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Abstract. An analysis of Lunar Laser Ranging (LLR) obserand then from R at; to the station receiver Gitts. DT'C, the
vations from January 1972 till March 1998 is performed usir@pmputed value oDT', is given by:

the lunar theory ELP 2000-96 and the completed Moons’ theory

of the lunar libration. The LLR station coordinates, polar md?7'C' = t3 — t1 — DTi(t3) + DTi(t1)

tion and Universal Time are provided by the International Ear\t,\klllth
Rotation Service (IERS). In Solution 1 the precession-nutation
transformation is given by recent analytical theories, while in 1 ,

Solution 2 it is derived from the IERS daily corrections. Orbita’g =t | BR(t2) — BO'(ts) | +DT5 + DT,

andfree libration parameters of the Moon, and coordinates of the 1

reflectors are obtained in both cases. The position of the inertial b2 | BR(t2) — BO(t1) | +DTs + DT (1)

mean ecliptic of J2000.0 with respect to the equator of the mean . .
Celestial Ephemeris Pole (CEP) of J2000.0 (in Solution 1) andt® the velocity of light and B stands for the barycenter of the

the International Celestial Reference System (ICRS), the IE gar sy;tngTl 'S a rglatlwsnc “”."'e scale correctiom T
the relativistic propagation correction (one way), abd a

celestial reference system, (in Solution 2) are fit. The position . SO . S
fropospheric correction; is derived from the observation time
of the mean CEP equator of J2000.0 and of several dynamica : . . ;
o . -andts, t3 from Egs. (1). In this analysis, the time scale TDB is
reference planes and origins, with respect to ICRS, are derive

from these fits (Fig. 1). The leading results are the following® opted for ime’ (€.9.11, 5, t3) and TAI (the time scale of

07057 6007000 20 (in the equator) for the separation of the ori%T) for DTC'. DT, is evaluated from the first three terms of

gin of right ascensions in ICRS from the ascending node of thhee series TDBTT in (Fairhead & Bretagnon, 199027} is

inertial mean ecliptic of J2000.0 on the reference plane of IC vsgi:)ri/hthelfg(glzc;vn]ng]:?gzgrg:l:;]oen O(efrifaICIrZTastIif/ziitl f%rgg:le}
—070460 + 070008 (in the ecliptic) for the separation of the lat- Y. 9 y y:

ter point from the inertial dynamical mean equinox of J2000.0, 4Gms | OR |

—07015 19 4 07000 35 (in the equator) for the separation of the? T3 = & |ST|+|SL|
inertial dynamical mean equinox of J2000.0 from the J2000.0 e 2| TL |
right ascension origin derived from IERS polar motion and Uni- + T

n
. . . X . 3 _
versal Time and from precise theories of precession-nutation, ¢ |TO[+|TR|~|OR|
and 23°26'217405 22 4 07000 07 for the inertial obliquity of \yhere T is the terrestrial mass center, L the lunar one, and S
i /! /! . . .
J2000.0. A correction 0£-073437 + 070040 /cy to the IAU  the solar one, all the vectors being evaluated at imé! is the
1976 value of the precession constant is also obtained (the @pnstant of gravitationyis andmr are the masses of the Sun

rors quoted are formal errors). and the EarthDTy is given by Marini and Murray’s formula
_ (McCarthy, 1992).
Key words: ephemerides — reference systems — Moon The computation oDTC involves:

— the components dI'L in a celestial barycentric reference
system, and the celestial barycentric coordinates of the
Earth-Moon barycenter to a lesser accuracy,

Lunar laser ranging (LLR) stations provide normal points whicir the components df'O andTO' in a terrestrial reference

may be used as observed values of the light tibie from the system, _ _
LLR station transmitter O at timg to a lunar reflector R ap, ~ — the components diR in a selenocentric reference system,
— the rotations from the terrestrial and selenocentric reference

Send offprint requests td. Chapront system axes to the celestial ones,

1. Introduction
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Table 1.Observations used 2. Orbital motion

Station beginning end number The lunar orbital motion is given by the improved analytical
McDonald 2.70m  Jan. 1972 Jan. 1985 3249 solutlo_n EITP ZOOQ-BZB plus numerical complements fit to the
Old MLRS Aug. 1983 Jan. 1988 483 numerical integration DE245 of the Jet Propulsion Laboratory
New MLRS Feb. 1988 March 1998 1807 (JPL), asdescribedin (Chapront & Chapront-Teui997). This
Haleakala Apr. 1987  Aug. 1990 482 solution, which is denoted now as ELP 2000-96, allows us to
CERGA rubis Apr. 1984  June 1986 1190 compute lunar geocentric rectangular coordinateeferred to
CERGA Oct. 1987 March 1998 5134 the inertial mean ecliptic of J2000.0, under the form:

— relativistic corrections for the transformations of coordi- _ . . .
nates in terrestrial and selenocentric reference systems i the 1-column matrix of coordinates. R; is the rotation
coordinates in a barycentric reference system (BRS). matrix with respect to the; axis, with the same conventions as

) . ) o in (Folkner et al., 1994);; andxz, axes being arbitrary fixed

In this analysis, the coordinates of the LLR stations in the 'BTthogonaI axes in the inertial mean ecliptic of J20001Q.is
(IERS), are derived from ITRF94 (Boucher et al., 1996) angries and numerical complements; both do not depend on the
corrected for the Earth’s deformations due to Earth tides, 0CqRcise direction of the, axis. Matrix X takes into account the
tides, and pressure anomaly, following the recommendationgfation from the mean ecliptic of date (the original reference
the IERS Standards 1992 (McCarthy, 1992). plane of ELP 2000-82B) to the mean ecliptic of J200@,Care

Files EOP(IERS)97 C04, provided by IERS, yield the origpace coordinates of a BRS whose time coordinate is in TDB
entation of the ITRS axes both with respect to the instantaneous e expression aDT'C involves also the barycentric posi-
axes defined by the celestial ephemeris pole (CEP) and "tiyigh of the Earth-Moon barycenter but only through the differ-
equinox of date” and with respect to the axes of the Interngnces of these vectorstatandt, or t, andt;. The amplitudes

tional Celestial Reference System (ICRS), the IERS celesilthese differences do not depend on the precise directions of
reference system. In the first case, precise analytical theoriegff,.. axes.

precession and nutation subsequently allow one to refer to the
celestial system of axes defined by the mean CEP equator of ) ) )
J2000.0 and the fixed origin of right ascensions in this plafe Transformation from selenocentric coordinates
derived from the IERS data for polar motion and UT1 and from O célestial coordinates

precession-nutation theory (in this paper, MCEP system).  The selenocentric axes adopted in this analysis are the principal
We use solutions for the lunar libration and for the lunaxes of inertia. The transformation from the componentsf

orbital motion which preserve the analytic advantages, both [83 in the selenocentric axes to its componepts the ecliptic

ferred to the mean ecliptic of J2000.0 in the inertial sense gges;; defined in Sect. 2 is:

defined by Standish (1981). This allows one to fit simultane-

ously parameters of the free libration, orbital parameters of the= R3(—W1 + 180°) M (p1, p2, 7, 1)§.

