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1 Introduction: Role of Modeling in Process Control 
 
Modern process control is based on process modeling.  Advanced process control (APC), 
real time optimization (RTO), process monitoring, operator training simulation, abnormal 
situation management (ASM) and fault detection and isolation (FDI) are all based on some 
kind of process modeling.  Models are a very effective way to embed “knowledge” in 
process automation, which has increased its “autonomy” level, growing more and more from 
“reactive” to “proactive” [1], [2].  
 
Before entering any discussion about models, it is probably appropriate to define what is 
meant by the word in this context. We will refer to the following, generally accepted 
definition, taken by Denn’s book [3]: “A mathematical model of a process is a system of 
equations whose solution, given specific input data, is representative of the response of the 
process to the corresponding set of inputs”.  It is possible to identify two main approaches to 
model building: 

a. Fundamental or first principle models where a description of the process (and the 
related automation) is created starting from fundamental laws 

b. Empirical models (or data-driven) where the models are developed through a fitting-
like procedure over the actual plant live data.  
 

Modelling is a goal-oriented activity: it is performed to answer specific questions, so it 
should be always taken into account that there is not a “always winning” technique and that 
no one model is appropriate for all situations [4]. 
 
First principle models always provide a causal relationship, while an empirical model may 
not.  The empirical model may just imply that the same driving forces move both the input 
and output variables, and that the underlying theoretical model provides the relationship.  So 
the user must insure that the underlying process does not change behaviour if an empirical 
model is used. In practice, full theoretical models are very expensive to derive and only used 
in full-scale optimisation projects.  Process control applications usually employ empirical 
models [5].   
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The two approaches do not compete: not only do they supplement each other very efficiently 
(for example, using empirical models to determine unknown parameters in rigorous, 
equation-based models), but they also   work better in different areas.  
 
Although the landscape is quite varied, it is possible to classify project applications in the 
process industry: 

1. Equation-based models are more common in “plant-wide” applications, where the 
interest is related to the description of the plant behavior as a whole; 

2. Data-driven models are the reference technology where there is a need for an 
accurate description of process units with less emphasis on the interactions among 
them and much stronger requirements on specific details or custom conditions that 
are not easily known a-priori (just think of equipment wear and tear). 

 
Essentially class 1 includes engineering and training simulators, and real-time closed loop 
plant optimizers (RTCLO), while class 2 includes most of the typical advanced applications 
from multivariable process control to inferential measurements, from fault detection and 
isolation to quality and process performance monitoring. 
  
Empirical models are not new to APC.  In fact they are quite common and well accepted, 
having faded into the background of current interest and development activities.  There is 
still fertile ground for making improvements in the modeling technology of APC 
applications though.   
 
This paper deals with empirical models and with the possibility to exploit recent technical 
improvements to overcome some of the present drawbacks.  
 
First we will look at the role of the model in the most common APC technique, Model 
Predictive Control.  The most common techniques used today were selected for their 
compatibility with the computers of the mid-1980’s.  Alternate formulations developed in 
the 1960’s, but never commercially exploited, can now play a part bringing better 
performance to APC. 
 
In the second section, we will examine tools to exploit the abundance of process and 
laboratory data archived in plant information systems for prediction and monitoring 
purposes.  Excellent commercial tools are available to build highly accurate empirical 
inferential product quality models, but they lack practical features needed for heavy-duty 
online application, thus resulting in a much less pervasive presence of process models than it 
could and should be.   
 
The third part, §4, will describe a suite of products aiming to push a little further the 
envelope in the APC market . Combining a set of pre- and post- model building tools, with 
the actual regression engines, provides an overall increase in model utility and robustness. 
Finally some details on two applications will be given in §5. 
 

2 Improvements in Modeling for Model Predictive Control 
 
2.1 Some Background Information on  MPC 
Multivariable control first came into common use in the 1980’s when several independent 
sources all began converging on a basic architecture.  The key to this architecture is the use 
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Figure 2.1- Standard MPC Structure 

of an internal linear dynamic model in the controller calculation.  The algorithm computes an 
estimate of process disturbances acting on the process variables being controlled.  The 
disturbance estimate, the process variable setpoints and feedforward signal levels become 
inputs to the controller calculation.  With these inputs and the process model, the controller 

is able to calculate the required values 
for the independent, manipulated 
variables.  This structure is illustrated 
in Figure 2.1   
 
In the controller error minimization 
calculation, the model helps predict 
future values of the process variables.  
This led to the names Internal Model 
Control (IMC) and Model Predictive 
Control (MPC).  The MPC algorithms 
became the first large-scale 
deployment of computer based 
multivariable process controllers ([6], 

[7]).  To make the calculations efficient and convenient, the algorithms use discrete impulse 
response models.  These models can predict the values of future process outputs through the 
discrete convolution equation. The equation is fairly simple to program and lends itself to 
incorporation in the optimisation algorithms needed to calculate the values of future MVs, 
while minimizing process variable deviations. 
 
MPC algorithms have become the dominant method for dealing with interactive chemical 
process control problems.  They supplanted a technique of using control function blocks.  
This technique combined feedback PID controllers with feedforward control and decoupling 
controllers.  The basic elements of this method were easier for plant personnel to understand, 
but the overall schemes were very difficult to manage, especially when constraints come into 
play.  Constraints could enter the problem when actuators saturate or when a process limit is 
active through a high/low selector function block.  The schemes fell apart under the 
complexities of larger systems and under the conditional behaviour required by varying sets 
of active constraints.  MPC on the other hand, has proven to be very flexible in expanding to 
large systems and in handling complicated constraint scenarios.  An enhancement that first 
appeared in the early 1990’s posed the controller optimisation problem as a multi-objective 
optimisation, where each stage of the optimisation problem added a new constraint while 
adhering to the optimal solution for previously solved higher ranked constraints [8].  This 
innovation made tuning the controllers with varying sets of active constraints much easier.   
 
After the move to multi-objective algorithms, there has been little else to point to as an 
improvement in MPC or as an alternative to MPC.  Advances in computing technology have 
lead to wider availability of dynamic process modelling tools for the chemical and petroleum 
related industries.  The increased availability of rigorous high fidelity models has not lead to 
a generally accepted way to use these models for process control.  One reason is difficulty in 
getting the dynamic model to match the plant.  There are many details in the model that are 
needed for process control, which are not necessarily needed for design work, but design 
work is often the original intent of the model.  For instance, details about the valves are often 
inaccurate and need to be gathered from plant operating data.  A second reason is selection 
of the control architecture.  In a linear system, an output disturbance could be modelled by a 
bias.  In a nonlinear system, that choice is not so obvious.  The mathematical approaches to 
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solving the problems also vary.  Brute force integration of Open Equation physical systems, 
as the inner layer of a gradient algorithm computing control moves, is a difficult procedure.  
The alternate formulation combining the physical, time and control equations into a single 
objective via collocation produces daunting numerical problems. 
 
Thus MPC is the algorithm of choice for most control problems.  This does not mean that 
there are not shortcomings.  There are actually several problems that have not been 
addressed by the market, as development has tended to be stagnant. 
 
