Topics Geometry and Topology — MATH 599

Visualization of Kerr black holes

Renaud Raquépas, Erick Schulz
April 29, 2017

1 Introduction

Black holes are one of the most intriguing aspects of Einstein’s theory of general relativity. In popular culture, it has
been the subject of many misconceptions. Recently, the Hollywood production Interstellar has however delivered to
general audiences high quality depictions of black holes based on serious science [JVTFT15].

For this project, we are interested in understanding how physically (relatively) accurate visual representations of
rotating black holes are obtained. Concretely, we create in MATLAB a ray tracer for a Kerr geometry describing the
surroundings of a rotating black hole.

We start by briefly describing the geometry of Kerr space-time. Then, we present a toy model for vision and ray

tracing before moving on to numerical implementation.

2 The Kerr metric

The Kerr metric is an axisymmetric solution of Einstein’s field equations which describes the geometry of spacetime
near a rotating electrically neutral rotating mass [Ker63]. It is a generalization of the Schwarzschild metric, and a

special case of the Kerr—-Newman metric.

2.1 The metric and Boyer-Lindquist coordinates

The Kerr metric is usually expressed in so-called Boyer-Lindquist coordinates (¢, 7, 8, ¢). These are related to Euclid-
ian coordinates through

t=t,

T = \/msinecos o,

Yy = \/msina sin ¢,

z =rcosf.
The Kerr metric is the non-degenerate symmetric 2-tensor given, for r large enough, by

in? 6

—%(dt —asin®0de¢)* + ST((r2 +a?)d¢ —adt)® + Z a2y ¥ de?, (1)

A
with
A(r) :==r* — Rr + d?,
S(r,0) :=r* + a® cos® 0,

Final Project — MATH 599 R. Raquépas and E. Schulz

where R = 2M and a = JM ~! are parameters determined by the mass M and angular momentum .J of the black hole.
We work in Plank units G = 1, ¢ = 1. Note that this metric is invariant under the transformation (R, a;t, 7,0, ¢) —
(R, —a;—t,r,0,¢). Also note that we recover the Schwarzschild metric when ¢ = 0 and that this Kerr metric is

approximately flat for » > a, R. Finally, we remark that metric coefficients diverge as A(r) — 0, i.e. asr —

HR+VR?—4a?) =M +VM? —a?.

In the basis (9y, Oy, g, J,) for tangent spaces, the metric has matrix form

Rr Rra sin2(9)
_ (1 - Ew)) (00) 0 — Rrasin’(0)
3(r,
g= 0 A(r) 0 0
0 0 X(r,0) 0
Rrasin®(0) sin2(9)((a2+7«2)2_a2A(7~) sin2(9))
RSO 0 0 S00)
It will so be useful to have its matrix inverse:
rRsin?(0)a® | 2 2
T Rar
_ % A(()) 0 ~STOAT
g ' = 0 sy Y 0
1
0 0 3(r,0) 0
_ Rar 0 _A(r)—a®sin’(6)
(r,0)A(r) S(r,0)A(r) sin?(0)

2.2 Geodesic equations

As will become clear in the next section, visualizing a rotating black hole will necessitate solving— numerically at

least — the geodesic equations for the metric connection associated to the Kerr metric. We use a Hamiltonian approach

to this problem.
Consider the energy functional

1

b
Mw=f/gW@d@WM

2
1

b
5 | it (s ds

for -y a curve parametrized by s € [a, b]. Extremizing this functional using the Euler-Lagrange equation

10 .) 1d o . .
58—7#9(7(8),7(8)) = §@Wg(v(8),w(8))
yields
d . 1/0gu . Ogun Ogur\ ..
0= L — i - I3 _ 15 TP
g# ds’y + 2(8’)/)‘ 8’}“”’ 8’}““’)7 ’y)

i.e. the (lowered) geodesic equations. This means that geodesic are encapsulated in a least action principle for the

Lagrangean £(7,%) = £¢(¥,%) and hence can be treated using Hamilton’s canonical equations

:,.CM — aH(.’I;, p)
oy,
__OH(x,p)
Do =T g
for the Hamiltonian
oL

H(z,p) = _L—FWW

= 1" pupy,

Final Project — MATH 599 R. Raquépas and E. Schulz

where x# = ~* and p, = g, 7. In practice, we will solve this system of first order ODEs using a Runge—Kutta-4

method.