Moon and of the Earth-Moon barycenter (including the lunar

) . . . n re the 1-column matri wh lements are r -
tidal secular acceleration), selenocentric coordinates of the .2 d¢ are the 1-colu atrices whose elements are respec

nar reflectors, and positional parameters of the inertial melfgly i andé;. W1 is the same as in Sect. B (p1, p2, 7, t) is a

ecliptic of J2000.0 with respect to the ICRS axes and to t atrix function of the libration variables;, p;, 7 and of timef.
MCEP system. In the latter case, a correction to the 1AU 19 & adopted solution for the libration is Moons' theory (1982,

value of the precession constant s also fit 1984) with analytical and numerical complements as described

This analysis uses the normal points obtained by the LL'ﬁ(Chafr?m et gl._,dll?/|98). Thedmaml prot?[lr:aml of Moc;lns_thtlaory
stations of McDonald (three locations), Haleakala, and CERC?J&COlin S o_r aggl A olc;n an_ nglo VZS Ce (L}mar %QVS'C% pa-
(two successive instruments at the same location) from Januﬁﬁe ersd = (C'— A)/B, v = (B - 4)/C, C/mLRy, an

1972 to March 1998. The number of normal points and the tin ormalized, x, S (0 < k < n,3 <n < 4), under alit-
spans covered are given in Table 1. For all the stations g{al form. The values assigned to these parameters in the present

L . ) lysis are those of the JPL numerical integration DE245, ex-
cept Haleakala, the normal points involve the same location A . !
P POINTS INVOV ! cept forC//my,R?. They are quoted in Table 2 except for the

transmitter O and receiver’ OMe mention that, since the coor- ! :

dinates of the new MLRS and Haleakala receivers are not giv\@"ues OfCi,x, Sa, Which are those of Ferrar|2et al. (1980).

in ITRF94, we have computed them by adding respectively ¢ have assumed that the va_lues?ofy, C/myRj, of Tab_le 2

the coordinates of the old MLRS receiver and of the Haleak volve the cor_lstant perturbation due to the Iunar.rotauon. The

transmitter in ITRF94 the differences between the values of tﬁma; gglr;l;/:-batlvﬁ?hst:::\(;lziino fc I?J r:gruttgil S;f;nr?ggﬁ;a%%ngam
H 1 H L!

corresponding coordinates in (Newhall et al., 1991). k2 1, (Love number) of DE245, quoted in Table 2. Similar to the

lunar orbital motion, matrix\/ takes into account the rotation
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Table 2.Values adopted for the lunar physical parameters (from DE2&Bialysisz,, y,,, and the difference§/T1 — UTC have been

except forC'/myR}E) computed by interpolating the daily values of the IERS files
EOP(IERS)97 CO4.

£ =0.63161913310"3 Matrix P~ N ~! rotates the celestial instantaneous axesto a

v = 0.227885980 10~° J2000.0 fixed celestial “equatorial” system of axes, i.e. a system

C/my R, = 0.394 872400 of axes in which the reference plane (the plane of the first two

C3,0 = —0.086802 104

. . axes) is close to the mean CEP equator of J2000.0. We have
C3,1 =0.307083 10 S3,1 = 0.046 115 10

considered two cases.

Cs2 =0.04873710°* S3.2 =0.016975 104 . . . , .

sz —0.017161 10—* S;z — _0.002844 10~* In the first caselV is the nutation matrix provided by an ana-
kst = 0.029 920 ’ lytical theory andP is the equatorial precession matrix, between
TL’: 0.164 846days J2000.0 and the date of observation, yielded by an analytical

theory in which the precession constant is a fitted parameter. In
Eqg. (2),Ap is the difference between this fitted parameter and
from the mean ecliptic of date (the original reference plane tfe IAU 1976 value, and\v is provided by the same nutation
Moons’ theory) to the mean ecliptic of J2000.0. In the presetiiteory asN. So the fixed celestial “equatorial” system of axes
analysis, the relativistic corrections for the transformation & the MCEP system. For nutation, the present analysis uses the
selenocentric coordinates to celestial coordinates have not bsOA 1990 solution (Herring, 1991). For precession, we have
taken into account, s§ are, in fact, BRS coordinates. adopted Williams’ expressions (1994) completed by the deriva-
tives with respect to the precession constant and obliquity from
(Simon et al., 1994). The set of fitted parameters obtained in
this way is denoted as Solution 1 (Sol. 1).

In the second cas@) is the equatorial precession matrix be-
The transformation from the componentsof TO or TO’ in  tween J2000.0 and the date of observation from (Lieske et al.,
the ITRS axes to its componenisin the ecliptic celestial axes 1977), involving the IAU 1976 value of the precession constant,
x; defined in Sect. 2 is: andN is the nutation matrix in which the nutation in longitude
o At and the nutation in obliquitAe are computed by adding to
z = Ri(e)Rs(p) PN the 1AU 1980 expressions (Seidelmann, 1982) the corrections

X R3(—GST)R1(yp)R2(zp)n + Do di andde provided in files EOP(IERS)97 C04. The sare
is also introduced in Eq. (2Jz) andde involve nutation correc-
ﬁghs, precession corrections (e.g. a correction to the IAU 1976

