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Understanding how an epidemic develops once it has emerged is crucial if we want to hope to control it. To do this, various models 
have been developed which highlight (in particular) the crucial role played by the parameter  , describing the average number 
of new infections due to a sick individual. As one can imagine, if this number is less than 1 then the epidemic will tend to go out, 
whereas it will be able to persist even to extend to the entire population if 1> . However, these classical models obviously have 
their limits and the parameter   does not really describe on its own the future of an epidemic in a real population (assuming 
that we know how to find it in this case). For example, the fact that a population is always finished induces random effects all the 
more marked that the population is small. On the other hand, most populations also have a structure in the form of groups within 
which individuals are closer (and therefore more easily infected) than between groups. All this requires finer models and the 
development of the tools necessary for their study.

Introduction

Abstract
In this paper, a mathematical five-dimensional dynamical system involving a SVEIR model of infectious disease transmission in a 
chemostat is proposed. A profound qualitative analysis is given. The analysis of the local and global stability of equilibrium points is 
carried out. It is proved that if 1> , then the disease-persistence (endemic) equilibrium is globally asymptotically stable. However, if 

1≤ , then the disease-free equilibrium is globally asymptotically stable in 5


.
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In a chemostat, an epidemic model can also be understood as a competition model where various pathogen strains compete for the 
the same susceptible host as only resource [1,2]. Such models predict the strain with the largest basic reproduction number to be the 
winner. In, it is proved that this prediction amount to the same if the per capita functional responses of infective individuals to the 
density of susceptible are proportional to each other but that they are different if the functional responses are non-proportional [2]. 

The SVEIR model of Wei et al. incorporates the notion of delay which consists in admitting that individuals can not pass from one 
compartment to another directly without observing a certain time, said delay [3]. Then the dynamic behaviour of the model is studied 
under a so-called vaccination strategy (pulse vaccination). The strategy is to vaccinate individuals of a certain age group, not once, but 
several times by separating doses of a definite time.

In this work, I shall revisit the model based on a standard SEIR model proposed firstly by Hethcote, modified by Gumel et al, and Wei 
et al, and later studied by Nkamba et al. but in a continuous reactor, from an applied point of view [3-12]. The contents of this paper 
is arranged as following. First, we present, in Section 2, a description of the model to be investigated. Then existence, uniqueness and 
local stability of the equilibrium of the considered model are analysed. Global stability and asymptotic behaviour of the 5D-system 
are then discussed. Finally, in section 3, numerical simulations are given in order to confirm the given results. 

Mathematics Subject Classification: 34D23, 35N25, 37B25, 49K40, 60H10, 65C30, 91B70. 

The considered population is subdivided into five subgroups of individuals. Each group has different epidemiological significance: 
the compartments of Susceptible, Vaccinated, Exposed, Infected, and finally the compartment of Recovered, which are respectively 
represented by the following letters S,V,E,I and R. The exposed compartment takes into account the elapsed time between the 
moment when the susceptible individual is infected and the moment when it becomes infected.

Mathematical model and results



Annex Publishers | www.annexpublishers.com                    
 

Volume 2 | Issue 1

Journal of Computational Systems Biology
 

2

The susceptible, the vaccinated, the exposed, the infected and the recovered individuals are exposed to a natural mortality other 
than one caused by the disease concerned by this study, with respective positive mortality rates  , , ,S V E Im m m m  and Rm .

As in general, the immunological status of the population of each compartment is different, mortality rates must be different.  DSin 
describes the rate of recruitment of susceptible (as input), this includes newborns who are born susceptible in the type of infection 
considered. The transmission coefficient, β , is the number of contacts made by an infectious individual per unit of time multiplied 
by the probability that contact with a susceptible person leads to an infection. ε is the rate at which individuals become infectious 
after spending some time in the exposed compartment. P is the vaccination rate. γ is the rate at which infectious agents recover 
their health. We consider here that the disease has a horizontal transmission. infection is transmitted from infected individuals to 
susceptible individuals on the one hand, and infected individuals are vaccinated on the other hand because the vaccination does 
not confer total immunity. The susceptible ones become infected by the relation βSI and the vaccinated become infected with the 
relation θβVI, where θЄ[0,1]. This means that 1-θ is the effectiveness of the vaccination.