We also take advantage of conserved quantities arising from Noether’s theorem. These conserved quantities are

the angular momentum arising from the Killing vector field 0y

=B e B
r r

and the energy arising from the Killing vector field 0,

ry. Ra.
E:(1—E)t+7¢.

2.3 The Runge-Kutta-4 method

The Runge—Kutta-4 method is applicable to ODEs of the form
X(\) = F(\z(N)
It is based on the fact that the solution X to such a system satisfies the approximation

XA +h)=XA\)+ % (F1OL X)) + f2(0 X (V) + f3(X, X (N) + fa(A, X (X)) + O(R?)

where
Ji(A X (V) = F(A, z(N),
oL X(N) = F(A+ 5h, X(A) + 3hs1(A, X)),
fs(A X (V) = FOA+ 3h, X(N) + 5hsa (A, X)),
faX(N) = F(A+ h, X(A) + hss(A\, X)).

We do not prove this well-known approximation, which is obtained through a clever Taylor expansion.
We use this Runge—Kutta to integrate the geodesic equations where

X = (x07'~7$3»p0»~~ap$)

and

_ (9H OH _ 9H OH
F—(%,...,Tm’_w,...,_m).

We use a step size h proportional to A(r), because some coefficients in the equation blow up as A(r)~!

horizon.

3 Ray tracer

3.1 Toy model for ray tracing

2

near the

To understand better how to generate images of Kerr black holes, we pause and take a look at a toy model for vision in

flat space-time. Consider an eye (or camera) modelled by a point pupil P and a retina (or screen) R, and light sources,

say a star S;. The sources S; emits light in all directions, in straight line, and (only) the rays that pass through the

pupil P are then recorded on the retina R, which we think of as an indexed array of pixels. The color of the source is

recorded at the corresponding pixel of the retina.

Final Project — MATH 599 R. Raquépas and E. Schulz

/«S1

P
R
So
S1
P
R
So

It turns out that it is computationally more convenient to think of this problem in reverse and see what sources
light rays leaving each pixel of the retina: if the emitted ray hits no source, the pixel gets no input (black) and if it hits
source S;, then it gets the color of this source.

This toy model evacuates notions of focus and many other details but is good enough for our purposes. In our
set up the sources will be placed on a celestial sphere of large radius centred at the black hole. The main difficulty
becomes that because of the curvature of the Kerr metric, light does not travel in straight lines. For each ray leaving
the retina, we must solve non-trivial geodesic equations to obtain the source it hits. We will also have to deal with
horizons and add an accretion disk.

3.2 Our setup

For our ray tracer, the light sources (stars) will be placed on a distant surface of constant R > R > a. We call this
surface the celestial sphere, even though it is only approximately sphere (in the limit a/ R < 1). The camera will
is placed at (0,7(0),6(0), ¢(0)) with small #(0) > 0 and with R > r(0) > R. It is no loss of generality to set
¢(0) =0 (mod 27).

3.3 Initial conditions for the geodesic equations

For each pixel, we will need, in addition to the initial position (0, (0),6(0), #(0)), initial data for the conjugate
momenta (p;(0), p,(0), pg(0), ps(0)). Those are determined by the position of the retina and the requirement that the
initial tangent vector is (approximately) light-like.

The screen is described by physical height hp, width wp and distance dp from the observer (0,7(0),6(0),0),
which is in Minkowski coordinates (0, 1/7(0)% 4+ a?sin6(0),0,7(0) cos#(0)). A pixel (4,7) of the screen corre-
sponds, in cartesian cordinates to a position (0, 1/7(0)2 + a2 sin #(0) + dp, w(i, 5),7(0) cos #(0), h(4, j)) where

w(i,j) ===+ = D57,
. . hp) hp
h(i,j) = 5 (7 1)1_1,

and [and J are the number of vertical and horizontal pixels respectively (the resolution of the image).