4. Transformation from terrestrial coordinates
to celestial coordinates

z andn are the 1-column matrices whose elements are resp,

tively ’? andfn,;.thD xt IS thfe 1-C(z_lumnfmatr|x of thg_ re!["°1t'\/_'3t'ctvalue of the precession constant), and a small rotation, so that
corrections for the transtormation of Space coordinates In a tef=1 \;—1 yiates the celestial instantaneous axes to the ICRS

restria_ll refergnce system Whgse time (?oordi.na_lte s in TCG EEQes, which are slightly different from those of the MCEP sys-
coord.mates ina BR.S vyh(_)se time coord.mate IS 1n TDB. The &&m. In this second case, the precession constant is not fit and
pression used faDx is similarto Eq. (20) in (Martin etal., 1985) Ap is set to zero in Eq. (2), the correctidthpcos e ) ¢ be-

reduced to the solar contribution and with= 1.5505 10~ 8in- . . . . . .
. ) ing included indvy. The so obtained set of fitted parameters is
stead of1.481 10~® (since ITRF94 uses TCG instead of TT)de?noted as Soludt}ion 2 (Sol. 2) P

Tp andyy are the polar motion. components giving th? tangen- -, g, 1,¢ is the inclinations(MCEP) of the J2000.0 in-
tial coordmates o.f the CE.P Wlt.h respejct to ITREST is the ertial mean ecliptic to the mearg CEP e)quator of J2000.0 and
Greenwich true sidereal time given by.: o is the arco(MCEP)r4yo(MCEP). o(MCEP) is the ori-
GST = GMST(UT1) 4+ Ay cosep + 0700264 sin © giln 012 1&9(?% 1«'il;;lC_ensk:ons in thgl MCEF;sys]}er;] dﬁéiggg gn Sect. I1;
" . v is the ascending node of the .0 inertia
+0-000063 sin 20 + (Apcosea) t 2) rr?gg)n ecliptic on the mean CEP equator of J2000.0 (i.e. the in-
whereGM ST (UT1) is the mean sidereal time given by Aokiertial dynamical mean equinox of J2000.0). In Sole 2 the
et al. (1982) as a function of Universal Time UE}, the mean inclinations(ICRS) of the J2000.0 inertial mean ecliptic to the
obliquity of date, A+ the nutation in longitudes) the tropic ICRS reference plane and is the arco(ICRS)v3400(ICRS)
mean longitude of the lunar nodg\p cos e, ) ¢ is a correction betweerp(ICRS), the origin of right ascensions in ICRS, and
induced by the correctiothp to the IAU 1976 value of the 73000 (ICRS), the ascending node of the J2000.0 inertial mean
precession constant, when the mean motions of the theory @¢#ptic on the ICRS reference plane. So the arbitrary eclitic
referred to a J2000.0 fixed origin of longitudes, in order not &xis defined in Sect. 2 points towargl,,(MCEP) in Sol. 1
introduce a drift in UT (Williams & Melbourne, 1982; Zhu & and towardsy3,,,(ICRS) in Sol. 2 (see Fig. 1 in Sect. 6.4).
Mueller, 1983; Williams, 1994)¢ is the time reckoned from
J2000.0.
Matrix Rs(—GST)R1(yp)R2(xp) rotates the ITRS axes to
the celestial instantaneous axes, two of them pointing respbtaddition to parametersandy described in Sect. 4, each fit
tively towards the CEP and the “true equinox of date”. In thigrovides:

5. The fits
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Table 3.Number of observations retained in the groups and RMS ofTable 4.Corrections to values of orbital parameters fit to DE200. Units:

their post fit residuals in cm for one way range. "[cy for v andn’, and arcsecond for the other variables
Groups n  RMS Variable Sol. 1 Sol. 2
McDonald 1972-1986 3513 347 wi®  —0.12035+0.00034 —0.07431 4 0.00021
McDonald 1987-1998 1823 5.0 wi”  —0.06613 4+ 0.00033 —0.02004 = 0.000 20
CERGA, rubis 1984-1986 1166  18.2 W  _0.10676 £ 0.00096 —0.06310 % 0.000 93
CERGA 1987-1998 4979 4.8 v ~0.39165 +0.00115 —0.39040 % 0.001 00
Haleakala 1987-1990 462 111 r 0.00061 4 0.00003  0.000 69 = 0.000 03
E 0.000 18 +0.00000  0.000 18 = 0.000 00
. . &40 0, 0 T° —0.07589 £ 0.00033 —0.029 81 = 0.000 20
— the geocentric lunar orbital paramet , Wo ', W3 ) —0.06020 & 0.00051 —0.01312 & 0.000 41
(values of the mean mean longitude, mean longitude Qf 0.03319 4+ 0.00116  0.032 14 + 0.000 94
perigee, and mean longitude of node in J200Q0),, £ ¢’ 0.00006 £ 0.00001  0.00006 == 0.000 01

(sidereal mean motion in J2000.0, constant relative to the

sine of half inclination, eccentricity constant); Table 5. Corrections to the values of the orbital parameters of the

— the heliocentric orbital parameters of the Earth'_Mooﬂﬂeory. Units?’/cy for v andn’, and arcsecond for the other variables
barycentef(®), '(9) (values of the mean mean longitude

and mean longitude of the perihelion in J2000/@), ¢’ Variable Sol. 1 Sol. 2
(sidereal mean motion in J2000.0 and eccentricity constant); 0.16439  0.16564

— the bias parametersiv?, AWM, AW (observed cor- T —0.08005 —0.07997
rections to the computed coefficient of the quadratic term &f 0.01807  0.01807
the lunar mean longitude and to the computed mean motidhs —0.03101—0.03206

e —0.12873 —0.12873

of perigee and node);

— the free libration parametesg2P, /2Q, V2R, p(©, ¢,
7(0) (parameters tied to the coefficients of the main frel@ble 6. Fitted value of the tidal part of the quadratic term of the mean
libration terms and values of the free libration arguments ipngitude (in”/cy*) and observed corrections to the mean motions of
J2000.0 in Moons' theory). perigee and node (ificy)