2.2 Problems that Occur with MPC Models 
As stated earlier, the common 
MPC packages employ impulse 
response models.  When they 
display the models to engineers, 
it is common to integrate the 
impulse response models, 
converting them to step response 
models, as illustrated in Figure 
2.2.  These models contain a 
great number of coefficients.  
The model identification 
software packages have many 
degrees of freedom to use in 
calculating the models.  This in 
fact does not represent the real 
system very well, because the real system would have only a few parameters in a linearized 
set of differential equations.  If the data collected from the plant was perfect, this abundance 
of coefficients would be no problem, but that is not the case.  Process data collected from 
plant step tests always carries process noise and the effect of unmeasured disturbances.   
 

The general result is that these 
extra coefficients begin to fit the 
noise, as shown in Figure 2.3.  
The variation in these coefficients 
affects the MPC algorithm, 
resulting in unnecessary 
manipulation of the controller 
outputs.  The engineer must now 
make a tradeoff, detune the 
controller, or fix the model.  
Since detuning is undesirable, 
most modelling algorithms 
provide a smoothing function.  
This is not cost-free because 
filtering usually tends to attenuate 
the model gain, see Figure 2.4, 

and in extreme cases can change the dynamics.    The resulting filtered model will not match 
the real plant, requiring detuning of the MPC algorithm that the smoothing was supposed to 
avoid. 
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Figure 2.2 - Typical Step Response Model 
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Figure 2.3 - Actual Step Response Identified
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One reason this step 
response looks ragged is that 
the model identification does 
not have the ability to deal 
with process noise.  This 
type of model does not 
include parameters to 
estimate the effect of the 
noise, see Figure 2.5.  There 
is nothing explicit in the 
model formulation or the 
identification algorithm that 
allows some of the 
prediction error to be 
explained by disturbances.   

 
All disturbances or noise added to 
the process (v) then bias the model 
coefficients.  When you have a lot 
of model coefficients, there is plenty 
of opportunity to try and explain the 
noise with the model, instead of 
accepting a smoother model and 
some prediction error.  To mitigate 
this problem, large data sets are 
needed, which require greater 
engineering effort collecting plant 
data. 
 
 
2.3 State Space Models - An Alternate to Impulse and Step Response Models 
For a long time the control literature has described modern control algorithms based on a 
flexible type of multivariable model.  The model was based on linear differential equations 
that mapped the relationships between process inputs and process outputs through use of 
intermediate variables, called the state vector.  This type of model was called a state space 
model.  MPC algorithms came along after state space models were introduced, but did not 
use this type of model.   
 
State space models became linked to optimal control theory for aerospace applications and 
did not include many of the practical control objectives that were part of the design basis of 
MPC.  The result was that state space models were ignored for a long time by the process 
industries, but recent enhancements in new algorithms have changed that [10]. 
 
The equations that represent a discrete-time state space model are presented in equation 2.1 
 
 
 
eq. 2.1  
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Figure 2.4 - Attenuation of Model 
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where   x – is the state vector 
  u – is the process input or control effort vector 
  d – is a vector of measured disturbance variables, or feedforwards 
  w,v – are noise vectors 
  z – is the vector of process variables 
  y – is the vector of process variables with measurement noise 
  A, Bu, Bd, and C – are gain matrices 
  k – is the time in number of sampling intervals 
 

This form of a model may not be 
familiar to many chemical engineers 
that work with MPC.  A simple 
example can draw parallels to other 
model representations.  In Figure 2.6, 
the inlet and outlet flows affect the 
level.  The inlet flow, F1, is manipulated 
by a flow controller.  The outlet flow is 
not controlled, but is set by a hand 
valve.  The differential equation 
defining this system is given in equation 
2.2 
 
 

 
eq. 2.2  dL/dt = (F1- F2)/a 

    F2 = b*L 
 
where:  L – is the level 
  F1 – is the flow into the tank 
  F2 – is the flow out of the tank 
  a – is the area of the cross-section of the tank 
  b – is a constant related to the hand valve position 
 
This is the continuous time differential equation, but we are interested in discrete-time state 
space models.   To get there, first substitute for F2 in the first equation, then a first order 
approximation could be used to represent dL/dt as (L(k+1) – L(k))/T, where T is the 
sampling time.  The result is equation 4.3. 
 

eq. 2.3   L(k+1) = (1-T*b/a)*L(k) + (T/a)* F1 (k) 
 
This is exactly the form of equation 2.1, where the model matrices are A= (1-T*b/a), Bu= 
(T/a), C = 1 and the state variable is the level, L.  This is a scalar example, but this 
generalizes to the multivariable case. Here, we started with the equations of the process and 
computed the state space model.  In an application to a real process unit, it is not typical to 
have a fundamental model available.  In that case we need to identify the coefficients in the 
A, B and C matrices from plant step test data. 
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Figure 2.6 - Tank Level Model 
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Figure 2.7 – State Space Model Step Responses 

2.4 Model Identification with State Space Models 
Identification with state space models was difficult in the past, but now a technique called 
sub-space identification makes the task easier [9].   Looking back at equation 2.1, we can see 
that the equation can be applied repeatedly to predict the values of x over a given time period 
if x(0), u(k), d(k) are available.  Subspace identification first constructs the state data from 
the input output data, then uses regression equations to select the best values for the 
individual elements of the matrices.  If the algorithm tried to directly find A, B and C, there 
would be some difficulties because there is not a unique solution to the problem.  Given one 
set of A, B and C that work, a transformation could find A’, B’ and C’ that work equally 
well.  The sub space method uses a two step method.  The first computes a regression of the 
states, x, as a function of earlier values of y and u.  Once the state sequence is known, 
ordinary linear regression is used to estimate the A, B and C matrices. 
 
Because the states are not measured directly (unless the C matrix has rows that are all zeros 
and a single 1), the states are not real model output variables as the level is in the above 
example.  There has always been a question of how many states should be used to describe a 
process.  Sub space identification solves this problem by sweeping over a range of the 
number of states.  Within a commercial implementation of the sub space identification 
algorithm, the user can select several models and compare their prediction ability, then select 
the best one for use in the controller.   
 
There is sometimes a concern that 
state space models built through 
identification will become very large.  
As an example, the sub space 
identification algorithm used in the 
ABB controller was tested with the 
Shell Heavy Oil fractionator model.  
This is a simple model of a 
fractionator tower with 3 draws and 2 
pumparounds as process inputs and 5 
temperatures and 2 analysers as 
process outputs, to make a 7x5 
system [11].  Each transfer function 
has deadtime.  The resulting state 
space model fit the data very well, 
using only 15 states.  That is less 
than one state per original transfer 
function, including deadtime.  The 
simulated step responses for this example are shown in Figure 2.7. 
 
What is happening is that the dominant harmonics are being picked up by a small A matrix 
and are mapped to the process variables through the C matrix.  This is not unlike the hidden 
layer in a neural network. 
This leads to a specific advantage over the problems defined in Section 2.2.  Because the 
model is fit with a small number of states, there are not sufficient degrees of freedom to 
create the noisy type of step responses shown in Figure 2.3.  It is not necessary to filter the 
data heavily or augment the objective function of the identification algorithm with penalty 
functions. 