The compartmental scheme of this model is illustrated by the diagram given in (Figure 1).

We take into account both, the dilution rate and all individual specific mortality (maintenance) rates. Only susceptible individuals 
are introduced into the reactor with a constant dilution rate D and an input concentration Sin (Figure 2).

The model developed here has then five components, S,V,E,I and R known as ’SVEIR’ model of infectious disease transmission in 
a chemostat. The population are classified as Susceptible compartment (S), Vaccinated compartment (V), Exposed compartment 
(E), Infected compartment (I), and Recovered compartment (R) and modelled by the following five-dimensional dynamical 
system of ODEs:

(1)

Figure1: Deterministic SVEIR Model in a chemostat
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, , ,S V E Im m m m and mR  are the mortality rates of , susceptible, vaccinated, exposed, infected and recovered individuals, respectively. 

Generally, if R<1, then an individual infects on average less than one, which means that the disease will disappear from the 
population eventually. In contrast, if R>1, then the disease can spread in the population. Determining  according to the parameters 
of the model thus makes it possible to calculate the conditions under which the disease is spreading.

The basic reproduction number is denoted by R. This concept is now unanimously recognized as a key concept in 
epidemiology[13,14]. It is defined “heuristically” as the average number of new cases of infection, caused by an average infected 
individual (in the course of its infectious period) in a population that is fully susceptible. For the last thirty years,  has been part of 
the majority of research using mathematical modeling. 

Define the following parameters: 
( )( )

, , 0, 0in in

S V S

DS pDSS V E I
D m p D m D m p

= = = =
+ + + + +

 and 0R = .  

The basic reproduction number R, in this case, is given by: 

Results 

Generalities

By replacing S  and V  by their expressions in (2), one obtains: 

5
+ , the closed non-negative cone in 5


, is positively invariant[4,5,6,7,8,9,11,18] by the system (1). More precisely, let 

( )min , , , ,S V E I Rm m m m m m= , then I get 

When there is no vaccination ( p=0 ), system (1) without the fifth equation (V) becomes the standard SEIR model with

(2)

(3)

(4)

Figure 2: “SVEIR” epidemic model in a chemostat
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ε

 and 
1
γ  are the vaccination rate, the mass action

incidence rate, the vaccination factor reducing the risk of infection after vaccination, the average duration of latency in compartment 
E before progressing to compartment I and the average time spent in compartment I before recovery (R), respectively.
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Proposition 2: System (1) admits a unique disease-free equilibrium ( ) , , , ,E S V E I R=  and a unique disease-persistence 
(endemic) equilibrium ( )* * * * * *, , , ,E S V E I R=  as possible equilibrium points with * * * * *, , , , 0S V E I R > . 

Proof. Equilibrium points of system (1) satisfy 

which means

Since all terms of the sum are positive, then the solution of system (1) is bounded. 

2. The second point is simply a direct consequence of equality (5) 
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Next I have to prove the boundedness of solutions of (1). By adding all equations of system (1), one obtains, for 
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If S = 0 then S = DSin>0 and if V= 0 then V= pS >0. If E = 0 then ( ) 0E I S Vβ θ= + >  and if I = 0 then 0I Eε= > . Finally, if R = 0 
then 0R Iγ= > .

1. The positivity of the solution is proved by the fact that :

Proposition 1: 

1. For all initial condition in 5
+ , the solution of system (1) is bounded and has positive components and thus is defined for all t>0. 