AW ? yields an observed value &F>", the tidal part Varable Sol. 1 Sol. 2
of the coefficient of the quadratic term of the mean Iongitud&(z‘T) —12.9007£0.0023  —12.8908 £ 0.002 2
(half tidal secular acceleration), the other contributions to this, 0.02695 £ 0.00137  0.02924 £ 0.001 32
quadratic term being given with enough precision by the theotdVs"”  —0.19453 +0.01365 —0.26642 + 0.01347
All the fitted angles, except the free libration ones, are re-
ferred toy4,,,(MCEP) in Sol. 1, and toy4,, (ICRS) in Sol. 2.
The introduction of the fitted values 6", v, andAw,? 6 Theresults
in the theory allows us to compute the valuesiif at the 6.1. Orbital motion
weighted mean epoch of observations, referred respectively to ) i
00 (MCEP) and~,., (ICRS). The difference of these val- rable 4 gives, for Sql. 1 anq Sol. 2, the fitted values of the
ues yieldsy,,o (MCEP )40, (ICRS), measured in the eclip- parameters ofthe_ orbital motions of th_e Moon anql of the Earth-
tic, which, combined with the determinationscdndy, allows Moon barycenter in the form of corrections to previous values fit
us to tie the MCEP axes to the ICRS axes. to the JPL numerical integration DE200 and adopted in the lunar

The fits are iterative weighted fits performed by the leagtPhemeris ELP ?090 (Chapront-Teug Chapron}, 1983). The
squares method. The same weight is assumed for all the obS8IN Of angles isyzpo (MCEP) in Sol. 1, andh;gg, (ICRS)
vations of each group given in Table 3. It is computed accordiffy S0l 2- Table 5 gives, for, I', £, n’ and¢’, the differences
to the RMS of the post-it residuals of the group at the pre\}?_etween th_e new fitted values and the values _of the theory, i.e.
ous iteration. Every observation whose absolute value of fifi¢ COITections to be added to the constants introduced in the
residual is greater than three times the RMS of the residugg!" Problem series and mean motions of ELP 2000-82B by
of its group is disregarded in the next iteration. The groups d@€ans of the derivatives of the series coefficients and mean
pend on the time span and on the LLR station. Table 3 giv&Qtions. TabIe' 6 gives the observed corrections to the mean
the number of observations retained in each group and the RF#S!ONS of perllgee_and node computed with the values, of
of their post fit residuals in centimeter for one way range (i.&; £ 7', ande’ derived from Tables 4 and 5, and the values

| DT — DTC' | /2¢) in Sol. 1. The values for Sol. 2 are veryOf the tidal quadratic term of the mean longitude obtained in

similar. The mean epoch of observations is 1 February 1988¢ two fits. The value of this quadratic term computed with

the weighted mean epoch is 1 April 1992. our analytic model of tidal perturbations and the values of the
physical parameters involved in the JPL numerical integration
DE403 is—1277898 /cy”. From the results of Tables 4, 5, and
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6, and from (Chapront-Toé&z& Chapront, 1988), we derive Table 7. Differences between the values of orbital elements fit in this
the following expressions for the angular mean elements of thaper and values fitto DE403, after correction of the origin. Utlits?
Moon and of the Earth-Moon barycenter, referred to the inertiaf Wf2>, "Icy for v andn’, and arcsecond for the other variables

mean ecliptic of J2000.G. is the time (TDB scale) reckoned

from J2000.0 (Julian dat2451 545.0) in Julian centuries.

Wi

Wa

W3

Wi

Wo

W3

Sol. 1 (origin =400 (MCEP))

218°18/597835 36 + 1732 559 3437344 39 ¢

—67841 7t + 07006 604 t> — 07000 031 69 ¢*,
83°21'117608 62 + 14 643 420”337 8 t — 387263 9 >
—07045 047 2 + 07000213 01 ¢*,

125°02/40/7291 40 — 696791977207 t + 67359 3
+07007 625> — 07000 035 86 ¢4,

100°27'597144 70 + 129 597 74273090t — 07020 2 t2
+07000 009 £ + 07000 000 15 t*,

102°56'14”7367 33 + 11617228 3¢ + (/532 7 2
—07000138¢3.

Sol. 2 (origin =v4,00 (ICRS))

218°18/597881 40 + 1732559 343734564 ¢
—678318t% + 0006 604 t> — 07000 031 69 t*,
83°21/117654 71 + 14 643 42073367 t — 387263 9 t>

—07045 047 ¢ 4 07000 213 01 ¢4,
125°02/40//335 06 — 6 967 91977920 ¢ + 6359 3 2

+07007 625 t> — 07000 035 86 t*,

100°27'597190 78 + 129 597 74273079t — 07020 2 >
40”7000 009 £ + 07000 000 15 t*,

102°56'147414 41 + 116172283 + (/532 7 2
—07000138¢3.

Table 7 gives the differences between the values of tis
paper and values fit to the JPL numerical integration DE4
from (Chapront & Chapront-Toéz 1997). For angular vari-

ables @, W Wi 70 'O the differences have beer},

corrected for the separation between the origifag, (MCEP)

or v2000 (ICRS) and~Z,,, (DE403), derived from Table 11. For

W2(1), Wél), and Wl(z) the differences are those of the tot
values (computed values + observed corrections or bias).
values ofv, andn’ obtained in this analysis are closer to the val- 2

Variable Sol. 1 Sol. 2
wi®  —0.00038 —0.00034
Wi 0.00031  0.00040
Wi  —0.00687 —0.00921
v —0.01185 —0.01060
r ~0.00070 —0.000 62
E 0.00004  0.00004
wit 0.0039  0.0028
wiV 01752 —0.2465
w®  —0.0645 —0.0546
7O 0.00027  0.00035
@@ —0.00459 —0.00351
n' 0.00630  0.00525
¢ 0.00006  0.00006

All the variables are not determined with the same accu-
racy. In the series of the lunar center motion (longitude, latitude
and distance)V,, W3 andT appear through their differences
with respect tol; in Delaunay arguments F', and D, and
w’ appears through its difference with respecfltan I’. The
range station-reflector depends mainly on the distance, but also
on the sines and cosines of longitude and latitude multiplied by
the equatorial parallax; then, considering the mean Earth-Moon
distance as a scale factor, the larger trigonometric terms involv-
ingl, Wy, D, F, andl’ have amplitudes df.055,0.017, 0.0096,
0.0015, and0.0005 respectively;E, ', ande’ are multiplied by
trigonometric terms i, ' and2D — I’ whose amplitudes are
1, 0.034, and0.032 respectively. The errors follow the relative
magnitudes of the above amplitudes, but one must also take into
ccount the length of the time span covered by the observations
d the weights.