ERTC Computing 2003, Milan, Italy Page 8 of 27 ABB 

When the disturbances entering the 
process are not jagged high frequency 
noise, the step response algorithms can 
bias the process gain and mis-identify 
the dynamics.  The state space model 
has an advantage to overcome these 
problems.  The identification can use an 
estimator to compensate for these 
disturbances.  See Figure 2.8.  In this 
diagram, noise is added to the process 
as either an input (w) or output (v) 
disturbance.  The estimator predicts the 
estimated value of x(k+1) from 
equation 2.1, with one substitution.   
 

eq.  2.4     Bu*w(k) = K*(ŷ(k)-y(k))  
 
where   K is the estimator gain matrix (Kalman filter). 
 
The identification algorithm picks values for A, Bu, Bd, C and K to minimize the error 
between y and ŷ.  This error can be made small, by manipulating the values of K, without 
biasing the A and B matrices.    
The result is that state space models are less sensitive to unmeasured disturbances that occur 
during step testing. 
 
 
2.5 Large Applications Increase the Problems not Just the Problem Size 
There is a tendency for MPC applications to get bigger and cover a larger scope of the 
process.  Part of the justification for this is economic.  If the MPC algorithm is trying to 
maximize feedrate, the complexity of a large controller is offset by the improved economic 
opportunity.  Bigger more complex problems are being shoe-horned into the same 
technological solution.  The multi-objective optimisation techniques giving true ranked 
constraints help to make tuning easier for large problems, but other areas have not been 
improved. 
 
With controllers spanning several unit operations, the intermediate storage between units is 
now part of the control problem.  This includes distillation tower vessel bottoms and reflux 
drums, flash drums between reactors and separation sections, and hold-up in reactor vessels.   
The step response type models are poorly formulated for representing levels.  Levels are 
integrating variables.  If a flow in or out of the vessel changes, creating an imbalance in the 
mass balance, the level variable will ramp up or down.  A finite length step response cannot 
represent this behaviour.  This is a problem for model identification and for formulation of 
the prediction equations within the control algorithm. 
 
To address this, integrating variables receive special treatment in MPC algorithms.  The 
special treatment is really a work-around.  Internally the derivative of the level is controlled, 
which is modelled by using the impulse response model of the level as the step response 
model for the level’s derivative.  Then a pseudo cascade loop, hidden from the user, resets 
the target for the derivative to control the integrating variable.  This formulation results in 
aggressive behaviour, because the level controller makes large moves in the level derivative 
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Figure 2.8 - Model Identification with Disturbances 
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target.  Additionally, this formulation increases the chances of fitting the level noise with the 
model parameters. The level’s derivative is in fact much noisier than the level. 
 
 
2.6 Working with Integrators using State Space Models 
If we look back at Figure 2.6 and replace the hand valve with a second flow controller FC-2, 
the equation describing the system is simply 
 

eq. 2.5   dL/dt = (F1- F2)/a 
 
and there is no simplification for F2.  Using a first order approximation for the derivative 
again, the difference equation becomes 
 

eq. 2.6    L(k+1) = L(k) + (T/a)*( F1(k)- F2(k)) 
 
If we subsitute d/dt = s in equation 2.5 to create the LaPlace transform, we would recognize 
the form of an integrator.   
 

eq. 2.7   L(s) = (F1 (s) – F2 (s))/(a*s) 
 
When the A matrix has a value of one on the diagonal, the equations are describing an 
integrator.  State space models can represent integrators naturally.  Therefore the control 
algorithm does not need to create any special structures to handle integrators, unlike the 
problem described in Section 2.5. 
 
 
2.7 Large Applications Encompass Feedforward Variables 

In section 2.5 we discussed integrators as 
one of the problems with a large controller 
scope.  A second attribute of larger 
controllers involves the loss of 
feedforward variables.  This can be 
illustrated by looking at Figure 2.9 and 
Figure 2.10.  In the first diagram, a process 
unit, possibly a distillation tower, has a 
feedforward configured from the tower 
feed analyser.  In this case, when the 
composition of the tower feed changes 
(AT-1), the controller will make 
compensating moves with the manipulated 
variables.  
 

In the second diagram, there are now two unit operations configured in the MPC application.  
The analyser on the bottom of the first tower is now an MPC CV.  If this is configured as a 
single MPC problem, the MVs on the first tower affect both AT-1 and AT-2.  AT-1 is not 
independent of the MVs, so AT-1 cannot be a feedforward variable for AT-2.  AT-1 is a 
valuable source of disturbance information for AT-2 and now it is lost. It has changed from 
an independent feedforward variable for AT-1 to an intermediate variable in the model. 
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Figure 2.9 - Composition Feedforward 



ERTC Computing 2003, Milan, Italy Page 10 of 27 ABB 

 

u 

y 1

w 

+ 
+ 1

s+1
1 .       -10S 

2s+1 

y 2

e 

 
Figure 2.11 – Intermediate variables 

   

Figure 2.12 – Effect of Intermediate PV 

An alternative is to configure two 
smaller MPC applications, one for 
each tower.  This would work and AT-
1 could be a feedforward to AT-2, but 
any constraints in the second tower 
cannot be helped by MVs controlling 
the first tower.   
This predicament is due to the SISO 
(single in single out) nature of step 
response models used by MPC 
combined with the inherent 
assumption of output noise.  There is 
no relationship or mapping between 
CVs.   

 
 
2.8 Taking Advantage of Intermediate Variables 
Figure 2.10 showed an MPC application that spanned two process units.  The intermediate 
analyzer contains 
valuable 
information for 
modeling the 
downstream 
analyser.  With a 
state space model, 
engineering tools 
are available to 
impose structure 
on the model.  Take the process model in Figure 2.11 as an example, where the variable y2 is 
an intermediate variable.   

The top half of Figure 2.12 
shows the results of closed 
loop MPC control of y1 
measuring only y1, while w 
acts as a step disturbance.  
When the disturbance input v 
makes a step change, y2 will 
respond before y1, so this is 
something to take advantage 
of.   In the second example, 
y2 is configured in the 
controller as a PV or 
predictive variable. Because 
y2 has no deadtime, the 
estimator immediately sees 
the disturbance, predicts the 
effect on y1 and the 
controller moves u much 
quicker, as seen in the lower 
half of Figure 2.12. 
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Figure 2.10 - Composition as Controlled Variable 
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The intermediate variable y2 is faster than y1 based on the structure in Figure 2.11, but it is 
not necessary that intermediate variables act as inputs to downstream CVs.  The Kalman 
filter estimator is capable of inferring the effect of a disturbance on y1 in the future, if it is 
measured on y2 now.    
 

3 Enhancing Prediction and Monitoring Capability by Merging Statistics 
and Modeling Techniques 

 
A second common use of empirical models is related to the estimation of unknown or 
unmeasured quantities and to the assessment of equipment or process conditions.  
 