Proof.
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Using only the fourth equation, I obtain: 

As all parameters are assumed to be non-negative then either I = 0 or 

• If I = 0 then from system (7), one obtains 0, 0, in
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and 

If R > 1 then c < 0 and since a > 0, Equation (7) admits at most two solutions where only one of them is non-negative (I*) and that 
can be considered here due to proposition 1.

Now If R < 1 then c > 0 and since a > 0, Equation (7) admits at most two solutions having the same sign. But if R < 1 then b > 0 
then both solutions of (7) are negative and then it can’t be considered here due to proposition 1.

Then there exists at most one disease-persistence (endemic) equilibrium * * * * * *( , , , , )E S V E I R=  with * * * * * *( , , , , )E S V E I R= . 
Note that * * *, ,S V E  and R*  can be expressed on I* from system (7). This completes the proof. 

Proof. I proved in Proposition 1 that 1Ω  is a positive invariant attractor set of all solution of system (1). Now, since ( ) 0S t <  for  
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From Equation (3), I obtain the following result. 

The solutions of system (1) are exponentially convergent towards the set 2Ω  and we are interested in the asymptotic behavior of 
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The value of R determines whether there exists an endemic equilibrium or not (as in [1], Theorem 2.3).

if and only if ( )( ) ( )( )V S V SD m p D m D m D m pθ+ + + ≤ + + +  which equivalent to ( ) ( )S Vp D m D m pθ + ≤ + . This 
completes the proof. 

Proof. 

Proof. The Jacobian matrix at a point ( ), , , ,S V E I R  is given by:

Theorem 1: The disease-free equilibrium E  exists always and it is unique. If  R < 1, then the disease-free equilibrium point E  is 
locally asymptotically stable and it is unstable if R > 1. 

The Jacobian matrix evaluated at E  is then given by: 

where the characteristic polynomial is given by 
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It clear that the roots of ( )P λ have negative real parts if and only if R < 1. It follows that the disease-free equilibrium E  is locally 
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The global stability of the disease-free equilibrium E  is given in the following theorem (cf. ([5]).
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Proof. Consider the following Lyapunov function: 

with Lyapunov derivative, 

Since all parameters of the model are non-negative, it follows that  0F ≤  for 1≤  with F = 0  only if I = 0. Hence, F is a Lyapunov 
function on 2Ω . Further, by Corollary 1, 2Ω is a compact, absorbing subset of 5

+ , and the largest compact invariant set in 
( ){ }2 , , , , : 0S V E I R F∈Ω =  is the singleton { }E . Therefore, by the Lasalle’s invariance principle (see, for instance, Theorem 

3.1] and for other application), every solution of system (1) with initial conditions in 5
+  converges to E   as t +∞  [11,15]. 

The global stability of the disease-persistence (endemic) equilibrium E* is given in the following theorem. 

Proof. Consider the following Lyapunov function: 

Theorem 3: If R > 1, then the disease-persistence equilibrium ( )* * * * * *, , , ,E S V E I R=  is globally asymptotically stable. If 1≤
, then the disease-persistence equilibrium E* is unstable. 
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

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )

* * * *

* *

* *

*

1 1 1 1

1   1

1 1

E

in s V

E
E I

in s in s

D mS V E IS V E I
S V E I

S VD S S m p S IS pS D m V IV
S V

D mE II S V D m E E D m I
E I

SDS D m S DS D m S
S

ε
ε

β θβ

εβ θ ε ε γ
ε

       + +
= − + − + − + −       
       

   
= − − − + − + − − + −   
   
   + +

+ − + − + + + − − + +   
   

= − + − + +

    

( ) ( ) ( ) ( )

( ) ( ) ( )

* * *

* *
* * *

*
*

_

.