We note that the observed correctiM/VQ(” to the com-
uted mean motion of perigee is smaller by ab@un25 /cy
than the bias obtained in Chapront & Chapront-T(%997)
by comparison to the JPL numerical integration DE403, though

in Table 7 the total values of the mean motion differ by less than

%”.0040 /cy. The reason seems to be that the total mean motion

Y is well determined and thalWQ(U corrects errors in the

1 . . . .
ues fit to DE403 than to the older values fit to DE200 becauSgmpPuted value OW2( ' resulting f/rom errors in the metric vari-
both DE403 and the present analysis are based on sets of 1S, especially i the value0”.025 /cy corresponds to an

observations covering much larger time spans than DE20
The errors quoted in Tables 4 and 6 are &frors provide

0. errorof0”.000 66 in I'. So the realistic error il could be much
d largerthanthe formal one, even though the factor of 20 resulting

by the least-squares fits. The errors of the angular variabli@M the rough calculation above seems too large. If we suppose

exceptW3(°), are significantly smaller in the second solutio
because the origin is more accurately determined if the pre o .
sion constant is not fit: the errors of a test fit similar to Sol. 2 bli3 Peing tied, and the large observed correctidbi’;

a factor of 10 between the formal error and the realistic oig in

C%nsis factor also applies to the errorsiii{” andAW.", I and
) (

Y pe-

with a residual precession constantincluded in the solution (&¥N€S unsignificant. The fact that the time span of observations
Sect. 6.4) are similar to those of Sol. 1. Also, the errors wef8Vers only 1.5 period of the node and the large weights given
larger in earlier fits performed with the method described in tHi@ the most recent observations certainly contributes to the large

paper but with a less precise libration theory (i.e. without tialistic error inAW;

numerical complements).

1) and consequently to the realistic errors

in W?fo) andl'.
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Table 8.Fitted values of the libration parameters of this paper in Moons’ literal series, we obtain the following
expressions for the parts of the libration series which depend on

Variable Sol. 1 Sol. 2 the free libration (terms greater that005). The values of the

p©® 224°3421 4 000121 224°3415 4+ 0°0121 lunar physical parameters involved are given in Table 2.

q© 161°2908 + 0°0147 161°2577 + 0°014 8

r(© 94°0392 4 1°1049  97°0008 £ 1°0921 Sol. 1

V2P 0.29261 £ 0.00006  0.292 60 = 0.000 06 pF = —3/312sin(q — 0°01) + 07034 sin(q — I)

V2Q 521874 +£0.00211  5.22339 & 0.002 12

V2R 0.0238440.00040 0.025 52 = 0.000 39 +07026 sin(p — F') 4+ 07023 sin(p + F)

+07024 sin(F + r) — 07022sin(q + 1),
ps = 8197 cos(q + 0°01) — 07035 cos(q — 1)
IExce%t forlthe differencle c(;f originhthe differences b;at\r/]veen —07026 cos(p — F) + 07023 cos(p + F)
Sol. 1 and Sol. 2 are mostly due to the inaccuracies of the nu- 1 1
: ) : ) 7024 cos(F — 07022 0).
tation model ZMOA 90 involved in Sol. 1. The comparison of +07024 cos(F + 1) — 07022 cos(q +1)
Columns 2 and 3 of Table 7 with the formal errors of Tables 4
and 6 shows that the differences between((%ol. 1 and (Slc))l. 2do gol. 2
not exceed the formal errors except forWW, ™, andAW,;™,  r /7 . o /" :

. - = —37315 —0°01) + 07034 —1
for which the realistic errors are much larger than the forméal o STn(q P )OJ; ] Slg(q )
ones, and except f(Wl(2) andw’. For these last two variables, + /'/026 S?n(p -+ /'/026 S?n( +7)
the realistic errors are also probably larger than the formalones, ~ +07023sin(p + F) — 07022sin(q + 1),
and from this comparison, we propose a factor of 5Haf”’  p5 = 87204 cos(q + 0°01) — 07035 cos(q — 1)
and 2 forw’. For the others variables, the formal errors seem to —07026 cos(p — F) 4 07023 cos(p + F)

be realistic. +07025 cos(F + r) — 07022 cos(q + 1).

6.2. Free libration parameters

. _ o Sol. 1 and Sol. 2
Table 8 gives the fitted values of' the libration parameterTsF — 17819 sinp + 07088 sin(q + 2F — 20 + 36°)
The quoted errors are &-errors provided by the least-squares , ) . ]
method; they are almost the same in the two fits. For the angu- 07077 sin(q + F) + 07069 sin(q + F — 1)
lar parameters and far2P, the values obtained in the two fits —07033sin(q — F) + 07015sin(qg — F 4 1).
differ by less than the &errors. For,/2Q, the coefficient of
a term whose perioq is_75 years, and {2 R, Fhe coefficient g 3 Reflector coordinates
of a term whose period is close to the draconitic one, the values
differ respectively by twice and three times the errors. Table 9 gives the fitted values of the reflector coordingtes-

The values o§/2P, po, V2R, r are dependent on the soluferred to the lunar principal axes of inertia (PA coordinates).
tion used for the libration. The introduction of numerical comfhese values must be considered as space coordinates in a
plements has modified the fitted valueggfand+/2P, and of BRS whose time coordinate is in TDB, i.e. no scale factor and
o by about 150 times and 20 times the rrors respectively, Lorentz contraction to convert to a selenocentric reference sys-
because of the introduction of terms with frequencies closetfn has been applied. The errors quoted aveetrors of the
p andF + r frequencies in the numerical complements. In tHeast-squares method. The realistic errors estimated from the
opposite, the values af, and+/2Q have been changed by onlydifferences between Sol. 1 and Sol. 2 are probably about 15
four times the errors quoted in Table 8. centimeters. Reflector coordinates are commonly given in the