In this category fall applications like software sensors, used to continuously infer vital 
parameters like product qualities or pollution content, and fault detection and isolation, 
where the outcome of models are compared with the actual measurement in order to identify 
changes early or incumbent failures. Additionally, it includes also statistical techniques like 
Statistical Process Control (SPC) designed to promptly spot production problems and/or 
variations. 
 
Different from control applications, it is not common to have devoted experiments or step 
test data collection campaigns for this type of model. Data is usually acquired from process 
historians or other data repositories. There are a number of impending difficulties, which will 
be quickly summarized in the following sections. 
 
 
3.1 Dealing with large datasets.  
It is so easy to extract process data that the engineer is left with much more than he really 
needs and has to remove data that could be detrimental to the model.  Let’s consider model 
inputs. Many plant measurements are often available, but for empirical model building “less 
is better”. So the problem is to find the minimum number of inputs able to maximize both 
model performance and model robustness. What is the number? Which inputs should be 
selected?  
 
Luckily the statisticians have created proven methodologies to facilitate answering these 

questions. Probably the most 
important technique is Principal 
Component Analysis (PCA). PCA is 
a very effective methodology, able to 
separate the signal from the noise in 
a process, revealing how many (and 
possibly which) variables are 
responsible for the former and how 
many for the latter [12].   
 
From a mathematical standpoint, it is 
a projection-based technique able to 
reduce the dimensionality of a 
problem through the construction of 
orthogonal latent variables (named 
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Figure 3.1 – Example of PCA of a 3D dataset
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principal components – PC) that are a weighted linear combination of the original variables. 
They are computed so that the first PC provides the direction of largest variation in data. The 
second PC indicates the largest one in a direction which is orthogonal to the first, and so on. 
(for more details on PCA see [13]). Figure 3.1 provides a simplified view of the first two 
PCs in a 3d example. Given n records, each one made up of k variables, the (nxk) correlation 
matrix of the standardized variables1, X, can be calculated and decomposed into the p 
eigenvectors (with p=min{n,k}). Usually only the first r eigenvectors (corresponding to the r 
largest eigenvalues) should be retained for the model, forming the loading matrix P, while 
the remaining (p-r) eigenvectors will form the residual matrix E, assumed to explain the 
process noise, as described in equation 3.1:  
 

eq. 3.1   Ept....ptptX TTT ++++= rr2211       
 
An example showing how a pre-processing utility embedded into the modeling toolkit may 
help the process engineer to quickly understand how many degrees of freedom exist in the 
problem is given in § 5. Analysis of the most important PC tells a lot about which variables 
should be selected as model inputs. Remaining uncertainties in model structure could be 
resolved by comparing several models built with the most promising candidates. Automatic 
model building and effective comparison metrics would be a desirable feature for the control 
engineer.   
 
A second issue is related to dataset partitioning. It is important that the available data is 
properly divided into modeling and validation sets, each set covering all operational cases.    
This must be done properly or the model assessment will be biased by data that does not 
represent the process.  Figure 3.2 shows a rather extreme example of how splitting the data 
set incorrectly could lead to wrong conclusions. A model trained on data collected in period 
A, is not in the position to provide good predictions when plant is operating in period B. The 
opposite risk happens when the split is made so that the resulting data sets are not 

independent. A typical example is 
represented by a 1-1 splitting, when 
consecutive records are sent 
alternatively to the modeling and the 
validation sets. While this seems like a 
good way to have records from any 
operating mode in both the datasets, 
this will result in a poor validation set, 
which is too close to the modelling set 
(unless each record is taken with 
appropriate time between samples).  
In this case, proper help for the 
engineer would be a statistical tool 
capable of comparing and assessing the 
consistency of the different datasets. 
Once more, the solution is providing 

simple rules-of-thumb able to spot possible statistical traps and numerical shortcomings. 
 
  

                                                 
1 Y is the standardized variables of y if: Y = (y-µy)/σy 

 

Period 
“A” 

Period 
“B”

Pr
od

uc
t Q

ua
lit

y 

Model Building 
Data 

Validation Data

 
Figure 3.2 – Improper Splitting of a Data Set 
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3.2 The “Garbage-in-Garbage-out” rule. 
A second problem comes, paradoxically, from the effectiveness of the actual number 
crunching techniques. Modern data mining tools are able to find a solution to the problem “in 
any case”. Unfortunately, very often the solution found is not a really good one for the 
problem. It is what is known as the “garbage-in-garbage-out” rule. If you feed your software 
with wrong data, it will provide the wrong answer. Outliers, correlated inputs, auto-
correlation, re-arrangement of variables due to process time delays are dangerous 
occurrences which may spoil the results of the most powerful algorithm.  
This moves the emphasis from model development to data analysis and pre-processing. 
While domain competence and expertise is a must [14], statistical analysis and engineering 
tools can reduce the burden on the control engineer. A problem is that they require numerical 
and statistical skills that often exceed the typical process engineer’s background.  
 
While a comprehensive treatment of these problems is outside the scope of this paper, their 
non-triviality is evident in the following short example about outlier identification and 
removal.  
Measurement errors in the context of sampled, measured variables are simply the difference 
between what is measured and what is the true value of the variable, that is, 
 

Eq. 3.2 [[[[ ]]]]kkkkk )w()b()g()x()y( ++++++++++++====     
 

where: y is measured; x the true value; e = g + b + w is the error due to the measurement; 
and k denotes the k-th value of the time series. Equation 3.2 represents an additive error 
model with: 

1. Gross Errors denoted as (g)k 
2. Systematic Bias denoted as (b)k 
3. Random Errors (noise, normal or uniformly distributed) denoted as (w)k  

 
The trickiest and most dangerous class of error is the Gross Error, which includes the 
following two subclasses of GEs: 

1. Sensor failure related GEs. These result in a sustained GE that is characterized by 
a non-continuous, dynamic response such as a step function for the measured 
variable and often a noise-free signal that exhibits steady state behaviour. 

2. Sensor fault related GEs (Outliers). These result in short GEs that are 
characterized by a non-continuous, dynamic response such as an impulse or an 
impulse-like response.  Outliers may be distinguished from noise by the 
amplitude of the peaks. 

 
Figure 3.3 shows the different 
effects of the two kinds of GEs on 
plant data: any process engineer 
is, unfortunately, very familiar 
with similar charts and knows 
how this impacts any effort to 
build reliable models out of such 
data.  
 
Luckily today, statistical methods 
are available to supplement the 
engineer’s judgment in order to 
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Figure 3.3 – Sensor Failures and Outliers Gross Errors 



ERTC Computing 2003, Milan, Italy Page 14 of 27 ABB 

obtain good data for model building purposes. Filtering of high frequencies, de-mean and de-
trend, interpolation, manual/automatic substitution in case of bad quality, automatic 
identification of spikes and outliers, rearrangement of variable values to tackle delays, ability 
to identify correlations /autocorrelation in variables are some of the tasks that a good tool 
should provide. A must for this type of tool is a full visual approach. Regardless of how 
powerful the tool is from a purely mathematical point of view, the engineer needs to be able 
to visually verify and validate process data and preview any change/filtering to it. 
 
