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Abstract. An analysis of Lunar Laser Ranging (LLR) obser-
vations from January 1972 till March 1998 is performed using
the lunar theory ELP 2000-96 and the completed Moons’ theory
of the lunar libration. The LLR station coordinates, polar mo-
tion and Universal Time are provided by the International Earth
Rotation Service (IERS). In Solution 1 the precession-nutation
transformation is given by recent analytical theories, while in
Solution 2 it is derived from the IERS daily corrections. Orbital
and free libration parameters of the Moon, and coordinates of the
reflectors are obtained in both cases. The position of the inertial
mean ecliptic of J2000.0 with respect to the equator of the mean
Celestial Ephemeris Pole (CEP) of J2000.0 (in Solution 1) and to
the International Celestial Reference System (ICRS), the IERS
celestial reference system, (in Solution 2) are fit. The position
of the mean CEP equator of J2000.0 and of several dynamical
reference planes and origins, with respect to ICRS, are derived
from these fits (Fig. 1). The leading results are the following:
0.′′057 60±0.′′000 20 (in the equator) for the separation of the ori-
gin of right ascensions in ICRS from the ascending node of the
inertial mean ecliptic of J2000.0 on the reference plane of ICRS,
−0.′′0460±0.′′0008 (in the ecliptic) for the separation of the lat-
ter point from the inertial dynamical mean equinox of J2000.0,
−0.′′015 19± 0.′′000 35 (in the equator) for the separation of the
inertial dynamical mean equinox of J2000.0 from the J2000.0
right ascension origin derived from IERS polar motion and Uni-
versal Time and from precise theories of precession-nutation,
and23◦26′21.′′405 22 ± 0.′′000 07 for the inertial obliquity of
J2000.0. A correction of−0.′′3437 ± 0.′′0040 /cy to the IAU
1976 value of the precession constant is also obtained (the er-
rors quoted are formal errors).
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1. Introduction

Lunar laser ranging (LLR) stations provide normal points which
may be used as observed values of the light timeDT from the
LLR station transmitter O at timet1 to a lunar reflector R att2,
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and then from R att2 to the station receiver O′ at t3.DTC, the
computed value ofDT , is given by:

DTC = t3 − t1 −DT1(t3) +DT1(t1)

with

t3 = t2 +
1

c
| BR(t2) − BO

′(t3) | +DT3 +DT4

t2 = t1 +
1

c
| BR(t2) − BO(t1) | +DT3 +DT4. (1)

c is the velocity of light and B stands for the barycenter of the
solar system.DT1 is a relativistic time scale correction,DT3

the relativistic propagation correction (one way), andDT4 a
tropospheric correction.t1 is derived from the observation time
andt2, t3 from Eqs. (1). In this analysis, the time scale TDB is
adopted for timet (e.g. t1, t2, t3) and TAI (the time scale of
DT ) for DTC. DT1 is evaluated from the first three terms of
the series TDB−TT in (Fairhead & Bretagnon, 1990).DT3 is
given by the following approximation of the classical formula
(McCarthy, 1992) in the frame of the general relativity theory:

DT3 =
4GmS

c3
| OR |

| ST | + | SL |

+
2GmT

c3
ln

2 | TL |
| TO | + | TR | − | OR |

where T is the terrestrial mass center, L the lunar one, and S
the solar one, all the vectors being evaluated at timet1.G is the
constant of gravitation,mS andmT are the masses of the Sun
and the Earth.DT4 is given by Marini and Murray’s formula
(McCarthy, 1992).

The computation ofDTC involves:

– the components ofTL in a celestial barycentric reference
system, and the celestial barycentric coordinates of the
Earth-Moon barycenter to a lesser accuracy,

– the components ofTO andTO
′ in a terrestrial reference

system,
– the components ofLR in a selenocentric reference system,
– the rotations from the terrestrial and selenocentric reference

system axes to the celestial ones,
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Table 1.Observations used

Station beginning end number

McDonald 2.70m Jan. 1972 Jan. 1985 3249
Old MLRS Aug. 1983 Jan. 1988 483
New MLRS Feb. 1988 March 1998 1807
Haleakala Apr. 1987 Aug. 1990 482
CERGA rubis Apr. 1984 June 1986 1190
CERGA Oct. 1987 March 1998 5134

– relativistic corrections for the transformations of coordi-
nates in terrestrial and selenocentric reference systems to
coordinates in a barycentric reference system (BRS).

In this analysis, the coordinates of the LLR stations in the In-
ternational Terrestrial Reference System (ITRS), the terrestrial
reference system of the International Earth Rotation Service
(IERS), are derived from ITRF94 (Boucher et al., 1996) and
corrected for the Earth’s deformations due to Earth tides, ocean
tides, and pressure anomaly, following the recommendations of
the IERS Standards 1992 (McCarthy, 1992).

Files EOP(IERS)97 C04, provided by IERS, yield the ori-
entation of the ITRS axes both with respect to the instantaneous
axes defined by the celestial ephemeris pole (CEP) and “true
equinox of date” and with respect to the axes of the Interna-
tional Celestial Reference System (ICRS), the IERS celestial
reference system. In the first case, precise analytical theories of
precession and nutation subsequently allow one to refer to the
celestial system of axes defined by the mean CEP equator of
J2000.0 and the fixed origin of right ascensions in this plane
derived from the IERS data for polar motion and UT1 and from
precession-nutation theory (in this paper, MCEP system).

We use solutions for the lunar libration and for the lunar
orbital motion which preserve the analytic advantages, both re-
ferred to the mean ecliptic of J2000.0 in the inertial sense as
defined by Standish (1981). This allows one to fit simultane-
ously parameters of the free libration, orbital parameters of the
Moon and of the Earth-Moon barycenter (including the lunar
tidal secular acceleration), selenocentric coordinates of the lu-
nar reflectors, and positional parameters of the inertial mean
ecliptic of J2000.0 with respect to the ICRS axes and to the
MCEP system. In the latter case, a correction to the IAU 1976
value of the precession constant is also fit.

This analysis uses the normal points obtained by the LLR
stations of McDonald (three locations), Haleakala, and CERGA
(two successive instruments at the same location) from January
1972 to March 1998. The number of normal points and the time
spans covered are given in Table 1. For all the stations, ex-
cept Haleakala, the normal points involve the same location for
transmitter O and receiver O′. We mention that, since the coor-
dinates of the new MLRS and Haleakala receivers are not given
in ITRF94, we have computed them by adding respectively to
the coordinates of the old MLRS receiver and of the Haleakala
transmitter in ITRF94 the differences between the values of the
corresponding coordinates in (Newhall et al., 1991).