In fact, though the period aof is long, v/2Q is well deter- mean Earth/rotation axes system (MA coordinates). Following
mined. The value of/2Q derived from a comparison of the(Ferrari et al., 1980), the MA axes are shifted from the PA axes
libration solution used in this paper with the libration part dby means of the constant terms of the libration variablgs
the JPL numerical integration DE403 over a time span of 3 cen. 7. This means thafp;) and(p,) are the components of the
turies (Chapront et al., 1998) 52095. It differs by 7 times unit vector of the polar MA axis on the equatorial PA axes, and
the 1o error from the value of Sol. 2 which is probably bet{7) is the angle measured from the first equatorial MA axis to
ter because the time span of the LLR observations involvedte ascending node of the PA equator on the MA equator and
larger in the present analysis than in DE403. Furthermore, Wen from the node to the first PA axis. The libration theory and
note that the value derived from the coefficient of¢heq term  the values of the lunar physical constants adopted in the present
of p§ in (Calame, 1977) i$.0, based on the first six years ofanalysis givelp;) = —787931 611 286, (p2) = 07290 177 293,

LLR observations only. This good agreement may be due to tfre = 66”189 835 222, from which we derive:
fact that the frequency afis known by the theory and that the |

other terms with long periods in the libration variabtggndp, & = £1(—07264848 351) Ry(—78931 702 266)
are very small. By introducing the values#®P, v/2Q, v2R R3(—667189 784 547)¢
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Table 9. Fitted values of the reflector coordinatgsreferred to lunar squares method. The results of Table 11 and other results of this
principal axes of inertia. Unit: meter

section are represented in Fig. 1.
Y4000 (MCEP) is the inertial dynamical mean equinox of

Reflector Sol. 1 Sol. 2 J2000.0; the rotational dynamical mean equinox of J2000.0

Apollo 11 ~& o (MCEP) is the ascending node of the J2000.0 mean eclip-

& 1591963.113 +0.001 1591 963.112£0.001 tic, in the rotational sense as defined by Standish (1981), on the

& 62(1) gggggg i 8'832 62(1) ggz'izfli i 8'832 mean CEP equator of J2000.0. Following Standish, the separa-

& I ’ ' ' ’ tion between the two equinoxes is given by:

Apollo 14

& 1652692.801 +0.002 1652 692.801 + 0.002 Y000 (MCEP)~4h 0 (MCEP) = (/09366

&2 —520989.116 £ 0.037 —520989.243 + 0.037

& —109727.749 £0.024 —109727.677 £ 0.024 measured in the mean CEP equator of J2000.0. So we deduce

Apollo 15 from Table 11:

& 1554676.642 £ 0.005 1554676.629 4 0.005 R o .,

& 98104.053+0.034  98103.926 = 0.034 0(MCEP) 73009 (MCEP) = 07078 47 & 02000 35

& 765008184 £ 0.016  765008.265 + 0.016 Denoting byy4 .o (MCEP) andy4%,, (MCEP), the projections

Lunakhod 21339 457 864+ 0.006 1850357 854 4 0.006 of v2500 (MCEP) apdyﬁ,oo(MCEP) on the reference plane of

& o7 : 85 : ICRS, the separation on the equator between the origin of right

§2 ggé gg?'??g i[ 8'8§j igé gg?'gg i g'ggi ascensions in ICRS and the rotational dynamical mean equinox
3 . . . .

Table 10.Reflector coordinates referred to mean Earth/rotation axed (

of J2000.0 is given by:
ICRS)~5E ,(MCEP)

for Sol. 1. Unit: meter = 0(ICRS)~Z 000 (ICRS)

Reflector ¢ & ¢ +7§000(ICRS)’YQIU%O(MCEP) cose

Apollo 11 1591749.307 691 219.304 20398.151 +72000(MCEP )00 (MCEP)

Apollo14 1652817.789 —520458.603 —110360.912 This quantity is also the component of the unit vector pointing
Apollo 15 - 1554937.714 98601.958  764413.336 towards the rotational dynamical mean equinox of J2000.0 on
Lunakhod 21 339 389.814 802 308.344 755 849.649

¢ and¢’ are respectively the 1-column matrix of the PA and MA

thex, axis of ICRS. The values of Table 11 give:

o(ICRS)v4E o (MCEP) = 070783 + 070009,
(ICRS)74h00 (MCEP) = —0”0154 + 0”70009.

coordinates. Table 10 gives the MA coordinates of the reflect@s$,, \a1ue of the separation on the equator between the origin

for Sol. 1.

of right ascensions in ICRS and the rotational dynamical mean

The rough comparison of the values of Table 10 with the, inox of 72000.0 is very close to the restiiv7s -+ 07010 of

values given by Williams et al. (1996) yields a distance of 2, ner et al.(1994). Note that the origin of right ascensions in
meters between the two positions on the lunar surface of APOfiSRs is closer to the projection of the inertial mean equinox of
15, which is the most observed reflector, and distances of 2600 o than to the projection of the rotational one by a factor
2.0, and 3.0 respectively betwe_en the positions of the other g@4ve The separation on the equator betwe@iCEP) (the
flectors. Nevertheless we mention that probably the MA axgfgin of right ascensions in the mean CEP equator of J2000.0
are not rigorously the same in the two papers. __derived, by means of precession-nutation transformation, from
The fitted positions of the reflectors depend on the libratigfe «tr,e equinox of date” as it results from the polar motion and

solution, and the introduction of the numerical complements jjir1 provided by IERS) and(ICRS), derived from Table 11

the solution of the lunar libration has changed the locations;afymost zero.
the first two reflectors by 0.3 and 0.6 meter respectively, and the Thq test fit 1 is a similar fit as that of Sol. 1 but using the

locations of the last two ones by 1.8 meter. precession expressions of Simon et al. (1994) instead of those

of Williams (1994). The leading difference between the two sets

6.4. Orientation of celestial axes of expressions concerns the obliquity, with:

Columns 2 and 3 of Table 11 give the fitted values afy (Williams,t) — e (Williams, .J2000.0) =

¢(R) and ofo(R)ygooo(R) measured in the reference plane A (SImont) — e (Simon J2000.0) — 0702440t (3)

of R, R standing for the MCEP system (Sol. 1) or ICRS

(Sol. 2) as described in Sect.4. Column 4 gives the sepafiareckoned from J2000.0 in Julian centuries), and is due to
tion 4900 (ICRS) 4000 (MCEP) measured in the inertial meanthe motion of the equator. If we assume that LLR observa-
ecliptic of J2000.0 and derived by the method of Sect. 5. Thiens provide an accurate position of the mean CEP equator
quoted errors are (or are derived fromy Zerrors of the least- at the weighted mean epoch of observations, the obliquity at
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inertial mean ecliptic

