
1

A 2019 New Year’s Resolution for Stata users:

Make cleaner, prettier graphs

December 26, 2018

Nicholas T. Davis1

1 Introduction

Making graphs is the best part about being a social scientist.2 The problem with graph-

making, however, is that software interfaces are opaque. In the case of Stata, program

.readme files, while often well-documented, usually lack informative notation regarding

what the component syntax pieces actually do.3 As a result, most people rely on the

standard graphing defaults, which produce graphs that are not very aesthetically pleasing.

I spent much of 2018 trying to make better graphs. Because my sunk costs are in Stata,

this short write-up is for people who have yet to make the pivot to R for philosophical or

practical reasons. If you’re an advanced Stata user, then perhaps this walkthrough isn’t

for you because you’ve already got this figured out. However, I have rarely seen Stata’s

graphing syntax annotated in ways that are useful to the non-expert, so perhaps this

guide will be useful to a modest population of users nonetheless. In most cases, the syntax

reviewed here is plug-and-play.

2 A simple blueprint for better fidelity

There are four things that one could do to make better graphs using Stata.

1. Download either plottig or plotplain by Dan Bischof. If .do files make you queasy,

then these settings will at least clean up most of the clutter associated with the

stock Stata settings. If you use these settings off-the-shelf, then cite the package.

It’s the least you can do.

2. Use coefplot. Read through Ben Jann’s documentation of the coefplot package

here. Coefplot is the singular flexible graphing utility that exists in the Stata

workspace.4 Ben also covers a lot of the different coding pieces that go into

graphing. It’s useful reading.

3. Understand Stata’s general graphing syntax. See here for a good refresher.

4. Follow and iterate on the options listed in Section 4.

1 Assistant Research Scientist, Public Policy Research Institute, Texas A&M University,

nicholastdavis.com
2 This has not been empirically verified.
3 The exception to this is Ben Jann’s documentation for coefplot, which is very, very clear.
4 Marginsplot is fine, and I use it all the time. But, if you’re presenting small multiples or

multiple marginal effect estimates, then coefplot is often a more attractive route to pursue.

https://www.stata.com/meeting/switzerland16/slides/bischof-switzerland16.pdf
https://twitter.com/danbischof?lang=en
ftp://ftp.repec.org/opt/ReDIF/RePEc/bss/files/wp1/jann-2013-coefplot.pdf
https://www.stata.com/links/resources-for-learning-stata/cheat-sheets/StataCheatSheet_visualization_2016_June-REV.pdf

2

3 Off-the-shelf schemes

Let’s begin with a simple example, which will require us to load a universally-available

dataset into working memory. Type:

sysuse auto.dta

This syntax loads the ubiquitous “cars” dataset into Stata. Let’s start with a basic

description of the “length” variable, which is the length in inches of the cars in the

dataset.

histogram weight

Figure 1. Distribution of car lengths using stock graphics package.

This is…not a pretty graph. Stata calls its default coloration, type, and scaling settings.

The result is a visually poor blue-ish background, inelegant type, odd gridlines, and

asymmetric scaling that doesn’t look balanced.

We can do better simply by installing Dan’s aforementioned “plottig” and “plotplain”

schemes. You’ll probably need to type:

findit plottig

Now, you’ll want to select the “gr0070” package from the popup window and download it:

3

Next, you’ll need to manually install the scheme’s settings by typing:

set scheme plottig

Again, let’s generate a histogram:

histogram length

The graphic below looks much better. It rids us of the blue background, replaces the color

scheme with a nice monochromatic set of grays, and offers a sensible set of grid lines. If

you only installed this scheme and went about your way, then you’d be better off than

the modal graph.

Figure 2. Distribution of car lengths using "plottig" scheme.

However, to be honest, the gray background is a little bit dark, and the gridlines add

clutter to the visual presentation of the data. Instead, let’s try the “plotplain” scheme. It

should have been automatically included when you downloaded the earlier package. This

time type:

set scheme plotplain

The graphic below replaces the gray background and exchanges it for a white one. It’s a

bit better, in my opinion, although I confess I don’t love the faint dotted gridlines.

4

Figure 3. Distribution of car lengths using "plotplain" scheme.

In fact, while both of these examples are superior to Stata’s default settings, there are still

three issues that an off-the-shelf scheme won’t address. First, the settings don’t address

blocky and inelegant font. Second, scaling issues persist – there is more white space on the

eastern portion of the x-axis than there is on the western one, which means that the

labeling comes across as asymmetrically centered. Finally, as we move into increasingly

complex visualizations, other problems related to legends, plot colors, confidence intervals,

etc. will manifest that must be addressed manually.