2. Orbital motion

The lunar orbital motion is given by the improved analytical
solution ELP 2000-82B plus numerical complements fit to the
numerical integration DE245 of the Jet Propulsion Laboratory
(JPL), as described in (Chapront & Chapront-Touzé, 1997). This
solution, which is denoted now as ELP 2000-96, allows us to
compute lunar geocentric rectangular coordinatesxi referred to
the inertial mean ecliptic of J2000.0, under the form:

x = R3(−W1)X + ρ.

x is the 1-column matrix of coordinatesxi. Ri is the rotation
matrix with respect to thexi axis, with the same conventions as
in (Folkner et al., 1994),x1 andx2 axes being arbitrary fixed
orthogonal axes in the inertial mean ecliptic of J2000.0.W1 is
the lunar mean mean longitude referred to thex1 axis.X andρ
are 1-column matrices whose elements are respectively Poisson
series and numerical complements; both do not depend on the
precise direction of thex1 axis. MatrixX takes into account the
rotation from the mean ecliptic of date (the original reference
plane of ELP 2000-82B) to the mean ecliptic of J2000.0.xi are
space coordinates of a BRS whose time coordinate is in TDB

The expression ofDTC involves also the barycentric posi-
tion of the Earth-Moon barycenter but only through the differ-
ences of these vectors att1 andt2 or t2 andt3. The amplitudes
of these differences do not depend on the precise directions of
thexi axes.

3. Transformation from selenocentric coordinates
to celestial coordinates

The selenocentric axes adopted in this analysis are the principal
axes of inertia. The transformation from the componentsξi of
LR in the selenocentric axes to its componentsyi in the ecliptic
axesxi defined in Sect. 2 is:

y = R3(−W1 + 180◦)M(p1, p2, τ, t)ξ.

y andξ are the 1-column matrices whose elements are respec-
tively yi andξi.W1 is the same as in Sect. 2,M(p1, p2, τ, t) is a
matrix function of the libration variablesp1, p2, τ and of timet.
The adopted solution for the libration is Moons’ theory (1982,
1984) with analytical and numerical complements as described
in (Chapront et al., 1998). The main problem of Moons’ theory
accounts for a rigid Moon and involves the lunar physical pa-
rametersβ = (C − A)/B, γ = (B − A)/C, C/mLR

2
L, and

unnormalizedCn,k, Sn,k (0 ≤ k ≤ n, 3 ≤ n ≤ 4), under a lit-
eral form. The values assigned to these parameters in the present
analysis are those of the JPL numerical integration DE245, ex-
cept forC/mLR

2
L. They are quoted in Table 2 except for the

values ofC4,k, S4,k which are those of Ferrari et al. (1980).
We have assumed that the values ofβ, γ, C/mLR

2
L of Table 2

involve the constant perturbation due to the lunar rotation. The
tidal perturbations have been computed, assuming a constant
time delayτL, with the values of lunar tidal parametersτL and
k2,L (Love number) of DE245, quoted in Table 2. Similar to the
lunar orbital motion, matrixM takes into account the rotation
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Table 2.Values adopted for the lunar physical parameters (from DE245
except forC/mLR2

L)

β = 0.631 619 133 10−3

γ = 0.227 885 980 10−3

C/mLR2
L = 0.394 872 400

C3,0 = −0.086 802 10−4

C3,1 = 0.307 083 10−4 S3,1 = 0.046 115 10−4

C3,2 = 0.048 737 10−4 S3,2 = 0.016 975 10−4

C3,3 = 0.017 161 10−4 S3,3 = −0.002 844 10−4

k2,L = 0.029 920
τL = 0.164 846days

from the mean ecliptic of date (the original reference plane of
Moons’ theory) to the mean ecliptic of J2000.0. In the present
analysis, the relativistic corrections for the transformation of
selenocentric coordinates to celestial coordinates have not been
taken into account, soξi are, in fact, BRS coordinates.

4. Transformation from terrestrial coordinates
to celestial coordinates

The transformation from the componentsηi of TO or TO
′ in

the ITRS axes to its componentszi in the ecliptic celestial axes
xi defined in Sect. 2 is:

z = R1(ε)R3(ϕ)P−1N−1

×R3(−GST )R1(yp)R2(xp)η +Dx.

z andη are the 1-column matrices whose elements are respec-
tively zi andηi. Dx is the 1-column matrix of the relativistic
corrections for the transformation of space coordinates in a ter-
restrial reference system whose time coordinate is in TCG to
coordinates in a BRS whose time coordinate is in TDB. The ex-
pression used forDx is similar to Eq. (20) in (Martin et al., 1985)
reduced to the solar contribution and withL = 1.5505 10−8 in-
stead of1.481 10−8 (since ITRF94 uses TCG instead of TT).
xp andyp are the polar motion components giving the tangen-
tial coordinates of the CEP with respect to ITRS.GST is the
Greenwich true sidereal time given by:

GST = GMST (UT1) + ∆ψ cos εA + 0.′′00264 sin Ω

+0.′′000063 sin 2Ω + (∆p cos εA) t (2)

whereGMST (UT1) is the mean sidereal time given by Aoki
et al. (1982) as a function of Universal Time UT1,εA the mean
obliquity of date,∆ψ the nutation in longitude,Ω the tropic
mean longitude of the lunar node.(∆p cos εA) t is a correction
induced by the correction∆p to the IAU 1976 value of the
precession constant, when the mean motions of the theory are
referred to a J2000.0 fixed origin of longitudes, in order not to
introduce a drift in UT (Williams & Melbourne, 1982; Zhu &
Mueller, 1983; Williams, 1994);t is the time reckoned from
J2000.0.

MatrixR3(−GST )R1(yp)R2(xp) rotates the ITRS axes to
the celestial instantaneous axes, two of them pointing respec-
tively towards the CEP and the “true equinox of date”. In this

analysisxp, yp, and the differencesUT1 − UTC have been
computed by interpolating the daily values of the IERS files
EOP(IERS)97 C04.

MatrixP−1N−1 rotates the celestial instantaneous axes to a
J2000.0 fixed celestial “equatorial” system of axes, i.e. a system
of axes in which the reference plane (the plane of the first two
axes) is close to the mean CEP equator of J2000.0. We have
considered two cases.

In the first case,N is the nutation matrix provided by an ana-
lytical theory andP is the equatorial precession matrix, between
J2000.0 and the date of observation, yielded by an analytical
theory in which the precession constant is a fitted parameter. In
Eq. (2),∆p is the difference between this fitted parameter and
the IAU 1976 value, and∆ψ is provided by the same nutation
theory asN . So the fixed celestial “equatorial” system of axes
is the MCEP system. For nutation, the present analysis uses the
ZMOA 1990 solution (Herring, 1991). For precession, we have
adopted Williams’ expressions (1994) completed by the deriva-
tives with respect to the precession constant and obliquity from
(Simon et al., 1994). The set of fitted parameters obtained in
this way is denoted as Solution 1 (Sol. 1).