Final Project — MATH 599 R. Raquépas and E. Schulz

The momenta are determined by the initial coordinate velocities:

t(0) = 1,
#(0) = d—P7
Vdp 4+ h? 4 w?
w
) Y
4(0) T
0) = ———t

VB TRt w?
Note that this vector would be light-like in flat space-time and is therefore approximately light-like in the regime

r(0) > R, a. Pushed in Boyer-Lindquist coordinates, using the Jacobian of the coordinates transformations,
t(0) =1,
2 (T‘(O)\/mdp sing(0) + h (a? + 7(0)?) cos 9(0))
VA% + h2 4+ w? (a2 cos(260(0)) + a2 + 2r(0)2) 7
2 (\/mdp cos 0(0) — hr(0) siné)(O))
VA5 + B2+ w? (a2 cos(20(0)) + a2 4 2r(0)2)

wesc 0(0)
V(a? +7(0)?) (dF + h2 + w?)

#(0) =

0(0) =

$(0) =

The corresponding momenta p,,(0) = g,,,&"(0) are thus

ar(0)Rwsin §(0)) r(0)R
pi(0) = =1 — (r(o),e(o NV (@ +7(0)2) (d5 +h2+w?) X(r(0),0(0))’
0),6(0)) ((0)v/a® + r(0)%dp sin 6(0) + h (a* + (0)?) cos 6(0))
pr(0) = A<r<o>>¢m<a2 008(29(0)) +a2 + 2r(0)2) 7
o),6(0)) (de cos 0(0) — hr(0) sin 0(0))

\/0321D + h2? + w? (a? cos(26(0)) + a2 + 2r(0)?) 7
a2+r(0)2) —a? sin2 0(0)A(r w
sin 0(0) (((a+r0r) ©awO)w ar(O)Rsin(G))

V(@2 +7(0)2) (3 +h2+w?)
Pal0) = S0r(0).6(0))

4 Beyond the math: graphics and the code

4.1 Generating a uniform celestial sphere

We want a celestial sphere (in the approximation a < R.e) that is uniformly filled with stars. If we were to take a
standard planar image of stars from the web, or generate stars uniformly at random on a plane (with 2:1 image ration
because the angular coordinates are (6, ¢) € (0, 7) x [0, 27)), once wrapped, stars would accumulate with abnormally
high density around the poles § = 0 and 6 = 7.

However, people have worked on ray tracers for such systems already and have already deformed planar images

appropriately to provide uniform skies once wrapped. We will use their images, see for example Figure 1

Final Project — MATH 599 R. Raquépas and E. Schulz

Figure 1: An example of a properly deformed image. REF.

4.2 Case analysis

Solving the geodesic equations with initial conditions corresponding to the pixel (4,5), we distinguish three main

cases:
1. the ray exiting the camera leaves hits the celestial sphere far from the black hole;
2. the ray enters the event horizon of the black hole.

In the first case, hitting the celesting sphere means that a given step of the RK4 results in a point outside the celestial
sphere. A choice should then be made to keep the coordinates of the point closest to the sphere. These coordinates are
stored, and they are later used to generate the corespondence between the RGB value of each pixel given an image. In
the second step, we approach the black hole with adaptive steps to prevent blow up. If we a ray steps close within a
margin error to the black hole, we consider that it enters the event horizon. A boolean is kept to indicate the the RGB

triple associated to that pixel should indicate pure black.

-60 -40 -20 0 20 40 60

Figure 2: The rays emanate from the camera on the right of the image: some enter the event horizon (black sphere);
others continue their curved trajectory until they hit the celestial sphere.

Final Project — MATH 599 R. Raquépas and E. Schulz

4.3 Adding an accretion disk

Without going into the physics of accretion disks (see for example [AF13]), we wish to visualize how the radiation
from matter spinning in the equatorial plane of the Kerr metric would deformed on an image of a rotating black hole.

