1991
[14] Beaverstock, M.C., “It Takes Knowledge to Apply Neural Networks for Control”, pp. 335-343, Proc of ISA,

1993
[15] Bonavita N and Tomasi R: “Improvements in process control through model-based techniques: a control

system vendor’s perspective”, Proc. of “1998 IEEE International Conference on Control Applications”
Trieste 1-4 September 1998

[16] Frick A., “Gross Error Detection Using Univariate Signal-Based Approaches”, ABB Technical Report
DECRC/A5-TR006, February 2001

[17] Ward Systems website www.wardsystems.com
[18] Freeman, J: “Neural network development and deployment rules –of- thumb”, Hydrocarbon Processing,

October 1999, pp. 101 – 107
[19] Qin, J: “Neural Networks for Intelligent Sensors and control – Practical Issues and Some Solutions”, In

“Neural Networks for Control”, D. Elliott, Ed. Academic Press, 1996 pp. 215 – 236
[20] E. Parzen, "On Estimation of a Probability Density Function and Mode", Annals of Mathematical Statistics,

Vol. 33 pp.1065-1076, 1962.
[21] D.F. Spetch, “A General Regression Neural Network”, IEEE Trans. On Neural Networks, Vol. 2, No. 6, Nov

1991, pp. 568-576
[22] Piovoso, M. J., Hoo, K. A., et al. “Multivariate Statistics for Process Control”, IEEE Control Systems

Magazine, October 2002, pp. 8 - 63
[23] Mason, R., Young, J., “Multivariate Statistical Process Control with Industrial Applications” ASA-SIAM, 2002
[24] Young, J., Alloway, T, Schmotzer, R., “Introduction to Multivariate Statistical Process Control and its

Application in the Process Industry” , Proc. of “NPRA Computer Conference”, 13-15 November. Chicago,
Illinois

[25] “Continuous Emission Monitoring Systems for Non-criteria Pollutants”. EPA Handbook, August 1997