In the second case,P is the equatorial precession matrix be-
tween J2000.0 and the date of observation from (Lieske et al.,
1977), involving the IAU 1976 value of the precession constant,
andN is the nutation matrix in which the nutation in longitude
∆ψ and the nutation in obliquity∆ε are computed by adding to
the IAU 1980 expressions (Seidelmann, 1982) the corrections
dψ anddε provided in files EOP(IERS)97 C04. The same∆ψ
is also introduced in Eq. (2).dψ anddε involve nutation correc-
tions, precession corrections (e.g. a correction to the IAU 1976
value of the precession constant), and a small rotation, so that
P−1N−1 rotates the celestial instantaneous axes to the ICRS
axes, which are slightly different from those of the MCEP sys-
tem. In this second case, the precession constant is not fit and
∆p is set to zero in Eq. (2), the correction(∆p cos εA) t be-
ing included indψ. The so obtained set of fitted parameters is
denoted as Solution 2 (Sol. 2).

In Sol. 1,ε is the inclinationε(MCEP) of the J2000.0 in-
ertial mean ecliptic to the mean CEP equator of J2000.0 and
ϕ is the arco(MCEP)γI

2000(MCEP). o(MCEP) is the ori-
gin of right ascensions in the MCEP system defined in Sect. 1;
γI
2000(MCEP) is the ascending node of the J2000.0 inertial

mean ecliptic on the mean CEP equator of J2000.0 (i.e. the in-
ertial dynamical mean equinox of J2000.0). In Sol. 2,ε is the
inclinationε(ICRS) of the J2000.0 inertial mean ecliptic to the
ICRS reference plane andϕ is the arco(ICRS)γI

2000(ICRS)
betweeno(ICRS), the origin of right ascensions in ICRS, and
γI
2000(ICRS), the ascending node of the J2000.0 inertial mean

ecliptic on the ICRS reference plane. So the arbitrary eclipticx1

axis defined in Sect. 2 points towardsγI
2000(MCEP) in Sol. 1

and towardsγI
2000(ICRS) in Sol. 2 (see Fig. 1 in Sect. 6.4).

5. The fits

In addition to parametersε andϕ described in Sect. 4, each fit
provides:
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Table 3.Number of observationsn retained in the groups and RMS of
their post fit residuals in cm for one way range.

Groups n RMS

McDonald 1972–1986 3513 34.7
McDonald 1987–1998 1823 5.0
CERGA, rubis 1984–1986 1166 18.2
CERGA 1987–1998 4979 4.8
Haleakala 1987–1990 462 11.1

– the geocentric lunar orbital parametersW (0)
1 , W (0)

2 , W (0)
3

(values of the mean mean longitude, mean longitude of
perigee, and mean longitude of node in J2000.0),ν, Γ, E
(sidereal mean motion in J2000.0, constant relative to the
sine of half inclination, eccentricity constant);

– the heliocentric orbital parameters of the Earth-Moon
barycenterT (0), $′(0) (values of the mean mean longitude
and mean longitude of the perihelion in J2000.0),n′, e′

(sidereal mean motion in J2000.0 and eccentricity constant);
– the bias parameters∆W (2)

1 , ∆W (1)
2 , ∆W (1)

3 (observed cor-
rections to the computed coefficient of the quadratic term of
the lunar mean longitude and to the computed mean motions
of perigee and node);

– the free libration parameters
√

2P ,
√

2Q,
√

2R, p(0), q(0),
r(0) (parameters tied to the coefficients of the main free
libration terms and values of the free libration arguments in
J2000.0 in Moons’ theory).

∆W
(2)
1 yields an observed value ofW (2,T)

1 , the tidal part
of the coefficient of the quadratic term of the mean longitude
(half tidal secular acceleration), the other contributions to this
quadratic term being given with enough precision by the theory.

All the fitted angles, except the free libration ones, are re-
ferred toγI

2000(MCEP) in Sol. 1, and toγI
2000(ICRS) in Sol. 2.

The introduction of the fitted values ofW (0)
1 , ν, and∆W

(2)
1

in the theory allows us to compute the values ofW1 at the
weighted mean epoch of observations, referred respectively to
γI
2000(MCEP) andγI

2000(ICRS). The difference of these val-
ues yieldsγI

2000(MCEP)γI
2000(ICRS), measured in the eclip-

tic, which, combined with the determinations ofε andϕ, allows
us to tie the MCEP axes to the ICRS axes.

The fits are iterative weighted fits performed by the least-
squares method. The same weight is assumed for all the obser-
vations of each group given in Table 3. It is computed according
to the RMS of the post-fit residuals of the group at the previ-
ous iteration. Every observation whose absolute value of the
residual is greater than three times the RMS of the residuals
of its group is disregarded in the next iteration. The groups de-
pend on the time span and on the LLR station. Table 3 gives
the number of observations retained in each group and the RMS
of their post fit residuals in centimeter for one way range (i.e.
| DT − DTC | /2c) in Sol. 1. The values for Sol. 2 are very
similar. The mean epoch of observations is 1 February 1988,
the weighted mean epoch is 1 April 1992.

Table 4.Corrections to values of orbital parameters fit to DE200. Units:
′′/cy for ν andn′, and arcsecond for the other variables

Variable Sol. 1 Sol. 2

W
(0)
1 −0.120 35 ± 0.000 34 −0.074 31 ± 0.000 21

W
(0)
2 −0.066 13 ± 0.000 33 −0.020 04 ± 0.000 20

W
(0)
3 −0.106 76 ± 0.000 96 −0.063 10 ± 0.000 93

ν −0.391 65 ± 0.001 15 −0.390 40 ± 0.001 00
Γ 0.000 61 ± 0.000 03 0.000 69 ± 0.000 03
E 0.000 18 ± 0.000 00 0.000 18 ± 0.000 00
T 0 −0.075 89 ± 0.000 33 −0.029 81 ± 0.000 20
$′(0) −0.060 20 ± 0.000 51 −0.013 12 ± 0.000 41
n′ 0.033 19 ± 0.001 16 0.032 14 ± 0.000 94
e′ 0.000 06 ± 0.000 01 0.000 06 ± 0.000 01

Table 5. Corrections to the values of the orbital parameters of the
theory. Units:′′/cy for ν andn′, and arcsecond for the other variables

Variable Sol. 1 Sol. 2
ν 0.164 39 0.165 64
Γ −0.080 05 −0.079 97
E 0.018 07 0.018 07
n′ −0.031 01 −0.032 06
e′ −0.128 73 −0.128 73

Table 6.Fitted value of the tidal part of the quadratic term of the mean
longitude (in′′/cy2) and observed corrections to the mean motions of
perigee and node (in′′/cy)