We do this by adding a third case in our ray tracer:

3. the ray hits the equatorial plane § = 7 for a radius in an interval [7disk min, "disk max| defining the accretion disk.
This last situation is treated independently of the two cases presented in the last section, so that the user can choose
whether to generate the accretion disk or not. The proceedure is in that case similar.

4.4 Coordinate problems

Note that the Boyer-Lindquist coordinates are ill-defined at # = 0 and § = 7, which corresponds to the z-axis of
Euclidean coordinates. For this reason, the geodesic equations in Boyer—Lindquist are not well-behaved near this axis,
causing the solution behave wildly.

Figure 3: The rays passing near the z-axis behave wildly, causing a serious defect at the center of the image.

Figure 4: Trajectory of a ray passing near the z-axis.

Final Project — MATH 599 R. Raquépas and E. Schulz

We get around this problem by sneakily removing a certain number of columns of pixels in the middle of the
image... More on this in Section 5.

S Possible improvements

Although we are satisfied (given the time that was available) with the images generated, there are a few things that
we have not taken into account and that would improve the realism of the depiction. First, as we mentioned earlier,
the problem with the Boyer—Lindquist coordinates in the vicinity of at § = 0 and # = 7 should be taken care of by
a proper change of coordinates. Also, we have not considered the fact that the light rays emitted by the stars should
undergo gravitational red-shift. Indeed, we should adjust the color of the pixels according to this effet. Moreover, our
treatment of what happens near — but not quite inside — the event horizon is rather crude.

References

[AF13] Marek A. Abramowicz and P. Chris Fragile, Foundations of black hole accretion disk theory, Living
Reviews in Relativity 16 (2013), no. 1, 1.

[JvTFT15] Oliver James, Eugénie von Tunzelmann, Paul Franklin, and Kip S Thorne, Gravitational lensing by spin-
ning black holes in astrophysics, and in the movie interstellar, Classical and Quantum Gravity 32 (2015),
no. 6, 065001.

[Ker63] Roy P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys.
Rev. Lett. 11 (1963), 237-238.

Final Project - MATH 599

R. Raquépas and E. Schulz

A Code for ray tracing

%% RAY TRACING IN KERR SPACETIME

% This program generates the spherical coordinates associated to the %o
% endpoints of geodesics segments seny from an observational window into %
% a celestial sphere whose center holds a Kerr blackhole %
% %
% FEATURES : %
% %
% — Generates coordinates for two images to allow for comparison: %
%o 1. Kerr spacetime &
a 2. Euclidean space &
% &
% — Coordinates for an ACCRETION are also obtained independently. &
% &
% — Can be used to plot the rays around the blackhole independently using &
%o the matlab plot3 function: %
%o Type 1 : plots the rays individually in matlab plot3 %
%o Type 0 : generate jpeg image by ray tracing %

plot_-type = 1; %
% %
% — Image to be wrapped onto the celestial sphere %o

%img.scene = imread(’bgedit.jpg’); %
% %
% — Choice of image resolution (resolution_height x resolution_width): %

resolution_height = 4; % pixels %

resolution.width = 4; % pixels %
% %
% — Boyer—Lindquist coordinate sytem %
%o %

tStart = tic;

% Metric related data and eqs.
G = 1; % gravitational constant
M = 1; % mass of blackhole

a = 0.6; % Kerr (spin) parameter
R=2x%Gx*xM
radius_celestial_sphere = 80;
aDiskMin = 2xR;

aDiskMax = 5xR;

% Plot black sphere for the black hole if ’plot.type = I’ is chosen
% and hold on the the plot
if plot_.type ==
[X.,Y.Z] = sphere:
colormap ([0,0,0])
surf (R«X,RxY,R+Z)
axis equal
hold on
end

% Some physical formulas (used to lighten notation)

Sigma = @(r,theta) r"2 + a"2 * cos(theta)"2:

drSigma = @(r) 2 * r:

dthetaSigma = @(theta) — 2% a"2 % cos(theta) % sin(theta):
Delta = @(r) r"2 — R * 1 + a"2;

drDelta = @(r) 2 * 1 — R;

% Physical dimensions of observational window

window_height = 0.00001;

window_width = (resolution_width/resolution_height)*window_height;
distance_from_window = —2x%0.000007;