4 The magic is after the comma

Let’s work on writing some code to generate a much cleaner visual presentation of the

hard work you put in collecting and coding your data. In my opinion, there are two things

that ensure a better graphic: clean, simple font and axes that are scaled proportionately.

Changing the font is easy. Simply generate a new histogram and in the editor window,

you’ll click on “Edit” and then “Preferences.” From there, all you need to do is establish

what font you want. Your options are endless, but try and avoid “serif” fonts because they

look clunky and don’t render as well. “Roboto light” looks good. So, too, does

“Montserrat.” Your machine likely doesn’t have either font natively, but both fonts are

available as true type font (.ttf) files online. Use google to search for them and install

them after downloading them.

After settling on your font, we can get down to working on the magic that occurs after the

comma. In other words:

histogram length, all of the good stuff happens in here

5

Figure 4. Changing font within the Stata graph editor

4.1 Scaling

Stata refuses to scale axes in ways that make any aesthetic sense. It basically just takes

the minimum and maximum values across the range of your variables or estimates and

plots those. This leaves an ungainly mess of an image because it messes with whitespace

and leaves your labeling somewhat up to chance as it relates to the actual range of values.

Instead, let’s try and reclaim the axes to work for us. The following command imposes the

full range of values for which the x-axis should take: 130 to 245 inches. Doing this

expands the white space on the right side of the graph so that it is roughly proportional

to the left side. Further, the code also bumps up the y-axis values so that the base of the

histogram doesn’t overlap with the x-axis. Finally, the fourth line of code specifies the

white background and adds a thin border around the pane.

Important note: the “///” tell Stata to execute the commands on that line and to then

move to the next line of code. Stata terminates on the final line of code that does not

have those dashes.

histogram length, /// base graphing command

 xscale(r(130 245) lcolor()) /// x-axis scaling

 yscale(r(-.001 .025) lcolor()) /// y-axis scaling

 plotregion(fcolor(white) lcolor(gs10))

6

Figure 5. Distribution of car lengths with improved axis spacing.

The problem with this graph, however, is that the labelling is all screwed up. The

decimals on the y-axis are not uniform, and the length on the x-axis doesn’t cover the full

span of the histogram bars. Further, the beige coloration is awful, and the axis labels are

too hard to see. We can do better. Let’s improve on this code above.

4.2 Manual labeling

In addition to the code above, we need to do a better job explicitly setting the coloration

parameters. We also need to add in some standardized labelling. Building on the above

code, we add in the literal values that we want the x- and y-axes to take, along with

specifying their coloration. We also darken the labels and set the bar color to black. The

code to generate this is below.5

5 Section 6 reproduces all of this code in text format so you can copy and paste it into your own do

files.

7

That code produces the following graph:

Figure 6. Distribution of car lengths with improved scaling and coloration

If you wanted white bars with black outlines, for example, then you would have changed

the coloration options to: bcolor(white) bl(black). That would give you a super

minimalist graphic as follows:

Figure 7. Distribution of car lengths with improved axis spacing and minimalist coloration

8

4.3 Basic annotated code

These changes are not difficult to implement. The following code can be added to most

any graphing syntax. It tinkers with the graph space, itself, setting background coloration,

x- and y-axis scaling, labels, and the like. It’s flexible and can be added to graphs built

with either marginsplot or coefplot. (Note: the “///” informs Stata to keep reading

the code on the next line; on the terminal line of code, you should not include “///.”)

* annotated basic code that can be universally applied:

xscale(r(# #) lcolor(color)) /// x-axis scaling

yscale(r(# #) lcolor(color)) /// y-axis scaling

plotregion(fcolor(color) lcolor(color) lwidth(__)) /// plot-region coloration and outline

graphregion(fcolor(white)) /// background coloration

xlabel(# "label" # "label", /// x-axis label #s

labcolor(color) tlcolor(color) tlwidth(__) labsize(__) nogrid) /// x-axis labels coloration

ylabel((# "label" # "label", /// y-axis label #s

labcolor(color) tlcolor(color) tlwidth(__) labsize(__) nogrid) /// y-axis labels coloration

xtitle(" ", color(color)) /// x-axis title

ytitle(" ", color(color)) /// y-axis title

bcolor(color) blcolor(color) /// setting bar color

title(" ")

* where: # # = a range of numbers from smaller to larger, # = whatever number(s) you choose

(often this will be a range of numbers associated with your quantities of interest), color =

whatever color you choose, and ___ = width or size

However, while this syntax is useful, to manipulate post-estimation plots requires a more

involved set of commands. For this, we’ll need to include some more code.