Variable Sol. 1 Sol. 2

W
(2,T)
1 −12.900 7 ± 0.002 3 −12.890 8 ± 0.002 2

∆W
(1)
2 0.026 95 ± 0.001 37 0.029 24 ± 0.001 32

∆W
(1)
3 −0.194 53 ± 0.013 65 −0.266 42 ± 0.013 47

6. The results

6.1. Orbital motion

Table 4 gives, for Sol. 1 and Sol. 2, the fitted values of the
parameters of the orbital motions of the Moon and of the Earth-
Moon barycenter in the form of corrections to previous values fit
to the JPL numerical integration DE200 and adopted in the lunar
ephemeris ELP 2000 (Chapront-Touzé & Chapront, 1983). The
origin of angles isγI

2000(MCEP) in Sol. 1, andγI
2000(ICRS)

in Sol. 2. Table 5 gives, forν, Γ, E, n′ ande′, the differences
between the new fitted values and the values of the theory, i.e.
the corrections to be added to the constants introduced in the
main problem series and mean motions of ELP 2000-82B by
means of the derivatives of the series coefficients and mean
motions. Table 6 gives the observed corrections to the mean
motions of perigee and node computed with the values ofν,
Γ, E, n′, ande′ derived from Tables 4 and 5, and the values
of the tidal quadratic term of the mean longitude obtained in
the two fits. The value of this quadratic term computed with
our analytic model of tidal perturbations and the values of the
physical parameters involved in the JPL numerical integration
DE403 is−12.′′7898 /cy

2. From the results of Tables 4, 5, and
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6, and from (Chapront-Touzé & Chapront, 1988), we derive
the following expressions for the angular mean elements of the
Moon and of the Earth-Moon barycenter, referred to the inertial
mean ecliptic of J2000.0.t is the time (TDB scale) reckoned
from J2000.0 (Julian date2 451 545.0) in Julian centuries.

Sol. 1 (origin =γI
2000(MCEP))

W1 = 218◦18′59.′′835 36 + 1 732 559 343.′′344 39 t

−6.′′841 7 t2 + 0.′′006 604 t3 − 0.′′000 031 69 t4,

W2 = 83◦21′11.′′608 62 + 14 643 420.′′337 8 t− 38.′′263 9 t2

−0.′′045 047 t3 + 0.′′000 213 01 t4,

W3 = 125◦02′40.′′291 40 − 6 967 919.′′720 7 t+ 6.′′359 3 t2

+0.′′007 625 t3 − 0.′′000 035 86 t4,

T = 100◦27′59.′′144 70 + 129 597 742.′′309 0 t− 0.′′020 2 t2

+0.′′000 009 t3 + 0.′′000 000 15 t4,

$′ = 102◦56′14.′′367 33 + 1 161.′′228 3 t+ 0.′′532 7 t2

−0.′′000 138 t3.

Sol. 2 (origin =γI
2000(ICRS))

W1 = 218◦18′59.′′881 40 + 1 732 559 343.′′345 64 t

−6.′′831 8 t2 + 0.′′006 604 t3 − 0.′′000 031 69 t4,
W2 = 83◦21′11.′′654 71 + 14 643 420.′′3367 t− 38.′′263 9 t2

−0.′′045 047 t3 + 0.′′000 213 01 t4,
W3 = 125◦02′40.′′335 06 − 6 967 919.′′7920 t+ 6.′′359 3 t2

+0.′′007 625 t3 − 0.′′000 035 86 t4,

T = 100◦27′59.′′190 78 + 129 597 742.′′3079 t− 0.′′020 2 t2

+0.′′000 009 t3 + 0.′′000 000 15 t4,

$′ = 102◦56′14.′′414 41 + 1 161.′′2283 t+ 0.′′532 7 t2

−0.′′000 138 t3.

Table 7 gives the differences between the values of this
paper and values fit to the JPL numerical integration DE403
from (Chapront & Chapront-Touzé, 1997). For angular vari-
ables,W (0)

1 ,W (0)
2 ,W (0)

3 ,T (0),$′(0), the differences have been
corrected for the separation between the originsγI

2000(MCEP)
orγI

2000(ICRS) andγI
2000(DE403), derived from Table 11. For

W
(1)
2 , W (1)

3 , andW (2)
1 the differences are those of the total

values (computed values + observed corrections or bias). The
values ofν, andn′ obtained in this analysis are closer to the val-
ues fit to DE403 than to the older values fit to DE200 because
both DE403 and the present analysis are based on sets of LLR
observations covering much larger time spans than DE200.

The errors quoted in Tables 4 and 6 are 1-σ errors provided
by the least-squares fits. The errors of the angular variables,
exceptW (0)

3 , are significantly smaller in the second solution
because the origin is more accurately determined if the preces-
sion constant is not fit; the errors of a test fit similar to Sol. 2 but
with a residual precession constant included in the solution (see
Sect. 6.4) are similar to those of Sol. 1. Also, the errors were
larger in earlier fits performed with the method described in this
paper but with a less precise libration theory (i.e. without the
numerical complements).

Table 7.Differences between the values of orbital elements fit in this
paper and values fit to DE403, after correction of the origin. Units:′′/cy2

for W
(2)
1 , ′′/cy for ν andn′, and arcsecond for the other variables

Variable Sol. 1 Sol. 2

W
(0)
1 −0.000 38 −0.000 34

W
(0)
2 0.000 31 0.000 40

W
(0)
3 −0.006 87 −0.009 21

ν −0.011 85 −0.010 60
Γ −0.000 70 −0.000 62
E 0.000 04 0.000 04
W

(1)
2 0.003 9 0.002 8

W
(1)
3 −0.175 2 −0.246 5

W
(2)
1 −0.064 5 −0.054 6

T (0) 0.000 27 0.000 35
$′(0) −0.004 59 −0.003 51
n′ 0.006 30 0.005 25
e′ 0.000 06 0.000 06

All the variables are not determined with the same accu-
racy. In the series of the lunar center motion (longitude, latitude
and distance)W2, W3 andT appear through their differences
with respect toW1 in Delaunay argumentsl, F , andD, and
$′ appears through its difference with respect toT in l′. The
range station-reflector depends mainly on the distance, but also
on the sines and cosines of longitude and latitude multiplied by
the equatorial parallax; then, considering the mean Earth-Moon
distance as a scale factor, the larger trigonometric terms involv-
ing l,W1,D,F , andl′ have amplitudes of0.055, 0.017, 0.0096,
0.0015, and0.0005 respectively;E, Γ, ande′ are multiplied by
trigonometric terms inl, F and2D − l′ whose amplitudes are
1, 0.034, and0.032 respectively. The errors follow the relative
magnitudes of the above amplitudes, but one must also take into
account the length of the time span covered by the observations
and the weights.