 
3.3 When should a model be considered a good model? 
Deciding when a model is good is an additional challenge.  In theory a perfect model should 
be able to fully reproduce the behaviour of the modelled system. But certainly noise should 
be out of the picture, because it adds randomness that has to be avoided and the model 
should not fit it. So how do you tell when the model is improving and when it is just chasing 
the noise? What is the minimum error squared between modelled and measured output that 
we would like to see, given that we have just said that the ‘zero’ is not our target? This is 
something similar to what described in §2.2. There is a clear need to accept a simpler model 
with some prediction errors, rather than struggling to obtain more complex ones, which 
“look better” on training datasets, only because the noise was modelled.  Usually avoiding 
overfitting requires expertise and a lot of iteration on different datasets in order to properly 
tune the model. A common technique is to perform simultaneous predictions both on a 
training and on an unrelated test set, checking and comparing the results while gradually 
increasing model complexity. Figure 3.4 shows a chart of the average squared error on both 
modeling and test set, against model complexity. When the error on the test set starts to 
increase, it is a good signal that the algorithm is fitting the noise. The problem is that this 
procedure requires a lot of iterations and book-keeping in order to properly identify the 
optimal degree of complexity. 
 
Building data-driven models out of good, meaningful data is pretty quick and easy. This 
allows the engineer to try several possible structures and approaches with the final result of 

spending time just “fine tuning” a 
multiplicity of models, looking for an 
optimum whose identification may 
result controversial (different metrics – 
R2, mean square error, maximum square 
error, etc. - may provide different 
hierarchies). This is made worse by the 
fact that developing a model is always a 
three-step approach: build your model 
on a fraction of your data, assess it 
against a second data-set, then rebuild 
your model on the whole dataset. 
 

 
Facilities able to assist the user with automatic model building and proper comparison tools 
could greatly reduce development time and drive the inexperienced user safely towards 
comfortable results. A highly desirable feature would provide automatic model building 
using a group of possible inputs, permutation rules and scripting. Smart algorithms can 
emulate the try-and-test procedure that engineers do when they try using different input 
combinations.  This way, the engineer may use his time for higher level tasks and let the 
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Fig. 3.5 – Typical Bias Update Scheme 

software generate and train multiple models based on his instructions; then, later he can 
compare models based on their prediction and select the model with the best performance 
(also taking into account his process knowledge). This process requires good tools for model 
comparison, both from a numerical and visual point of view. 
 
 
3.4 On-line implementation.  
Putting a model on-line is not just a matter of reading and writing back and forth to the basic 
automation system, but to seamlessly integrate it, so that the operator may fully benefit from 
it. Issues that need to be carefully revised and taken into account are on-line data filtering 
both of inputs and outputs.  Inputs must be filtered to remove noise.  Outputs may use a 
moving average to increase reliability and decouple downstream applications from 
calculation noise.  Other considerations are bad quality management, writing back to the 
DCS with related issues like proper displays and alarm generation.   
 
But maybe the trickier issue in configuring the model is how to take advantage of 
incorporate periodically available data. Often empirical models are used to estimate variables 
available only sporadically from plant laboratories or analysers. Using this information to 
correct and update the prediction is an obvious improvement, but it is necessary to identify 
and avoid use of errant lab analysis, preventing the calculation of an incorrect model bias. 
Implementing this identification and filtering logic may is so complex that many works 
available in the literature have simply given up this opportunity to improve the accuracy of 
their application.  
 
To improve the model’s estimate using laboratory data or field analysers, the model output 
value could be corrected by a bias. The bias value should be determined by the difference 
between the estimated and the 
measured value. Since 
analysis results often involve 
errors that have a Gaussian 
distribution, the “tails” of this 
distribution must be avoided 
or the bias calculation will be 
faulty. Programming logic 
must implemented in order to 
detect and remove statistically 
unreliable data. Statistical 
Process Control strategies, 
which control average and 
variances of absolute values 
and differences, are very 
effective in identifying acceptable input data.  The whole system may also require operator 
acknowledgements and interactions that should be implemented on the standard operator 
console to make it easier for him/her to accept the technology. Figure 3.5 presents a typical 
bias update scheme. 
 
3.5 Protecting the Value of Your Modeling Investment  
Models are an important asset for plant operation. Sometimes models have been built and 
validated over the lifetime of the process, representing a significant engineering effort worth 
protecting.  Legacy models that were once on-line, may not have received the proper 
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maintenance to keep them on-line.  This can easily result from upgrades to the DCS or 
replacement of an old process computer.   
 
Many process engineering departments have some very useful models that have never run 
on-line, but reside in some spreadsheet or stand-alone VB application. In some cases, many 
years of operating experience are distilled in these models.  In other cases, they are brand 
new models developed by an enthusiastic young engineer using the latest mathematical 
modelling software packages. But the tools that were used to build the models may have no 
connectivity capability.  So whether the model building procedure was long and arduous or 
quick and pioneering, the result is the same: relegation to an off-line status. 
 
The typical process model users are engineers, whose prime interest is not process control or 
information technology, but process operations and product quality. Present software 
technology allows removal of most of the barriers among components, languages and 
equipment. Existing models and custom software can therefore be converted with minimal 
effort into components (like DLLs and COM objects) that can be easily integrated online 
using an open platform.  So a good modeling package not only allows the engineer to easily 
build new models, but it will also allow him to host his existing orphaned applications 
without a great deal of effort and no custom coding.  The modeling environment will provide 
real-time data access for inputs, input validation, calculation scheduling and graphical 
display of outputs for the operator for the existing model. 
 
 

4 The OptimizeIT APC Control Suite: an Innovative Approach to APC 
 
4.1 Why Another Commercial Product Suite? 
 
The authors of this paper have significant experience in APC project work.  Their 
current company is a large process control company that worked with many of the 
APC software vendors through license agreements.  This experience has allowed 
first hand experience with these packages, including knowledge of their 
shortcomings.   
 
The process control community has not taken advantage of the advances in 
modeling technology.  As described in sections 2 and 3, there are approaches to 
building better models for on-line applications and to avoid these problems.  How 
could integrating these advances in modelling technology affect the control 
engineer and the plan operator?  

1. The improvement in modelling technologies can lead to improvements in 
process control performance.  This should lead to better economic 
performance on existing applications and should create new opportunities 
where the ROI was not adequate with the prior technology.  Furthermore, 
the new technologies should make problems feasible that were previously 
considered technically too difficult to try.  So wider application and better 
performance are the first effect. 

2. With software that is easier to use, with prevalent availability of live and 
historical process data and with computer power no longer an issue for these 
types of on-line applications, on-line modelling should proliferate for 
simpler applications.  For instance, the control engineer should be able to 
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build an inferential model whenever he wants or needs one, with a simple 
toolkit that his plant owns.    

 
With this in mind, the authors have been involved in designing and developing new 
APC products within the ABB IndustrialIT framework, as their company has 
determined that the APC business is best approached by having the best software 
solutions.  The new products include the technology enhancements previously 
discussed, as well as including many features to improve ease of use.  This 
comprehensive new suite provides components that work together for all APC 
project activities.   
 