4.4 A more involved example using marginsplot

Taking the above logic, let’s work on producing an analysis that illustrates the marginal

effect of car length on car price that accounts for the distribution of real car lengths in the

dataset. In addition, let’s layer a histogram of car lengths onto our predicted marginal

effects of length on price. Here, we’ll begin with a simple bivariate regression

reg price length

Next, we’ll explore how different lengths are related to price. Let’s explore intervals of 10

inches.

quietly margins, at(length=(150(10)230))

And, finally, we’ll call marginsplot to create our graph. Marginsplot will use the

Stata defaults that we decided were ugly, so we’ll need to add the above code, plot and

9

confidence interval syntax, and the addplot feature to create a pretty nice looking

graphic. The full syntax looks like this:6

That code creates a graphic that superimposes a very rough “rug plot” beneath the

estimates. Stata includes no native rug plot feature, so you need to get a little creative by

suppressing the “height” of the histogram. This is done by making sure the second y-axis

is scaled using large numbers and removing the ticks from the second axis. It is important

to note that the “axis(2)” option is vital because otherwise the addplot would overwrite

the information on the first y-axis, which conveys prices.

6 See page 14 for syntax in text format.

10

Figure 8. The effect of car length on car prices with rug plot.

If we instead want a more traditional histogram superimposed onto the graphic, then we

simply need to re-arrange some of the options. The code below gets us a little closer to

that common graphic:7

7 See page 15 for syntax in text format.

11

Figure 9. The effect of car length on car prices with histogram of car lengths

12

4.5 An example using “coefplot”

While marginsplot is extremely useful, it is less flexible than coefplot, which allows

us to plot multiple post-estimates. We can tailor the above code to work with the

coefplot commands, which are related, though subtlety different. Here, we will run a

multiple regression of different car features and then plot the marginal effect of those

items on car price.8

Figure 10. Marginal effect of car-related features on car price. Estimates convey effect of moving from

minimum to maximum values on respective covariate. Equation models car price as function of these

five items; it is a silly model.

8 See page 16 for syntax in text format.

13

5 Conclusion

Constructing better graphs is not terribly difficult. Dan Bischof and Ben Jann have made

this pretty easy. If you’re a Luddite, then use an off-the-shelf package like plottig or

plotplain to sex up your graphs. With minimal tinkering of the Stata defaults, however,

you can take advantage of the flexibility of both marginsplot and coefplot to make more

compelling, clearer graphs. And once you have your style template nailed down, then it is

very easy to replicate across projects.

Go forth.

Make 2019 the “Year of the Beautiful Stata Graph.”

14

6 Code for figures

clear

sysuse auto

* Figure 7

* example histogram

histogram length, /// base graphing command

 xscale(r(130 245) lcolor()) /// x-axis scaling

 yscale(r(-.001 .02) lcolor()) /// y-axis scaling

 plotregion(fcolor(white) lcolor(gs10) lwidth(med)) /// plot coloration and outline

graphregion(fcolor(white)) /// background coloration

 xlabel(135 145 155 165 175 185 195 205 215 225 235 245, /// x-axis label #s

 labcolor(gs4) tlcolor() tlwidth(thin) labsize(small) nogrid) /// x-axis labels coloration

 ylabel(0.000 "0.000" 0.005 "0.005" 0.010 "0.010" 0.015 "0.015" 0.020 "0.020", /// y-axis label #s

 labcolor(gs4) tlcolor() tlwidth(thin) labsize(small) nogrid) /// y-axis labels coloration

 xtitle("Length (inches)", color(black)) /// x-axis title

 ytitle("Density", color(black)) /// y-axis title

 bcolor(white) bl(black) /// setting bar color

 title(" ")

15

*Figure 8

*approximating a rugplot

reg price length

margins, at(length=(150(10)230))

marginsplot, /// base graphing command

 level(95) /// confidence intervals

 plotregion(fcolor(white) lcolor(gs10) lwidth(med)) /// plot coloration and outline

graphregion(fcolor(white)) /// background coloration

 xlabel(, /// x-axis label #s

 labcolor(gs4) tlcolor() tlwidth(thin) labsize(small) nogrid) /// x-axis labels coloration

 ylabel(4000 "$4,000" 6000 "$6,000" 8000 "$8,000" 10000 "$10,000", /// y-axis label #s

 labcolor(gs4) tlcolor() tlwidth(thin) labsize(small) nogrid) /// y-axis labels coloration