We note that the observed correction∆W
(1)
2 to the com-

puted mean motion of perigee is smaller by about0′′.025 /cy
than the bias obtained in Chapront & Chapront-Touzé (1997)
by comparison to the JPL numerical integration DE403, though
in Table 7 the total values of the mean motion differ by less than
0′′.0040 /cy. The reason seems to be that the total mean motion
W

(1)
2 is well determined and that∆W (1)

2 corrects errors in the

computed value ofW (1)
2 resulting from errors in the metric vari-

ables, especially inΓ: the value0′′.025 /cy corresponds to an
error of0′′.000 66 in Γ. So the realistic error inΓ could be much
larger than the formal one, even though the factor of 20 resulting
from the rough calculation above seems too large. If we suppose
a factor of 10 between the formal error and the realistic one inΓ,
this factor also applies to the errors inW (0)

3 and∆W
(1)
3 , Γ and

W3 being tied, and the large observed correction∆W
(1)
3 be-

comes unsignificant. The fact that the time span of observations
covers only 1.5 period of the node and the large weights given
to the most recent observations certainly contributes to the large
realistic error in∆W (1)

3 and consequently to the realistic errors

in W (0)
3 andΓ.
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Table 8.Fitted values of the libration parameters

Variable Sol. 1 Sol. 2

p(0) 224.◦342 1 ± 0.◦012 1 224.◦341 5 ± 0.◦012 1
q(0) 161.◦290 8 ± 0.◦014 7 161.◦257 7 ± 0.◦014 8
r(0) 94.◦039 2 ± 1.◦104 9 97.◦000 8 ± 1.◦092 1√

2P 0.292 61 ± 0.000 06 0.292 60 ± 0.000 06√
2Q 5.218 74 ± 0.002 11 5.223 39 ± 0.002 12√
2R 0.023 84 ± 0.000 40 0.025 52 ± 0.000 39

Except for the difference of origin, the differences between
Sol. 1 and Sol. 2 are mostly due to the inaccuracies of the nu-
tation model ZMOA 90 involved in Sol. 1. The comparison of
Columns 2 and 3 of Table 7 with the formal errors of Tables 4
and 6 shows that the differences between Sol. 1 and Sol. 2 do
not exceed the formal errors except forΓ, W (0)

3 , and∆W
(1)
3 ,

for which the realistic errors are much larger than the formal
ones, and except forW (2)

1 and$′. For these last two variables,
the realistic errors are also probably larger than the formal ones,
and from this comparison, we propose a factor of 5 forW

(2)
1

and 2 for$′. For the others variables, the formal errors seem to
be realistic.

6.2. Free libration parameters

Table 8 gives the fitted values of the libration parameters.
The quoted errors are 1-σ errors provided by the least-squares
method; they are almost the same in the two fits. For the angu-
lar parameters and for

√
2P , the values obtained in the two fits

differ by less than the 1-σ errors. For
√

2Q, the coefficient of
a term whose period is 75 years, and for

√
2R, the coefficient

of a term whose period is close to the draconitic one, the values
differ respectively by twice and three times the errors.

The values of
√

2P , p0,
√

2R, r0 are dependent on the solu-
tion used for the libration. The introduction of numerical com-
plements has modified the fitted values ofp0 and

√
2P , and of

r0 by about 150 times and 20 times the 1-σ errors respectively,
because of the introduction of terms with frequencies close to
p andF + r frequencies in the numerical complements. In the
opposite, the values ofq0 and

√
2Q have been changed by only

four times the errors quoted in Table 8.
In fact, though the period ofq is long,

√
2Q is well deter-

mined. The value of
√

2Q derived from a comparison of the
libration solution used in this paper with the libration part of
the JPL numerical integration DE403 over a time span of 3 cen-
turies (Chapront et al., 1998) is5.2095. It differs by 7 times
the 1-σ error from the value of Sol. 2 which is probably bet-
ter because the time span of the LLR observations involved is
larger in the present analysis than in DE403. Furthermore, we
note that the value derived from the coefficient of thecos q term
of pF

2 in (Calame, 1977) is5.0, based on the first six years of
LLR observations only. This good agreement may be due to the
fact that the frequency ofq is known by the theory and that the
other terms with long periods in the libration variablesp1 andp2

are very small. By introducing the values of
√

2P ,
√

2Q,
√

2R

of this paper in Moons’ literal series, we obtain the following
expressions for the parts of the libration series which depend on
the free libration (terms greater than0.′′005). The values of the
lunar physical parameters involved are given in Table 2.

Sol. 1

pF
1 = −3.′′312 sin(q − 0.◦01) + 0.′′034 sin(q − l)

+0.′′026 sin(p− F ) + 0.′′023 sin(p+ F )

+0.′′024 sin(F + r) − 0.′′022 sin(q + l),

pF
2 = 8.′′197 cos(q + 0.◦01) − 0.′′035 cos(q − l)

−0.′′026 cos(p− F ) + 0.′′023 cos(p+ F )

+0.′′024 cos(F + r) − 0.′′022 cos(q + l).

Sol. 2

pF
1 = −3.′′315 sin(q − 0.◦01) + 0.′′034 sin(q − l)

+0.′′026 sin(p− F ) + 0.′′026 sin(F + r)

+0.′′023 sin(p+ F ) − 0.′′022 sin(q + l),

pF
2 = 8.′′204 cos(q + 0.◦01) − 0.′′035 cos(q − l)

−0.′′026 cos(p− F ) + 0.′′023 cos(p+ F )

+0.′′025 cos(F + r) − 0.′′022 cos(q + l).

Sol. 1 and Sol. 2

τF = 1.′′819 sin p+ 0.′′088 sin(q + 2F − 2l + 36◦)

+0.′′077 sin(q + F ) + 0.′′069 sin(q + F − l)

−0.′′033 sin(q − F ) + 0.′′015 sin(q − F + l).