The suite includes: 

•  MPC  
•  Neural networks 
•  PCA, MLR and PLS Regression 
•  SPC and MvSPC 
•  Control Loop Tuning 
•  Control Loop Auditing 

 
Providing a comprehensive suite allows the application engineer to build control 
solutions without worrying about writing programs or connecting applications on 
multiple platforms.  Some features of the suite are: 

•  Support OPC as the I/O standard and ODBC for database import 
•  Standard project navigation window in all on-line and off-line tools 
•  Common data editing and pre-processing tools 
•  Enhanced trend element, common across all programs 

 
These features should decrease the time the engineer spends learning about the 
package, and increase the amount of time the engineer spends using the package.   
 
The packages are also accommodating.  There are a great number of proprietary 
models running in plants running on old platforms and written in old languages like 
Fortran.  In these cases new modelling technology is not needed, but a user-friendly 
container to execute an old model is needed.  A standard wrapper is provided to 
integrate these applications into a modern architecture.   
 
Not diminishing the usefulness of Fortran, the driving force in the suite is new 
technology coming from R&D.  ABB has a commitment to R&D through the 
Corporate Research Centre and much of the new technology inside the APC suite 
was first developed within the R&D group.  An example of the innovations built 
into the suite is the outlier removal strategy in the data processing tool.  The 
strategy applies wavelet analysis to pinpoint data that contaminates information 
content of the data set [16].  This type of research is typically only funded in large 
forward thinking organizations, which may explain why APC technology has not 
moved along faster.   
 
In the following paragraphs, the two main products of the APC suite are described. 
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4.2 OptimizeIT Predict & Control (P&C) 
OptimizeIT Predict & Control is a multivariable, model predictive control software package.  
The P&C software suite includes on-line components for control and operator interaction and 
off-line components for controller configuration, dynamic model identification, tuning and 
analysis. The controller operates through existing instrumentation and control equipment so 
there is no major investment or interruption of production required.  
 
P&C includes four general types of variables: 
� Process Inputs 

(1) Manipulated variables (MVs) which are adjusted by the controller. 
(2) Feedforward disturbance variables (FFs) which represent measurable 

disturbances used for feedforward predictions. 
� Process Outputs 

(3) Controlled variables (CVs) which include controlled variables with setpoint 
targets or constraint variables with min/max limits, and measurable variables that 
are used to improve the estimates of the controlled process variables. 

(4)  Prediction variables (PVs) that provide additional feedback information that 
improves disturbance estimation, resulting in quicker, more accurate corrective 
action  

 
The P&C control algorithm is based on a state space model representation of the process. 
The state space model is used to predict the effects over time of independent process inputs 
(MVs and FFs) on dependent process output variables 
(CVs and PVs). The model allows the controller to 
account for process dynamics (e.g. deadtimes and lags) 
between changes in the independent variables and 
expected changes in the dependent variables, see 
Figure 4.1.  
 
P&C provides flexibility in treating a combination of 
setpoint control and constraint control objectives for 
multiple variables.  Each controlled process variable 
may include a setpoint target and/or constraint limits 
(defined as absolute min/max values or min/max 
deviations from setpoint).  Priorities are also assigned 
to the constraints, so the controller can calculate 
appropriate moves to prevent or minimize violations of 
the highest priority constraints, before lower priorities 
are considered. The controller can accommodate 
controlled variables that are based on intermittently 
sampled data, such as analyser or laboratory data. 
 
The P&C algorithm also offers a 3-degrees of freedom 
control design in which setpoint, feedforward, and 
feedback control responses can each be tuned independently in the time domain. This 
provides significant application design flexibility and leads to very robust process handling 
from more accurate controller commands. 
 
The controller includes a static optimisation stage to drive MVs towards desired targets when 
the control problem has extra degrees of freedom available. The desired targets for the MVs 

Figure 4.1 - Controller  
Predictions 
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may be set by various sources (e.g. plant supervisors, operators, engineers, external software 
such as RTO).  Alternately, an economic objective function can be configured into P&C in 
terms of the MVs and CVs.  The controller then drives to the economic optimum instead of 
MV targets. 
 
Internal Model and Estimator 
P&C includes a state estimation algorithm to dynamically estimate the state variables at each 
time step by applying the process input measurements (MVs and FFs) to the model and then 
defining corrections to the states based on the CV prediction errors (the difference between 
measured value and the value predicted by the model).  New state estimates are generated 
and used to improve the current and future predictions for all the CVs (reducing CV 
prediction error).  Therefore, the state space model allows for earlier detection and faster 
controller response to unmeasured disturbances, when compared to other competing MPC 
technologies.  
 
The state space technology also offers the ability to incorporate additional process 
measurements (PVs) as feedback to improve the estimates of the disturbances.  This is a 
unique feature offered by P&C because the state space methodology provides an integrated 
model representation. The state estimator utilizes all the current measurements (CVs and 
PVs) to detect unmeasured disturbances and predict their future effects on the CVs. Notice 
that the measurements are considered as “feedback” to the state estimator, but the new state 
estimates are also used in the controller calculations for the future, so the PVs provide a 
feedforward effect in the controller.   
 
 
Engineering Tool 
The P&C off-line engineering tools are included as a separate software component to support 
controller configuration, modeling, tuning, analysis, and simulation. The modelling tool 
includes several methods for developing state space models. Models may be defined from 
plant test data using a two step procedure of subspace identification followed by prediction 
error identification.  There are many tools available to the user for reviewing the results of 
the modelling package and for selecting between multiple models that the user may generate.  
Models may also be defined by the user in terms of transfer function representations or may 
be imported.   
 
The control tuning and analysis package 
provides the user with many plots to evaluate 
controller performance, including closed loop 
response to setpoint changes and disturbance 
inputs.  Robustness under modelling error is 
treated.  Both time domain and frequency 
domain tools are available.   
 
The online controller comes with a built-in real-
time simulator.  The simulator may use the 
model that the controller is using, or the user 
may specify a different model to test the 
robustness of his tuning parameters.  The simulator may run faster than real-time for 
engineering studies, or as slow as real-time for operator training sessions. 
 

 

Figure 4.2 Modeling Tools 
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Operator Interface 
The controller may use OPC to link all operating parameters to a DCS console, or the 
operator can use the P&C Operator Interface client.  The client runs on Windows 2000 
systems and may be run remotely from the control server on a PC in the control room or on 
the same computer as the operator’s DCS console.  
 
The operator interface provides tabular displays for the operator to control all daily aspects 
of the application.  The displays are configurable.  Detailed displays are available for 
individual variables.  User configurable trending is also available, with plotting of future CV 
predictions and planned MV movement. There are engineering displays for online tuning. 
 