 xtitle("Length (inches)", color(black)) /// x-axis title

 ytitle("Car price ($)", color(black)) /// y-axis title

 recastci(rspike) /// confidence interval display options

 ci1opts(lcolor(black)) /// confidence interval color

 plot1opts(mcolor(white) mlcolor(black) lcolor(black)) /// plot colors

 title(" ") /// master graph title

 addplot(hist length, /// adding and overlaying distribution of length

 blcolor(black) fcolor(black) /// bar line and fill colors

 discrete /// tells stata to graph actual distribution of length

 yaxis(2) /// calls for 2nd y-axis, which we'll suppress

 yscale(alt lcolor() axis(2)) /// 2nd y-axis scaling

 ylabel(0 " " 20 " " 40 " " 60 " " 80 " " 100 " ", /// minimizing the height of histogram

 labcolor() axis(2) tlcolor(black) tlwidth(thin) labsize(small) tl(0)) /// label options for 2nd axis

 ytitle(" ", axis(2)) /// no title on 2nd axis

 legend(order(2 "Predicted price" 3 "Car lengths")))

16

*Figure 9

*overlaying histogram

reg price length

margins, at(length=(150(10)230))

marginsplot, /// base graphing command

 level(95) /// confidence intervals

 plotregion(fcolor(white) lcolor(gs10) lwidth(med)) /// plot coloration and outline

graphregion(fcolor(white)) /// background coloration

 xlabel(, /// x-axis label #s

 labcolor(gs4) tlcolor() tlwidth(thin) labsize(small) nogrid) /// x-axis labels coloration

 ylabel(4000 "$4,000" 6000 "$6,000" 8000 "$8,000" 10000 "$10,000", /// y-axis label #s

 labcolor(gs4) tlcolor() tlwidth(thin) labsize(small) nogrid) /// y-axis labels coloration

 xtitle("Length (inches)", color(black)) /// x-axis title

 ytitle("Car price ($)", color(black)) /// y-axis title

 recastci(rspike) /// confidence interval display options

 ci1opts(lcolor(black)) /// confidence interval color

 plot1opts(mcolor(white) mlcolor(black) lcolor(black)) /// plot colors

 title(" ") /// master graph title

 addplot(hist length, /// adding histogram marginsplot graph

 blcolor(gs10) fcolor(gs10) /// bar line and fill colors

 percent /// histogram bins in "percent" rather than "discrete" (actual)

 yaxis(2) /// calls for 2nd y-axis

 yscale(alt lcolor() axis(2)) /// scaling on 2nd y-axis

 ylabel(0 "0%" 20 "20%" 40 "40%" 60 " " 80 " " 100 " ", /// labels on 2nd y-axis

 labcolor() axis(2) tlcolor(black) tlwidth(thin) labsize(small)) /// label options on 2nd y-axis

 ytitle(" ", axis(2)) /// telling Stata to remove title on 2nd y-axis

 legend(order(2 "Predicted price" 3 "Car lengths")))

17

* Figure 10

* coefplot example

* first recode vars to 0 to 1 to make plots clean

foreach x in length weight mpg displacement foreign {

sum `x'

gen `x'01 = (`x'-r(min))/(r(max)-r(min))

}

reg price length01 weight01 mpg01 displacement01 foreign01

est store price

coefplot price, /// coefplot package

 drop(_cons) /// drop the constant, coefplot will always auto-plot

 level(95) /// confidence interval level

 plotregion(fcolor(white) lcolor(gs10) lwidth(med)) /// plot coloration and outline

graphregion(fcolor(white)) /// background coloration

 xlabel(-10000 "-$10,000" 0 "$0" 10000 "$10,000" 20000 "$20,000", /// x-axis label #s

 labcolor(gs4) tlcolor() tlwidth(thin) labsize(small) nogrid) /// x-axis labels coloration

 ylabel(, /// y-axis label #s

 labcolor(gs4) tlcolor() tlwidth(thin) labsize(small) nogrid) /// y-axis labels coloration

 xtitle("Marginal effect, min-to-max", color(black)) /// x-axis title

 ytitle(, color(black)) /// y-axis title

 title(" ") /// graph title " " = not title

 xline(0, lp(dash) lcolor(red)) /// red dashed line at 0

 mcolor(white) mlcolor(black) /// point estimate color options

 ciopts(lcolor(black)) /// CI color options

coeflabels(length01 = "Length" weight01 = "Weight" mpg01 = "MPG" displacement01 = "Displacement" foreign01 =

"Foreign") /// re-labeling

 legend(off)