J2000.0
CEP
Y2000(1\/ICEP) o(MCEP) YZOOO(M )
mean CEP ey g ! 0'(DE200) s
J2000.0 R
Yzooo(MCEP) ooto (MCEP)
/ (ICRS) o(ICRS) ICRS reference plane
20 , Fig. 1. Positions of several reference planes
(DE200) o(DE200) DE200 reference plane  and origins of right ascensions or longitudes
Yzooo in the tangential plane to the celestial sphere

Table 11.Position angles of the inertial mean ecliptic of J2000.0 with respect to “equatorial” celestial systems R (arcseconds) and fitted correction
to the AU 1976 value of the precession constditty)

R e(R) —23°26'21" O(R)’Ygooo (R) 75000 (ICRS)’Yéooo (R) Ap

MCEP 0.40522 £ 0.00007 —0.01519 + 0.000 35 0.0460 4+ 0.0008 —0.3437 4+ 0.0040
/Testfitl 0.40706 £ 0.00008 —0.01467 4 0.00035 0.0466 4 0.0008 —0.3382 4 0.0040

ICRS 0.41081 £ 0.00007 —0.05760 + 0.000 20 0

[Testfit2 0.41066 +0.00008 —0.05619 % 0.000 35 0.0015 £ 0.0007
DE403 0.40928 £ 0.00000 —0.05294 £+ 0.00001 0.0069 + 0.0004
DE200 0.408 83 £0.00006 —0.09245+0.00016  —0.0339 +0.0011

this epoch (1 April 1992) is well determined and independewe have:
of the precession expressions. So Eq. (3) gives at J2000.0: LAl (ICRS/Test fit 3 = t(p + dp)

ea(Williams, .J2000.0) —e A (Simon J2000.0)=—1.90mas 7544, (ICRS) = tp

This quantity differs from the “observed value” derived fron&nd by subtraction:
Table 11: oo (ICRS )72 00 (ICRS/Test fit 2 = ¢ dp (4)

¢(MCEP) — e(MCEP/Test fit J} = —1.84 & 0.15 mas On 1 April 1992, the right hand member of Eq. (4) amounts to

" ; : o :
by less than X=. This result yields a verification of the internalO 0015. This value is equal to the value given in Table 11. This
esult yields another verification of the internal consistency of

consistency of our method. Note that the test fit 1 yields fort%ur method. It is also consistent with the precisioniof (0.6
separation on the equator between the origin of right ascensions

as fordy sin e = 1.5 mas fordy) stated by IERS for 1992.
in ICRS and the inertial dynamical mean equinox of J2000. O (Chapront & Chapront-Towz 1997) and (Chapront-Toéiz

o(ICRS)74L oo (MCEP/Test it 3 = —0//0148 + 070009 & Chapront, 1983) give fitted values ofR), of o(R)V4000 (R),
and of the lunar mean longitude referrechtg,,(R), R stand-
which differs by less than &-from the value derived from Sol. 1. ing for the reference frames defined by the JPL numerical in-
Column 5 of Table 11 gives the corrections to the IAU 197&grations DE403 and DE206(R) is the inclination of the
value of the precession constant obtained in Sol. 1 and by testrtial mean ecliptic of J2000.0 on the reference plane of R,
fit 1; the two values differ by less than®- o(R) is the origin of right ascensions in R and,q,(R) is
No precession constant value has been fit in Sol. 2, buttive node of the inertial mean ecliptic of J2000.0 on the ref-
the test fit 2 a correctiotp to the precession constant valpie erence plane of R. The values «fR) ando(R)v4,,0(R) are
included in the IERy andde has been determined in additiomguoted in Table 11. From the lunar mean longitudes referred
to the terms fit in Solution 2. The value obtainedi§/0192 + to the originsyl,,,(DE403) and~Z,,,(DE200), evaluated at
070040 /cy. The value ofyl,, (ICRS)v40 (ICRS/Test fit 2  the mean epoch of the observations involved in the numerical
given in Table 11 is correlated witfp for the following reason. integrations (set here to 1 January 1985 and 1 January 1975 re-
LLR observations provide an accurate position of the “meapectively), and from Sol. 2 of this paper, we obtain, by the
plane” derived from the ICRS reference plane by means of tinethod of Sect.5, the values f,,,(ICRS)"20, (DE403)
precession transformation between J2000.0 and the mean egoahys . (ICRS)v400, (DE200), measured in the inertial mean
of observations. The ascending node of the J2000.0 inergaliptic of J2000.0, as quoted in Table 11.
mean ecliptic on this mean plang, is accurately determined  If we denote by’ (DE200) the projection ob(DE200) on
and is independent of the value of the precession constant. THemmean CEP equator of J2000.0, we derive from Table 11 the
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following values of the separations on the equator between trable 12.Rotations between ICRS axes and other “equatorial” celestial
origin of right ascensions of DE200 and the following originssystems of axes R, and comparison with the results of other authors:
o(MCEP), the inertial dynamical mean equinox of J2000.0, arf#f) Folkner et al. (1994), (I) IERS conventions 1996

the rotational dynamical mean equinox of J2000.0:

01 (mas) 02 (mas) 03(mas)
o/ (DE200)72 o (MCEP) = 0//0746 % 070019 () 51402 —17.3+02
/ I _ " MCEP/Testfitl 3.840.2 —185+04 —0.2+1.2
o (DE200)v2000(MCEP) = —070191 + 070019 ® PSR S
So, thougho(DE200) has been constructed as the ascendifiF403 15+£01 —274+02 1.7+06
node of the rotational mean ecliptic of J2000.0 on the refererfé&200 20£02  135£05  3.7+14

plane of DE200 in order to represent the rotational dynamical 2 +2 12 +3 6 +3

mean equinox of J2000.0 (Standish, 1982), its projection on the

mean CEP equator of J2000.0 is closer to the present positj
of the inertial dynamical mean equinox of J2000.0 than to tf?ﬁg ICRS axes to the DE200 axes and for the angjlemnd?,