% Initialize coordinates matrices for image mapping
% coords.no-aDisk(i,j,1): theta
% coords-no.aDisk(i,j,2): phi

% coords-no-aDisk (i,j,3): 1 if stopped at R
% 0 if stopped at radius.celestial_sphere
coords_no_aDisk = zeros(resolution_height ,resolution_width ,3);

% coords_aDisk(i,j.l): radius

% coords_aDisk(i,j,2): phi

% coords-aDisk(i,j,3): 0 if did not hit accretion disk

P 1 if pass through accretion disk
coords.aDisk = zeros(resolution_-height ,resolution_.width ,3);

stepsize = 0.1; % stepsize for Runge—Kutta 4

hbar = parfor_progressbar(resolution_.width ,’ Please wait...); %create the progress bar
for j = l:resolution_width

hbar.iterate (1); % update progress by one iteration

for i = l:resolution_height

% Pixels location on observational window (we ommit the vertical
% singularity at pi/2 by introducing a jump: singularity_-hack)
%singularity-hack = 0.01;

% if j < resolution.width/2 — singularity_hack*resolution.width

%o h = window_height/2 — (i—1) * window_height/(resolution_height —1);

(resolution_width);

Final Project — MATH 599 R. Raquépas and E. Schulz

% w = —window.width/2 + (j—1) * window.width/(resolution.width —1);

% else

% h = window_height/2 — (i—1) * window_height/(resolution_height —1);

% w = —window._width/2 + (singularity_hackswindow_width) + (j—1) * window._width/(resolution_width —1);
% end

%

h = window_height/2 — (i—1) * window_height/(resolution_height —1);
w = —window.width/2 + (j—1) * window.width/(resolution.width —1);

% Initializing initial conditions
r=70;
theta =
phi = 0;
t.dot = 1;
phi_dot = (csc(theta) * w) / sqrt((a”2 + r"2) * (distance_from_window"2 + w"2 + h"2))
p-r = 2 * Sigma(r,theta) * (h % (a"2 + r"2) = cos(theta) + r * sqrt(a"2 +r"2) * sin(theta) * distance-from_-window)...
/ (sqrt(distance-from-window”2 + h"2 + w"2) % (a"2 + 2 % r"2 + a"2 % cos(2xtheta)) * Delta(r));
p-theta = 2 * Sigma(r,theta) = (—h % r % sin(theta) + sqrt(a"2 + r"2) = cos(theta) * distance-from_window)...
/ (sqrt(distance-from-window"2 + h"2 + w"2) % (a"2 + 2 * r"2 + a"2 % cos(2xtheta)));

pi/2 — pi/46; % offset the blackhole to see with of aDisk

% Conserved quantities (instantiated with I.C.)
E=(1—R/r) % t.dot + (R % a * phi.dot)/r;
L=—(Rsx*a)/r=tdot + (r°2+ a2+ (Rsx*a"2)/r) * phi.dot;

% Geodesic equations (system of first order ODEs)
% input : x = [r; theta: phi; pr: ptheta]
% ouput: dx = [dr; dtheta; dphi; dpr; dptheta] “x dot”
f = @(lambda, x) [(x(4) * Delta(x(1))) / Sigma(x(1),x(2)) ;
x(5) / Sigma(x(1),x(2));
(a% (—axL+x(1) *RxE)+ L% csc(x(2))"2 % Delta(x(1)))/(Delta(x(1)) * Sigma(x(1),x(2)));
— (1 / (2% Delta(x(1))"2 * Sigma(x(1),x(2))"2)) % (Sigma(x(1),x(2)) % (—E % Delta(x(1)) ...
(a*xRx* (—=2x*L+axE=* sin(x(2))"2)+2 * x(1) * E * Sigma(x(1).x(2)))...
+ (ax*x (a*xL2—=2=%L3x*x(1)*R=*E+ax*xx(l)*Rx*E2x*x sin(x(2))"2) + x(4)"2 *...
Delta(x(1))"2 + (a”2 + x(1)"2) * E"2 * Sigma(x(1),x(2))) * drDelta(x(1)))...
+ Delta(x(1)) = (a* (Lx* (axL—23%x(1)*R=*E)+ a=x(1)*Rx*E?2 % sin(x(2))"2)...
— Delta(x (1)) * (x(5)"2 + L™2 % csc(x(2))"2 + x(4)"2 = Delta(x(1)))) = drSigma(x(1))):
—(1/ (2% Delta(x(1)) * Sigma(x(1),x(2))"2)) * (=2 % sin(x(2)) = (a"2 * x(1) = R % E"2 % cos(x(2))...
+ L2 % cot(x(2)) * csc(x(2))"3 = Delta(x(1))) * Sigma(x(1),x(2))...
+(a*(L#*(a*xL—2=xx(1) «R*xE)+a=xx(l)*Rx*E2 % sin(x(2))"2) — Delta(x(1))...
(X(5)7°2 + L™2 % csc(x(2))"2 + x(4)"2 *x Delta(x(1)))) * dthetaSigma(x(2)))]:

% Solving for the geodesics using Runga—Kutta 4
% RK4 parameters

x-0 = [r ; theta :; phi ; p.r ; p-theta];
curve = x.0;

switch plot_-type
case 1
k= 1;
% Curves are computed within the celestial sphere where they exist
while (R < curve(k,1)) && (curve(k,1) < radius_celestial_sphere) && (k<20000)

% Clean coordintates values
curve(k,2) = mod(curve(k,2),2% pi);
curve(k,3) = mod(curve(k,3),2x% pi);
if curve(k.,2) > pi

curve (k,2) = 2#pi — curve(k,2);

curve (k,3) = mod(pi + curve(k,3),2%pi);
end

k = k+1;

% Use Runge—Kutta 4 step to evolve geodesic curve

% Some adaptativity is obtained by multiplying stepsize

% by Delta, which scale inversly to the coordinates

% singularity near the event horizon

curve(k,:) = rkdstep(f, 0, curve(k—1,:)" , min([stepsizexDelta(curve(k—1,1)):stepsize]))’;
end

% Transform to euclidean coordinates and plot3

[n,m] = size(curve);

A = axones(n,1);

Boyer2Cart = @(r,theta ,phi) [sqrt(r."2 + A."2).=*sin(theta).*cos(phi),...
sqrt(r.”2 + A."2).* sin(theta).*sin(phi),...
r.xcos(theta)]:

cart = Boyer2Cart(curve (:,1),curve(:,2),curve(:.,3)):

plot3 (cart(:,1),cart(:,2),cart(:,3)):

case 0

k = 1; % keeping count of steps
passed_through_aDisk = 0;

% Curves steps are computed within the celestial sphere where they exist
while (1.2%R < curve (1)) && (curve(l) < radius_.celestial_sphere) && (k<20000)

% Use Runge—Kutta to take a temporary step foward
temp.-curve_step = rkdstep(f, 0, curve’ , min([stepsizexDelta(curve(1));stepsize])) :

10

Final Project — MATH 599 R. Raquépas and E. Schulz

if passed-through.aDisk ==
% Check if the temporary step go through the accretion disk
if (temp.curve_step(2)—pi/2)(curve(2)—pi/2) < 0
if (aDiskMin < temp_curve_step(l)) && (temp_curve_step(l) < aDiskMax)
coords_aDisk(i,j.:) = [temp_curve._step (1): temp_curve._step (3): 1];
passed-through-aDisk = 1;

% Update curve with the temporary step

curve = temp.curve_step;

% Clean coordinates values
curve (2) = mod(curve(2).,2% pi);
curve (3) = mod(curve(3),2%pi);
if curve(2) > pi
curve (2) = 2%pi — curve (2);
curve (3) = mod(pi + curve(3),2xpi);

% Save coordinates according to cases
if (1.2%R < curve (1))

coords-no-aDisk(i,j,:) = [curve(2); curve(3); 0];
else

coords_no.aDisk (i,j.:) = [curve(2): curve(3); 1];
end

end
end
close (hbar);

if plot_type ==
hold off

end

% Save coordinates as maltab file
save img-Map.no.BH coords_no.aDisk coords-aDisk aDiskMin aDiskMax;