6.3. Reflector coordinates

Table 9 gives the fitted values of the reflector coordinatesξi re-
ferred to the lunar principal axes of inertia (PA coordinates).
These values must be considered as space coordinates in a
BRS whose time coordinate is in TDB, i.e. no scale factor and
Lorentz contraction to convert to a selenocentric reference sys-
tem has been applied. The errors quoted are 1-σ errors of the
least-squares method. The realistic errors estimated from the
differences between Sol. 1 and Sol. 2 are probably about 15
centimeters. Reflector coordinates are commonly given in the
mean Earth/rotation axes system (MA coordinates). Following
(Ferrari et al., 1980), the MA axes are shifted from the PA axes
by means of the constant terms of the libration variablesp1,
p2, τ . This means that〈p1〉 and〈p2〉 are the components of the
unit vector of the polar MA axis on the equatorial PA axes, and
〈τ〉 is the angle measured from the first equatorial MA axis to
the ascending node of the PA equator on the MA equator and
then from the node to the first PA axis. The libration theory and
the values of the lunar physical constants adopted in the present
analysis give〈p1〉 = −78.′′931 611 286, 〈p2〉 = 0.′′290 177 293,
〈τ〉 = 66.′′189 835 222, from which we derive:

ξ′ = R1(−0.′′264 848 351)R2(−78.′′931 702 266)

R3(−66.′′189 784 547)ξ
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Table 9.Fitted values of the reflector coordinatesξi referred to lunar
principal axes of inertia. Unit: meter

Reflector Sol. 1 Sol. 2

Apollo 11
ξ1 1 591 963.113 ± 0.001 1 591 963.112 ± 0.001
ξ2 690 708.509 ± 0.037 690 708.386 ± 0.037
ξ3 21 006.379 ± 0.025 21 006.461 ± 0.025

Apollo 14
ξ1 1 652 692.801 ± 0.002 1 652 692.801 ± 0.002
ξ2 −520 989.116 ± 0.037 −520 989.243 ± 0.037
ξ3 −109 727.749 ± 0.024 −109 727.677 ± 0.024

Apollo 15
ξ1 1 554 676.642 ± 0.005 1 554 676.629 ± 0.005
ξ2 98 104.053 ± 0.034 98 103.926 ± 0.034
ξ3 765 008.184 ± 0.016 765 008.265 ± 0.016

Lunakhod 2
ξ1 1 339 357.864 ± 0.006 1 339 357.854 ± 0.006
ξ2 801 879.560 ± 0.044 801 879.410 ± 0.044
ξ3 756 361.110 ± 0.034 756 361.187 ± 0.034

Table 10.Reflector coordinatesξ′

i referred to mean Earth/rotation axes
for Sol. 1. Unit: meter

Reflector ξ′

1 ξ′

2 ξ′

3

Apollo 11 1 591 749.307 691 219.304 20 398.151
Apollo 14 1 652 817.789 −520 458.603 −110 360.912
Apollo 15 1 554 937.714 98 601.958 764 413.336
Lunakhod 21 339 389.814 802 308.344 755 849.649

ξ andξ′ are respectively the 1-column matrix of the PA and MA
coordinates. Table 10 gives the MA coordinates of the reflectors
for Sol. 1.

The rough comparison of the values of Table 10 with the
values given by Williams et al. (1996) yields a distance of 2.8
meters between the two positions on the lunar surface of Apollo
15, which is the most observed reflector, and distances of 2.6,
2.0, and 3.0 respectively between the positions of the other re-
flectors. Nevertheless we mention that probably the MA axes
are not rigorously the same in the two papers.

The fitted positions of the reflectors depend on the libration
solution, and the introduction of the numerical complements in
the solution of the lunar libration has changed the locations of
the first two reflectors by 0.3 and 0.6 meter respectively, and the
locations of the last two ones by 1.8 meter.

6.4. Orientation of celestial axes

Columns 2 and 3 of Table 11 give the fitted values of
ε(R) and of o(R)γI

2000(R) measured in the reference plane
of R, R standing for the MCEP system (Sol. 1) or ICRS
(Sol. 2) as described in Sect. 4. Column 4 gives the separa-
tion γI

2000(ICRS)γI
2000(MCEP) measured in the inertial mean

ecliptic of J2000.0 and derived by the method of Sect. 5. The
quoted errors are (or are derived from) 1-σ errors of the least-

squares method. The results of Table 11 and other results of this
section are represented in Fig. 1.

γI
2000(MCEP) is the inertial dynamical mean equinox of

J2000.0; the rotational dynamical mean equinox of J2000.0
γR
2000(MCEP) is the ascending node of the J2000.0 mean eclip-

tic, in the rotational sense as defined by Standish (1981), on the
mean CEP equator of J2000.0. Following Standish, the separa-
tion between the two equinoxes is given by:

γI
2000(MCEP)γR

2000(MCEP) = 0.′′09366

measured in the mean CEP equator of J2000.0. So we deduce
from Table 11:

o(MCEP)γR
2000(MCEP) = 0.′′078 47 ± 0.′′000 35

Denoting byγ′I
2000(MCEP) andγ′R

2000(MCEP), the projections
of γI

2000(MCEP) andγR
2000(MCEP) on the reference plane of

ICRS, the separation on the equator between the origin of right
ascensions in ICRS and the rotational dynamical mean equinox
of J2000.0 is given by:

o(ICRS)γ′R
2000(MCEP)

= o(ICRS)γI
2000(ICRS)

+γI
2000(ICRS)γI

2000(MCEP) cos ε

+γI
2000(MCEP)γR

2000(MCEP)

This quantity is also the component of the unit vector pointing
towards the rotational dynamical mean equinox of J2000.0 on
thex2 axis of ICRS. The values of Table 11 give:

o(ICRS)γ′R
2000(MCEP) = 0.′′0783 ± 0.′′0009,

o(ICRS)γ′I
2000(MCEP) = −0.′′0154 ± 0.′′0009.

Our value of the separation on the equator between the origin
of right ascensions in ICRS and the rotational dynamical mean
equinox of J2000.0 is very close to the result0.′′078 ± 0.′′010 of
Folkner et al.(1994). Note that the origin of right ascensions in
ICRS is closer to the projection of the inertial mean equinox of
J2000.0 than to the projection of the rotational one by a factor
of five. The separation on the equator betweeno(MCEP) (the
origin of right ascensions in the mean CEP equator of J2000.0
derived, by means of precession-nutation transformation, from
the “true equinox of date” as it results from the polar motion and
UT1 provided by IERS) ando(ICRS), derived from Table 11,
is almost zero.

The test fit 1 is a similar fit as that of Sol. 1 but using the
precession expressions of Simon et al. (1994) instead of those
of Williams (1994). The leading difference between the two sets
of expressions concerns the obliquity, with:

εA(Williams, t) − εA(Williams, J2000.0) =

εA(Simon, t) − εA(Simon, J2000.0) − 0.′′024 40t (3)

(t reckoned from J2000.0 in Julian centuries), and is due to
the motion of the equator. If we assume that LLR observa-
tions provide an accurate position of the mean CEP equator
at the weighted mean epoch of observations, the obliquity at
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Fig. 1. Positions of several reference planes
and origins of right ascensions or longitudes
in the tangential plane to the celestial sphere

Table 11.Position angles of the inertial mean ecliptic of J2000.0 with respect to “equatorial” celestial systems R (arcseconds) and fitted correction
to the IAU 1976 value of the precession constant (′′/cy)