V V E

E E
I E I

pS IS

V ED m V pS D m V IV I S V D m E
V E

D m D mID m I D m E D m I
I

β

θβ β θ ε

ε εγ ε γ
ε ε

−

+ +

+ − + + + − + + + +

+ + + +   + + − + + + + +   
   
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Using the fact that ( )* * * * *, , , ,S V E I R  is solution of system 7) then the expression of  V reduces to 

Since arithmetical mean of nonnegative real numbers is greater than the geometrical one, we have the following inequalities 

I recall also the following inequality : 

More simply,

I obtain finally

Note that 

and 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2

2

2 2

*
* *

*
* * *

*
* * * * *

*

* * *
* * * * * * * *

*

*
* * *

*

S S S S

V V V

V V V V

E
I E

SD m S D m S D m D m S
S

SD m V D m V D m V
S

V SD m V D m V D m V D m I S V
V S

S S V SI I V I V I S I
S S V S

EIV I S V I S V
E

D m DID m I D m E
I

β θ

β θβ θβ β θβ

θβ β θ β θ

ε γ ε
ε

= + − + − + + +

+ − + + +

+ + + + + − + + +

− − + + −

+ − + + +

+ + + − + + − + + + 


+

−





( ) *.E
I

m D m Iε γ
ε

+  + + 
 

( ) ( )

( ) ( )

2

2

* * *
* *

* * *

* * *
* * * * *

*

* * *
* * * * * * *

* *

*
* * * *

2 3

3

3

.

S V

E
I

S S S V V SD m S D m V
S S S V V S

S E I EI S I I S IS
S E I E

V S E E II V I V I IV I V
V S E E I

D mSI V D m I I S V
S

β β β β

θβ θβ θβ θβ θβ

εθβ γ β θ
ε

   
= + − − + + − − −   

   

+ − − −

− + − − −

+ + − − + + + + 
 



( ) ( )
* * *

* *
* * *

* * * * * * *
* * * *

* * * * * * *

2 3

3 4

S V
S S S V V SD m S D m V
S S S V V S

S I S E E I V S I V E E I SS I V I
S I S E E I V S I V E E I S

β θβ

   
= + − − + + − − −   

   
   

+ − − − + − − − −   
   



* * * * * *

* * * * * *1, 1, 1S S S V V S S I S E E I
S S S V V S S I S E E I

= = =

* * * *

* * * * 1.V S I V E E I S
V S I V E E I S

=

(10)1 2 3 1 2 3 1 2 3. . ,    , , , , 0n
n n nx x x x n x x x x x x x x+ + + + ≥ ≥  
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*

*

* *

* *

* * *

* * *

* * * *

* * * *

2 0,

3 0,

3 0,

4 0.

S S
S S

S V V S
S V V S

S I S E E I
S I S E E I

V S I V E E I S
V S I V E E I S

 
− − ≤ 

 
 

− − − ≤ 
 
 

− − − ≤ 
 
 

− − − − ≤ 
 

Define [11,15]

Then one has 

Using to the above relations, one obtains the following implications.

Finally, I obtain 

Since in the endemic equilibrium, I have 

Therefore 0≤  . Thank’s to the stability Lyapunov theorem, one deduces that ( )* * * * * *, , , ,E S V E I R=  is stable. It remains to 
show that  ( )* * * * * *, , , ,E S V E I R=  is asymptotically stable using the Lasalle invariance principle (see, for instance, [Theorem 3.1] 
and for other application).

*

*

* *

* *

* * *

* * *

* * * *

* * * *

2 ,

3 ,

3 ,

4 .

S SA
S S

S V V SB
S V V S

S I S E E IC
S I S E E I

V S I V E E I SD
V S I V E E I S

 
= − − 
 
 

= − − − 
 
 

= − − − 
 
 

= − − − − 
 

( ), , , , 0 0.S V E I R A B C D= ⇔ = = = =

( )

( )

*

* *

*
* *

0 ,

, 0 ,

, 0 .

A S S

S S B V V

E IS S C
E I

= ⇒ =

= = ⇒ =

 = = ⇒ = 
 

( ) * *
* *, , , , 0 , , E IS V E I R S S V V

E I
= ⇔ = = =

( )

( )

* *

* *

0 ,

, 0 ,

, 0 .