 
4.3 OptimizeIT Inferential Modeling Platform 
OptimizeIT Inferential Modelling Platform (IMP) is an innovative software package for the 
development and deployment of data-driven advanced applications. It is based on two 
separate environments: 

� IMP Model Builder for application design and development 
� IMP On-line for on-line project deployment and monitoring 

IMP features latest generation data analysis and modelling technologies developed in house 
or selected from technology leaders around the world. The user is able to exploit a rich 
collection of highly sophisticated tools for data analysis and pre-processing available at his 
fingertips. Part of them, like basic statistical insight and Principal Component Analysis 
facilities, comes from a special agreement with InControl Technologies Inc. (Houston, TX).  
All the different tools are embedded in an intuitive working environment based on the latest 
HMI concepts, which remove any hurdles for the inexperienced user.  
IMP is designed to be an open modelling environment where new tools may be easily hosted 
and put to work. However IMP features some latest generation toolkits, which allow building 
models through several technologies including: 
� Neural Networks 
� Multiple Linear Regressions 
� Calculation Scripts 

 
The Neural Network engine is a customized version of Ward Systems Group's Neuroshell® 
Predictor, one of the most referenced Neural Network packages available on the market [17]. 
It contains one of the most sophisticated prediction algorithms available today, yet it is 
designed to be extremely effective with minimum intervention by the user. 
It features two different prediction algorithms: 

� a highly sophisticated neural network;  
� a statistical estimator driven by a genetic algorithm; 

 
The first modelling technique is a feedforward net, proprietary to Ward Systems Group, 
which is not based on the classic back propagation algorithm. It dynamically and 
automatically grows hidden neurons, trains very fast and has excellent generalization 
capabilities. Hidden neurons are connected to previously added hidden neurons, eliminating 
the need to pre-specify a distinct number of hidden layers. 
 
One of the most time consuming tasks in developing neural models is the iterative training 
and testing procedure, needed to identify the model with the best performance, which doesn't 
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Fig. 4.3 – Input Selection Facility 

over-fit the data (see [18] and [19] for details on Neural Network training and testing issues). 
One of the salient advantages of the IMP/Neuroshell neural method is that it can actually be 
tuned after it is trained in order to provide more or less generalization. This allows the user 
to decouple the training activity from the testing activity, offering a big advantage both in 
development time and in the accuracy and reproducibility of the method. 
 
The genetic training method combines a genetic algorithm with the well-known General 
Regression Neural Net. GRNN is a statistical estimator, originally developed in the statistics 
literature and known as the Parzen kernel regression [20]. It was subsequently introduced to 
the neural network community by Donald Specht [21]. It trains everything in an out-of-
sample mode, essentially doing a "one-hold-out" technique, also called "jack knife" or "cross 
validation".  This method is therefore extremely effective when you do not have many 
patterns for training. The genetic training method takes a little longer to execute, but it also 
reveals the relative importance of each of your inputs. 
 
Common to the two training methods is the capability of removing two of the most 
frequently heard complaints about prediction systems, i.e. that they are too hard to use, and 
that they are too slow. 
 
IMP embeds Neuroshell’s features in a process control oriented environment, unleashing all 
the power of neural network modelling, without most of the related drawbacks and 
nuisances. Highly automated, yet very simple procedures allow the user to simultaneously 
build several models and then to compare the results.  
 
Let’s assume that we have n potential model inputs. IMP classifies them as m “always used”, 
p that “could be used” and r that should be never used. Based on this classification the 
following algorithms are available for automatic development of models: 
 

1. Full permutation of inputs. IMP generates and trains all the models automatically 
taking into account all the possible permutations. This will produce (2p) models with 
a number of inputs ranging from m to 
m+p 

2. Smart identification of useful inputs. 
IMP starts training the biggest model 
with all the (m+p) possible inputs. 
Based on a computed “input 
importance factor” and some pre-
defined rules and thresholds, it 
reduces the number of inputs by 
removing the least significant ones 
step by step, until it reaches a 
stopping condition. 

3. Iterative improvement. IMP starts 
training the biggest model with all 
the (m+p) possible inputs. It then 
starts generating all cases using n-1 
inputs and evaluates the results in 
terms of R2 and average error (both 
test and train set). Based on 
performances of the generated n-1 nets, IMP identifies the input that has the least 
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impact on the model This input is removed and the procedure is restarted. Rules on 
thresholds and minimum  number of inputs are set to stop the procedure. 

4. Guided randomised. IMP starts training the biggest model with all the (m+p) possible 
inputs. It then removes a randomly chosen input and builds a new model. Model 
results (R2 and avg err) are compared to the original model,. If the model is performs 
better, it is considered as the reference model and the procedure is executed again. 
Otherwise the new model is deleted, another input is chosen and the procedure starts 
again. 

5. Script-based training. IMP generates and trains models based on a scripting language. 
Both the inputs and the model details are defined by the engineer through the 
scripting language and the model generation and training is automatically performed 
in a unique session 

 
This way, most of the model building activity is completely automatic, even to the point of 
executing overnight. The engineer needs to check the results and accept the most convenient 
and best performing models, using the many available comparison facilities.  

 
IMP would be not a true data-driven applications environment if limited only to model 
building. In fact IMP includes powerful tools for process and quality monitoring, allowing 
the user to quickly implement SPC control charts and even MvSPC [22]. This is particularly 
efficient in monitoring complex processes with just a single number, the Hotelling T2 
statistic (refer to [23] and [24] for more details on Hotelling T2 background). IMP exploits 
well-referenced statistical calculation routines from InControl, seamlessly embedded into its 
software architecture. 
 
IMP On-line is designed to quickly and efficiently implement applications involving process 
models. The engineer only needs to physically connect his PC to the network, browse the 
OPC Servers available and select the tags he wants to read or write back to the DCS. With no 
need to write a single line of code, he may specify the preferred options concerning a large 
number of possible configuration details, including bad quality management, tag limits, 
engineering units/conversions and tag filtering.  
 
Seamless integration of bias update strategies was given particular attention. Any online 
implementation of inferential models is usually coupled with a periodic recalibration 
strategy. This strategy computes the difference between the prediction and available physical 
measurements (like lab analysis) and treats it statistically to determine the inferential model 
bias. The bias is then added to the model output, to improve its accuracy and avoid any 
model drift in case of failure in input sensors.  
 
IMP features built-in routines to allow straightforward implementation of biasing. First of 
all, it allows connection to external repository of lab data (LIMS) through use of ODBC for 
automatic collection of lab analysis. It then allows implementation of various bias 
calculation strategies. Different equations and different timing for bias computation can be 
set up for any configured prediction; different filtering and data validation strategy can be 
selected and customized to fit the specific client needs.  Straightforward integration at DCS 
level is possible through use of the built-in OPC connection. 
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5 First applicative examples 
 
5.1 A Refinery Application 
The MPC algorithm discussed above was 
recently implemented to a refinery  
application.   
The process unit selected for the 
application was a crude unit.  The main 
objective of the application was quality 
control of the crude unit product streams.  
The product quality control layer 
employed the inferential modeling 
techniques discussed in this paper, 
specifically the neural network models.  
Controlling the product draw 
temperatures enforced the inferential 
quality objectives.   
 