R ε(R) − 23◦26′21′′ o(R)γI
2000(R) γI

2000(ICRS)γI
2000(R) ∆p

MCEP 0.405 22 ± 0.000 07 −0.015 19 ± 0.000 35 0.0460 ± 0.0008 −0.3437 ± 0.0040
/Test fit 1 0.407 06 ± 0.000 08 −0.014 67 ± 0.000 35 0.0466 ± 0.0008 −0.3382 ± 0.0040

ICRS 0.410 81 ± 0.000 07 −0.057 60 ± 0.000 20 0
/Test fit 2 0.410 66 ± 0.000 08 −0.056 19 ± 0.000 35 0.0015 ± 0.0007

DE403 0.409 28 ± 0.000 00 −0.052 94 ± 0.000 01 0.0069 ± 0.0004
DE200 0.408 83 ± 0.000 06 −0.092 45 ± 0.000 16 −0.0339 ± 0.0011

this epoch (1 April 1992) is well determined and independent
of the precession expressions. So Eq. (3) gives at J2000.0:

εA(Williams, J2000.0)−εA(Simon, J2000.0)=−1.90 mas

This quantity differs from the “observed value” derived from
Table 11:

ε(MCEP) − ε(MCEP/Test fit 1) = −1.84 ± 0.15 mas

by less than 1-σ. This result yields a verification of the internal
consistency of our method. Note that the test fit 1 yields for the
separation on the equator between the origin of right ascensions
in ICRS and the inertial dynamical mean equinox of J2000.0

o(ICRS)γ′I
2000(MCEP/Test fit 1) = −0.′′0148 ± 0.′′0009

which differs by less than 1-σ from the value derived from Sol. 1.
Column 5 of Table 11 gives the corrections to the IAU 1976

value of the precession constant obtained in Sol. 1 and by test
fit 1; the two values differ by less than 2-σ.

No precession constant value has been fit in Sol. 2, but in
the test fit 2 a correctiondp to the precession constant valuep
included in the IERSdψ anddε has been determined in addition
to the terms fit in Solution 2. The value obtained is−0.′′0192 ±
0.′′0040 /cy. The value ofγI

2000(ICRS)γI
2000(ICRS/Test fit 2)

given in Table 11 is correlated withdp for the following reason.
LLR observations provide an accurate position of the “mean
plane” derived from the ICRS reference plane by means of the
precession transformation between J2000.0 and the mean epoch
of observations. The ascending node of the J2000.0 inertial
mean ecliptic on this mean planeγI

D is accurately determined
and is independent of the value of the precession constant. Then

we have:

γI
Dγ

I
2000(ICRS/Test fit 2) = t(p+ dp)

γI
Dγ

I
2000(ICRS) = tp

and by subtraction:

γI
2000(ICRS)γI

2000(ICRS/Test fit 2) = t dp (4)

On 1 April 1992, the right hand member of Eq. (4) amounts to
0.′′0015. This value is equal to the value given in Table 11. This
result yields another verification of the internal consistency of
our method. It is also consistent with the precision ofdψ (0.6
mas fordψ sin ε = 1.5 mas fordψ) stated by IERS for 1992.

(Chapront & Chapront-Touzé, 1997) and (Chapront-Touzé
& Chapront, 1983) give fitted values ofε(R), of o(R)γI

2000(R),
and of the lunar mean longitude referred toγI

2000(R), R stand-
ing for the reference frames defined by the JPL numerical in-
tegrations DE403 and DE200.ε(R) is the inclination of the
inertial mean ecliptic of J2000.0 on the reference plane of R,
o(R) is the origin of right ascensions in R andγI

2000(R) is
the node of the inertial mean ecliptic of J2000.0 on the ref-
erence plane of R. The values ofε(R) ando(R)γI

2000(R) are
quoted in Table 11. From the lunar mean longitudes referred
to the originsγI

2000(DE403) andγI
2000(DE200), evaluated at

the mean epoch of the observations involved in the numerical
integrations (set here to 1 January 1985 and 1 January 1975 re-
spectively), and from Sol. 2 of this paper, we obtain, by the
method of Sect. 5, the values ofγI

2000(ICRS)γI
2000(DE403)

andγI
2000(ICRS)γI

2000(DE200), measured in the inertial mean
ecliptic of J2000.0, as quoted in Table 11.

If we denote byo′(DE200) the projection ofo(DE200) on
the mean CEP equator of J2000.0, we derive from Table 11 the
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following values of the separations on the equator between the
origin of right ascensions of DE200 and the following origins:
o(MCEP), the inertial dynamical mean equinox of J2000.0, and
the rotational dynamical mean equinox of J2000.0:

o′(DE200)o(MCEP) = −0.′′0039 ± 0.′′0023

o′(DE200)γR
2000(MCEP) = 0.′′0746 ± 0.′′0019

o′(DE200)γI
2000(MCEP) = −0.′′0191 ± 0.′′0019

So, thougho(DE200) has been constructed as the ascending
node of the rotational mean ecliptic of J2000.0 on the reference
plane of DE200 in order to represent the rotational dynamical
mean equinox of J2000.0 (Standish, 1982), its projection on the
mean CEP equator of J2000.0 is closer to the present position
of the inertial dynamical mean equinox of J2000.0 than to that
of the rotational one. This is due to the improvment of the pre-
cession constant value which makes the mean CEP equator of
J2000.0 different from the reference plane of DE200.

The value of the precession constant used for the reduction
of the observations involved in DE200 was the IAU 1976 value,
and, if we assume that the reference plane of DE200 results
from the LLR observations only, the method leading to Eq. (4)
yields here:

γI
2000(MCEP)γI

2000(DE200) = −t∆p

at the timet of the mean epoch of LLR observations in-
volved in DE200 (set here to 1 January 1975). The value of
γI
2000(MCEP)γI

2000(DE200) obtained is−0.′′0859 ± 0.′′0010
which differs from the value−0.′′0799 ± 0.′′0019 derived from
Table 11 by about three times the greater error.

If we now assume that the precession expressions of Lieske
et al. (1977) have been used in the reduction of observations
involved in DE200, an expression similar to Eq. (3), by chang-
ing Simon to Lieske and−0.′′02440 to −0.′′01896, gives for
ε(MCEP)−ε(DE200) the value−4.74 mas which differs from
the value−3.61 ± 0.13 mas, derived from Table 11, by about
9σ. This comparison and the previous one yield less “good”
results than the two internal comparisons above, and the large
difference between the mean epochs of observations in DE200
and in this paper is probably a contributing factor. Nevertheless
the formal errors concerning the line DE200 in Table 11 are
probably smaller than the realistic ones by factors of 5 (Col-
umn 2) and 2 (Column 4). Table 12, derived from Table 11,
gives the angles of the rotations transforming the ICRS axes to
an “equatorial” celestial system of axes R with:

u(R) = R1(θ1)R2(θ2)R3(θ3)u(ICRS)

(u(R) andu(ICRS) are the vector of coordinates in R and ICRS,
respectively), R standing for the MCEP system or for the ref-
erence axes of DE403 or DE200.1, θ3, −θ2 are approximately
the components, on the ICRS axes, of the unit vector pointing
towards the origin of right ascensions in R andθ2, −θ1, 1 are
those of the unit vector of the polar axis of R. The quoted errors
are derived from the 1-σ errors quoted in Table 11.