. . . the transformation of the ICR to the MCEP m.
of the rotational one. This is due to the improvment of the prgl]I e transformation of the ICRS axes to the MCEP syste

cession constant value which makes the mean CEP equato?%rfthe latter, the values are closer to our values of the test fit
) ecause they do not take into account Williams' correction
J2000.0 different from the reference plane of DE200. y

: uoted in Eq. (3).
of t;;g;:;lrjea?];t:se'Ergrizs!ggéoz%séan;:tsﬁ:&)Gtrge;g d;lct%n Table 12 gives also the values &f and 6, for the trans-
vatl invoivedi W Vallgsrmation of the ICRS axes to the MCEP system, mentioned in

. ft
and, if we assume tha}t the reference plane of [.)EZOO res ﬁtg IERS conventions 1996 (McCarthy, 1996). These values are
from the LLR observations only, the method leading to Eq. ( mparable to our values from Sol. 1 but are certainely more

yields here: accurate. It leads us to apply a factor of 2 to our &rrors in the
75000(1\/[(3131))757000(DEQOO) = —tAp line MCEP of Table 12 in order to obtain realistic errors which
insure the consistency of the two sets of values. This factor may
at the timet of the mean epoch of LLR observations iny|so be applied to all the other lines of Table 12 which concern
volved in DE200 (set here to 1 January 1975). The value @fir results and to Columns 2 and 3 of Table 11, exceptfor
2000 (MCEP) 730 (DE200) obtained is—070859 + 070010  ande of DE200 which need a factor of 5. Theslerrors quoted
which differs from the value-070799 + 070019 derived from i, Column 4 of Table 11 are probably realistic.
Table 11 by about three times the greater error. We note that our results concerning DE200 are consistent
If we now assume that the precession expressions of Liegfih those of Folkner et al. Our value 6f from the test fit 1
et al. (1977) have been used in the reduction of observatiQfiers from their value by about 5 times our estimated realistic
involved in DE200, an expression similar to Eq. (3), by changyor.
ing Simon to Lieske and-0702440 to —0701896, gives for From the results of Table 12, we derive the angles of the
e(MCEP)—¢(DE200) the value-4.74 mas which differs from  yransformation rotating the reference axes of DE403 to the
the value—3.61 + 0.13 mas, derived from Table 11, by aboutpcep system, respectively/l + 0.3 mas, —15.6 + 0.6 mas,
90. This comparison and the previous one yield less “good”; 9 + 1.8 mas (1-o errors). Previous results have been given
results than the two internal comparisons above, and the lajg hapront & Chapront-Tow 1997), but the present ones are
difference between the mean epochs of observations in DE2R{3ch more precise for several reasons: the computation of the
and in this paper is probably a contributing factor. Nevertheleggferent corrections introduced IRT'C, especially relativistic
the formal errors concerning the line DE200 in Table 11 atgrections and tropospheric effects, has been considerably im-
probably smaller than the realistic ones by factors of 5 (Cqlroved, weights have been introduced in the fits, the libration
umn 2) and 2 (Column 4). Table 12, derived from Table 1%o|ution has been improved, and the time span covered by LLR
gives the angles of the rotations transforming the ICRS axesgigservations is larger. Our present values of the first two angles
an “equatorial” celestial system of axes R with: are in good agreement with the corresponding valB&$ (nas
_ and—15.36 mas) adopted in the construction of DE403 (Stan-
w(R) = Ra(01)Rs(62) Ra (8 )u(ICRS) dish et al., 1995).
(u(R) andu(ICRS) are the vector of coordinates in R and ICRS,
respectively), R standing for the MCEP system or for the r
erence axes of DE403 or DE20Q.05, —6- are approximately
the components, on the ICRS axes, of the unit vector pointiBgside values of the orbital and rotational parameters of the
towards the origin of right ascensions in R afid —6,, 1 are  Moon, this paper gives the position of the inertial dynamical
those of the unit vector of the polar axis of R. The quoted errargean ecliptic of J2000.0 with respect to several celestial “equa-
are derived from the &-errors quoted in Table 11. torial” systems of axes, and derives from these results the trans-
For comparison, Table 12 mentions also the results obtairfedmations between the “equatorial” systems themselves. Sev-
by Folkner et al. (1994) for the angles of the transformation efal tests checking the validity of those results are performed

e;-' Conclusion
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and comparisons to the results of other authors are, for the m@isépront J., Chapront-Toa@M., 1997, Celest. Mech. 66, 31

part, satisfying. Chapront J., Chapront-ToaM., Francou, G., 1998, submitted to Ce-
This paper gives, in particular, the position of the inertial lest. Mech.

dynamical mean equinox of J2000.0, i.e. the ascending nodé-gapront-Touz M., Chapront J., 1983, A&A 124, 50

the inertial mean ecliptic of J2000.0 (the reference plane of tapront-Toue M., Chapront J., 1988, A&A 190, 342

modern analytical theories for the Moon and the planets) on ['E?rhead L., Bretagnon P., 1990, A&A 229, 240

. . . rrari A.J., Sinclair W.S., Sjogren W.L., Williams J.G., Yoder C.F.,
mean CEP equator of J2000.0. It is shown that this equinox is 1980, JGR 85, 3939

C_Ioser than it.S rOtat.io.nal Ve_rSion' by a factor Qf 5,tothe JZOOQ:Q|kner W.M., Charlot P., Finger M.H., et al., 1994, A&A 287, 279
right ascension origin defined by polar motion and UT1 preering T.A., 1991, In: Hughes J.A., Smith C.A., Kaplan G.H. (eds.)
vided by IERS and by modern analytical theories of precession proceedings of the 127th Colloquium of the IAU. USNO, Wash-
and nutation. The inertial dynamical mean equinox of J2000.0 ington D.C., p. 157

is also closer to the projections, on the mean CEP equaton_afske J.H., Lederle T., Fricke W., Morando B., 1977, A&A 58, 1
J2000.0, of the origins of right ascensions in the IERS celestiértin C.F., Torrence M.H., Misner L.W., 1985, JGR 90, 9403
reference system and in the JPL numerical integration DE20eCarthy D.D. (ed.), 1992, [ERS Technical Note18, Observatoire

So we suggest that it replaces the rotational one in referencede Paris . _
texts. McCarthy D.D. (ed.), 1996, IERS Technical Note2il, Observatoire

de Paris
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