9% Generating final images from different celestial scenes

image_type.with_disk = I;
boolean_aDisk = 1;

load (’img-Map.no.BH ") ;

[resolution_-height ,resolution.width , 7] size (coords.no.aDisk);
accretion.disk.-scene = imread(’adisk-skewed.png’);
[accretion.scene.-height.res , accretion.scene-width.res, “] = size(accretion.disk.scene);
k= 1;
switch k
case 1

celestial-scene = imread(’ GriddedGal.jpg ’);

case 2

celestial.scene = imread(’ InterstellarWormhole-Fig6b.jpg ");
case 3

celestial_scene = imread(InterstellarWormhole_Figl0.jpg’"):

end

% Resolution data related to scene
[celestial_scene-height.res , celestial_-scene.width_res , 7] = size(celestial_scene);

IMG = zeros(resolution_height ,resolution_width ,3, “uint8 *);

% Generate image
for j = l:resolution.width

for i = l:resolution_height

if image-type-with_disk =
if boolean-aDisk ==
if coords.aDisk(i,j,3) == 1

1

% Clean coordinates values
coords.aDisk (i,j.2) = mod(coords_aDisk (i.j.2).2%pi):
if coords_aDisk(i,j,2) > pi

coords_aDisk (i,j.2) = 2xpi — coords_aDisk(i.j.2):
end

Jocoords-aDisk (i,j,2)

11

Final Project — MATH 599 R. Raquépas and E. Schulz

%round (coords-aDisk (i,j,2)#*((accretion.scene.width_res —1)/(2%pi))+1)

if coords.no.aDisk(i,j,3) ==

IMG(i,j.:) = accretion_disk_scene (round ((coords_aDisk (i,j,1)—aDiskMin)x*((accretion_scene_height_res —1)/(aDiskMax — aDiskMin))+1),...
round (coords_aDisk (i,j,2)*((accretion_scene_width_res —1)/(2%pi))+1),:):
else
IMG(i.j.:) = max(accretion-disk-scene (round ((coords-aDisk(i,j,l)—aDiskMin)=*((accretion-scene-height_.res —1)/(aDiskMax — aDiskMin))+1) ,...
round (coords-aDisk (i,j,2)*((accretion.scene.-width.res —1)/(2%pi))+1),:),
celestial_scene (round (coords_no_aDisk(i,j,1)*((celestial_scene_height_res —1)/pi)+1),
round (coords.no-aDisk(i,j,2)*((celestial_scene-width_res —1)/(2*xpi))+1),:));
end

boolean_aDisk = 0;

end
end
end
if boolean-aDisk == 1
if coords_no_aDisk(i,j,3) 1
MG(i,j,1) = 03
MG(i,j,2) = 0:
MG(i,j,3) = 0;
else
IMG(i.j,:) = celestial_-scene (round(coords.no-aDisk(i,j,l)*((celestial-scene-height_res —1)/pi)+1),...
round (coords-no-aDisk(i,j,2)*((celestial_scene-width_res —1)/(2%pi))+1),:);
end
end
boolean_aDisk = 1;

end
end

IMG = [IMG(:,l:(resolution-width/2 —3),:) IMG(:,(resolution-width/2 —3),:) max(IMG(:,(resolution-width/2 —3),:),IMG(:,resolution-width/2+5 ,:))
IMG(:,resolution-width/2+5,:) IMG(:,(resolution-width/2+5):resolution-width ,:)];

switch k
case 1
imwrite (IMG, ’ grid >, " jpg *)
case 2
imwrite (IMG, ’ test2_InterstellarWormhole_Fig6_BH_disk .jpg . jpg’)
case 3
imwrite (IMG, " test2_InterstellarWormhole.Figl0_.BH.disk.jpg’, jpg’)
end

%Final computations time
tEnd = toc(tStart);

fprintf("%d minutes and %f seconds\n’,floor (tEnd/60),rem(tEnd,60));

12