For comparison, Table 12 mentions also the results obtained
by Folkner et al. (1994) for the angles of the transformation of

Table 12.Rotations between ICRS axes and other “equatorial” celestial
systems of axes R, and comparison with the results of other authors:
(F) Folkner et al. (1994), (I) IERS conventions 1996

R θ1(mas) θ2(mas) θ3(mas)

MCEP 5.6 ± 0.2 −18.3 ± 0.4 −0.2 ± 1.2
(I) 5.1 ± 0.2 −17.3 ± 0.2

MCEP/Test fit 1 3.8 ± 0.2 −18.5 ± 0.4 −0.2 ± 1.2
(F) 1.9 ± 0.2 −19.2 ± 0.3

DE403 1.5 ± 0.1 − 2.7 ± 0.2 1.7 ± 0.6
DE200 2.0 ± 0.2 13.5 ± 0.5 3.7 ± 1.4

(F) 2 ± 2 12 ± 3 6 ± 3

the ICRS axes to the DE200 axes and for the anglesθ1 andθ2
of the transformation of the ICRS axes to the MCEP system.
For the latter, the values are closer to our values of the test fit
1 because they do not take into account Williams’ correction
quoted in Eq. (3).

Table 12 gives also the values ofθ1 andθ2 for the trans-
formation of the ICRS axes to the MCEP system, mentioned in
the IERS conventions 1996 (McCarthy, 1996). These values are
comparable to our values from Sol. 1 but are certainely more
accurate. It leads us to apply a factor of 2 to our 1-σ errors in the
line MCEP of Table 12 in order to obtain realistic errors which
insure the consistency of the two sets of values. This factor may
also be applied to all the other lines of Table 12 which concern
our results and to Columns 2 and 3 of Table 11, except forθ1
andε of DE200 which need a factor of 5. The 1-σ errors quoted
in Column 4 of Table 11 are probably realistic.

We note that our results concerning DE200 are consistent
with those of Folkner et al. Our value ofθ1 from the test fit 1
differs from their value by about 5 times our estimated realistic
error.

From the results of Table 12, we derive the angles of the
transformation rotating the reference axes of DE403 to the
MCEP system, respectively4.1 ± 0.3 mas, −15.6 ± 0.6 mas,
−1.9 ± 1.8 mas (1-σ errors). Previous results have been given
in (Chapront & Chapront-Touzé, 1997), but the present ones are
much more precise for several reasons: the computation of the
different corrections introduced inDTC, especially relativistic
corrections and tropospheric effects, has been considerably im-
proved, weights have been introduced in the fits, the libration
solution has been improved, and the time span covered by LLR
observations is larger. Our present values of the first two angles
are in good agreement with the corresponding values (3.99 mas
and−15.36 mas) adopted in the construction of DE403 (Stan-
dish et al., 1995).

7. Conclusion

Beside values of the orbital and rotational parameters of the
Moon, this paper gives the position of the inertial dynamical
mean ecliptic of J2000.0 with respect to several celestial “equa-
torial” systems of axes, and derives from these results the trans-
formations between the “equatorial” systems themselves. Sev-
eral tests checking the validity of those results are performed
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and comparisons to the results of other authors are, for the most
part, satisfying.

This paper gives, in particular, the position of the inertial
dynamical mean equinox of J2000.0, i.e. the ascending node of
the inertial mean ecliptic of J2000.0 (the reference plane of the
modern analytical theories for the Moon and the planets) on the
mean CEP equator of J2000.0. It is shown that this equinox is
closer than its rotational version, by a factor of 5, to the J2000.0
right ascension origin defined by polar motion and UT1 pro-
vided by IERS and by modern analytical theories of precession
and nutation. The inertial dynamical mean equinox of J2000.0
is also closer to the projections, on the mean CEP equator of
J2000.0, of the origins of right ascensions in the IERS celestial
reference system and in the JPL numerical integration DE200.
So we suggest that it replaces the rotational one in reference
texts.
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Chapront-Touźe M., Chapront J., 1988, A&A 190, 342
Fairhead L., Bretagnon P., 1990, A&A 229, 240
Ferrari A.J., Sinclair W.S., Sjogren W.L., Williams J.G., Yoder C.F.,

1980, JGR 85, 3939
Folkner W.M., Charlot P., Finger M.H., et al., 1994, A&A 287, 279
Herring T.A., 1991, In: Hughes J.A., Smith C.A., Kaplan G.H. (eds.)

Proceedings of the 127th Colloquium of the IAU. USNO, Wash-
ington D.C., p. 157

Lieske J.H., Lederle T., Fricke W., Morando B., 1977, A&A 58, 1
Martin C.F., Torrence M.H., Misner L.W., 1985, JGR 90, 9403
McCarthy D.D. (ed.), 1992, IERS Technical Note n◦ 13, Observatoire

de Paris
McCarthy D.D. (ed.), 1996, IERS Technical Note n◦ 21, Observatoire

de Paris
Moons M., 1982, The Moon and the Planets 27, 257
Moons M., 1984, Celest. Mech. 34, 263
Newhall XX, Williams J.G., Dickey J.O., 1991, In: IERS Technical

Note n◦ 8, Observatoire de Paris
Seidelmann P.K., 1982, Celest. Mech. 27, 79
Simon J.L., Bretagnon P., Chapront J., et al., 1994, A&A 282, 663
Standish E.M., 1981, A&A 101, L17
Standish E.M., 1982, A&A 114, 297
Standish E.M., Newhall XX, Williams J.G., Folkner W.M., 1995, JPL

IOM 314.10-127
Williams J.G., 1994, AJ 108, 711
Williams J.G., Melbourne W.G., 1982, In: Calame O. (ed.) High-

precision Earth rotation and Earth-Moon dynamics. Reidel, Dor-
drecht, p. 283

Williams J.G., Newhall XX, Dickey J.O., 1996, Planet. Space Sci. 44,
1077

Zhu S.Y., Mueller I.I., 1983, Bull. Geod. 57, 29


	Introduction
	Orbital motion
	Transformation from selenocentric coordinateshfill penalty -@M to celestial coordinates
	Transformation from terrestrial coordinateshfill penalty -@M to celestial coordinates
	The fits
	The results
	Orbital motion
	Free libration parameters
	Reflector coordinates
	Orientation of celestial axes

	Conclusion