There were three temperatures controlled 
to setpoint, along with additional temperature constraint variables.   These variables were 
controlled using seven manipulated variables, as illustrated in Figure 5.1.  The control 
configuration is summarized in Table 8.1 

 
Controlled Variables Manipulated Variables FeedForward 
1. Kerosene Draw Temperature 1. Ovhd Temperature SP 1. Feed Rate 
2. Lt. Diesel Temperature 2. Kerosene Draw Rate SP  
3. Hvy. Diesel Temperature 3. Lt. Diesel Draw Rate SP  

Constraint Variables 
4. Hvy. Diesel Draw Rate SP  

4. Ovhd TC Max Valve Position 5. Middle Pumparound Flow SP  
5–7.Stripper LC Max Valve Positions 6. Bottom Pumparound Flow SP  
8. Heater Max Tube Wall Temp 7 Heater Outlet Temperature SP  
9. Heater Max Tube Wall Temp   

 
Table 8.1 – Controller Configuration 

 
If there were no constraints active, the three draw temperatures used three of the seven 
degrees of freedom.  The overhead temperature will have an MV target that is a function of 
the naphtha quality control.  That leaves 3 extra degrees of freedom that are used to move the 
process to a more desirable economic 
operating point.  The pump arounds will 
maximize heat recovery unless other 
constraints are encountered that affect 
quality control. The operator sets the heater 
MV target.  
 
This is a fairly typical crude unit 
configuration, but the flexibility of the state 
space controller was able to provide superior 
performance to overcome an operational 
problem.  The heater fuel BTU content was 
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Figure 5.3 – Controller Performance 

 

Figure 5.4 – PCA Helps in Identifying Degrees of 
Freedom 

 

 

Figure 5.5 – Lower Order Model 

not very stable, causing consistent 3°C to 4°C peak to peak temperature swings in the heater 
outlet temperature.  The period of 
oscillation was on the order of 30 to 40 
minutes and the base controls could not be 
adjusted to eliminate the disturbance.   
 
To improve the temperature control of the 
draws, the heater outlet temperature was 
added to the model as a PV.  This made the 
controller structure very good at predicting 
a process input disturbance.  To do this, a 
special model was built using a model 
connection tool, resulting in the structure 
shown in Figure 5.2. 
The resulting temperature control is seen in 
Figure 5.3, showing very good 
improvement over the pre-existing control. 
 
On the same unit, four different inferential 
models have been built to provide real-
time estimation of the ASTM 90% point 
for the following four products: 
� Light Diesel 
� Heavy Diesel 
� Kero 
� Heavy Naphtha 

 
All the models were built using neural 
network technology. This application may 
represent a good example to illustrate how 

merging a statistical data analysis tool and modeling capability in a single environment may 
greatly simplify model development. 
Let’s consider the Light Diesel (LD) 
case. A control engineer can easily 
identify at least 25 different process 
variables potentially affecting LD 
production quality. Which one should be 
chosen?  As explained in § 3.1, PCA is 
an important ally to the engineer. Figure 
5.4 shows the results of a PCA on 
process data, providing evidence that 8 
‘rearranged’ inputs are enough to justify 
more than 90% of dataset variance. Using 
this information and the related 
eigenvector components, it is 
straightforward to identify the most 
significant variables for the model. 
Figure 5.5 graphically illustrates the Neural Network prediction results using this set of 
inputs. 
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Figure 5.6 – Crude Processing System Architecture

 

Figure 5.7 – Crude Processing Results 

5.2 An Oil&Gas Application  
A second interesting application has been completed on an offshore platform located in 
Northern Europe, which processes the crude oil coming from several local sub-sea wells and 
from some submarine oilfields located a few Km from the platform. 
The crude oil treatment involves the separation of the feed containing oil, gas and water to 
obtain oil and gas to be exported. The process can be divided in 3 main parts: 

•  Crude oil treatment 
•  Gas treatment and compression 
•  Condensate treatment 

 
The treated oil, blended with the 
condensate product coming from 
the condensate treatment, is stored 
in cells and offloaded into tankers 
for the export; the gas is 
compressed and exported. 
 
The APC application is related to 
the implementation of inferential 
sensors to provide real-time 
estimation of the quality of the 
exported products. The two 
predicted quality parameters are the 
C4

- content and the RVP (Reid 
Vapor Pressure) in the crude oil 
going to the storage cells. 
 
The project was organized in the following steps: 

•  preliminary process study and target definition 
•  data collection 
•  data treatment and elaboration and Neural Network modeling 
•  off-line validation 
•  on-line implementation and commissioning 

 
Process data, collected from the plant 
historian and the LIMS, were re-
organized, filtered and pre-processed in 
order to obtain “clean” and useful 
training, test and validation datasets, 
employed for model building and 
assessment. Finally the best models were 
shipped back to the plant for final 
commissioning, realized through the 
powerful IMP On-line facilities. The 
target architecture is shown in Figure 5.6 
The PC hosting the Neural Network 
models is connected to the ABB AC 450 
DCS through OPC technology; exchange 
between the Application Server and OPC 
is performed through use of TCP/IP 
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Figure 6.1 – Predictive Emission Monitoring with IMP

functionalities. The client components run on the Application Server and are accessed from 
PCs using the PCAnywhere application. 
The Operators monitor model results through dedicated displays on their Operating Stations, 
while process engineers manage the application by means of the IMP Monitor software 
located on the hosting PC. Figure 5.7 shows the typical screen used to check and manage the 
bias update mechanism. 
 

6 Conclusion and future developments 
The paper has highlighted some existing problems, which have prevented wider penetration 
of model-based techniques into industrial process automation.   Analysis of new modeling 
techniques couched in a modern software environment and supported by the latest statistical 
methods has shown that these problems no longer stand in the way of model deployment.  
Software products implementing these techniques were discussed and actual implementation 
examples reviewed.  New modeling solutions lie at the process engineer’s fingertips. 
 
As the nightcap, we offer one more example illustrating that on-line empirical process 
models will proliferate if they are easy to use.  Figure 6.1 shows the results of a neural 
network prediction for solvent emissions in a polymer stripping operation.   With new and 
better tools, there are many possibilities to use multivariable control and process modelling 
in places that are not traditionally considered. 
 
The ambitious goal is to extend modeling beyond the traditional APC & Optimization 
domain. This will result in a number of innovative and sometimes unusual applications. 
Fault detection, process and equipment monitoring, quality control and prediction, predictive 
maintenance, sensor and analyzer validation, energy optimization are possible areas of 
interest for advanced modeling-intensive applications. As a final example about smart, 
smaller scale projects, it’s possible to mention an application presently under development at 
a polymer plant in Europe. 
The customer has a problem with the 
final stage of the process where the 
finite, extruded product is steam-
stripped to remove hexane. Mobile 
analyzers are used in “monitoring 
campaigns” to assess the amount of 
pollution vented into atmosphere with 
the steam. Obviously this is far from 
optimum because the analyzers are 
connected to the plant no more than 
20% of the operating time. However 
using the data stored during these 
campaigns it has been straightforward 
to identify a model, which could be 
easily put on-line for real-time 
continuous emission monitoring purposes. Figure 6.1 shows the excellent accuracy the 
Neural Network model is able to provide. Environmental applications are actually one of the 
most exciting targets for modeling techniques, their use being recommended also by 
important environmental authorities [25].  
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