A S S

S S B V V

E IS S C
E I

= ⇒ =

= = ⇒ =

 = = ⇒ = 
 
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Let * *

E Ir
E I

= = , then *E rE=  and *I rI= .

Then I obtain 

For the endemic equilibrium, I get 

Thus, the largest invariant set contained in ( ){ , , , , | 0}S V E I R =  is ( ){ }* * * * * *, , , ,E S V E I R= . Then the global stability of the 
disease-persistence equilibrium ( )* * * * * *, , , ,E S V E I R=  follows according to the Lasalle invariance principle (see for an application) 
[11,16]. 

and therefore I = I* and E = E*. Finally

Consider the case where the dilution rate is large enough compared to the natural mortality rates of all individuals which is the 
most considered in applied cases. Then by neglecting all mortality rates , , ,S V E Im m m m  and mR, one obtains:

Corollary 2:

•  ( ) 5
3 , , , ,   /  ; ,in in

in
DS pSS V E I R S V E I R S S V
D p D p+

 
Ω = ∈ + + + + = ≤ ≤ + + 


 is a positive invariant attractor set

of all solutions of system (1). 

• If 1≤ , then the disease-persistence equilibrium E* is unstable and the disease-free equilibrium E   is globally asymptotically 
stable. 

• If R > 1, then the disease-persistence equilibrium  ( )* * * * * *, , , ,E S V E I R=  is globally asymptotically stable and the disease-free 

equilibrium , ,0,0,0in inDS pSE
D p D p

 
=  + + 

 is unstable. 

We performed numerical simulations for system (1). Four cases were considered. Two of them performing the global stability of 
the disease-free equilibrium E  when 1≤ . The other two tests perform the global stability of the disease-persistence equilibrium

( )* * * * * *, , , ,E S V E I R= when R > 1(Figure 2 and 3) [17-23].

( )
( )

( ) ( )
( )

* * *

* * * *

* * * *

* *

,
,

,

.

in S

V

E

I

DS D m p S S I
pS D m V V I

I S V D m E

E D m I

β
θβ

β θ ε

ε γ

= + + +
= + +

+ = + +

= + +

( )* * * *, 1VpS D m V V I rθβ= + + =

( ) ( )* * * * *, , , , 0 , , , , .S V E I R S S V V E E I I R R= ⇔ = = = = =

Numerical Simulations

Figure 3: (S(t), V(t), E(t), I(t), R(t)) behaviours for (left) 
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1; 1; 1; 0.1; 1; 1; 1; 1; 5; 0.3; 3; 1, 0.4242 1in S V E I RS D m m m m m p β θ ε γ= = = = = = = = = = = = = ≤ and for (right) Sin=1;D=5;mS=1;
mV=0.1;mE=1;mI=1;mR=1;p=1;β=5;θ=0.3;ε=3;γ=1,R=0.1801≤1. The solution of system (1) converge asymptotically to E . Only 
Susceptible and Vaccinated compartiments persist, the other compartments vanish (Figure 4). 

 The solution of system (1) converge asymptotically to E*. All compartiments persist. 

Figure 4: (S(t), V(t), E(t), I(t), R(t)) behaviours for (left) and for (right)

10; 0.1; 1; 0.1; 1; 1; 1; 1; 5; 0.3; 3; 1, 2.0740 1in S V E I RS D m m m m m p β θ ε γ= = = = = = = = = = = = = >

Conclusion
A mathematical 5D dynamical system modelling an SVEIR model of infectious disease transmission in a chemostat is proposed. 
A profound qualitative analysis is given. The analysis of the local and global stability of equilibrium points is carried out. It is 
proved that if R > 1, then the disease-persistence (endemic) equilibrium is globally asymptotically stable. However, if 1≤ , then 
the disease-free equilibrium is globally asymptotically stable in 5

 . 
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