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Rating Image Aesthetics using Deep Learning
Xin Lu, Zhe Lin, Hailin Jin, Jianchao Yang, and James. Z. Wang

Abstract—This paper investigates unified feature learning and
classifier training approaches for image aesthetics assessment.
Existing methods built upon handcrafted or generic image
features and developed machine learning and statistical modeling
techniques utilizing training examples. We adopt a novel deep
neural network approach to allow unified feature learning and
classifier training to estimate image aesthetics. In particular, we
develop a double-column deep convolutional neural network to
support heterogeneous inputs, i.e., global and local views, in order
to capture both global and local characteristics of images. In
addition, we employ the style and semantic attributes of images
to further boost the aesthetics categorization performance. Ex-
perimental results show that our approach produces significantly
better results than the earlier reported results on the AVA dataset
for both the generic image aesthetics and content-based image
aesthetics. Moreover, we introduce a 1.5 million image dataset
(IAD) for image aesthetics assessment and we further boost the
performance on the AVA test set by training the proposed deep
neural networks on the IAD dataset.

Index Terms—Automatic feature learning, deep neural net-
works, image aesthetics

I. INTRODUCTION

Automated assessment of image aesthetics is a significant
research problem due to its potential applications in areas
where visual experience is involved, such as image retrieval,
image editing, design, and human computer interaction. As-
sessing aesthetics of images is challenging for computers
because aesthetics may be rated differently by different people,
and an optimal computational representation of aesthetics is
not obvious. More importantly, the difficulty lies in designing
a proper image representation (features) to map the perception
of images to their aesthetics ratings.

Among the initial attempts, image aesthetics was rep-
resented by discrete values, and the problem of assessing
image aesthetics was formulated as either a classification
or regression problems [1], [2]. In the past decade, many
visual features have been explored under this formulation
(handcrafted features), ranging from low-level image statistics,
such as edge distributions and color histograms, to high-level
photographic rules, such as the rule of thirds and golden
ratio [1], [2], [3], [4], [5], [6], [7], [8].

These aesthetics-relevant features are often inspired and de-
signed based on intuition in photography or psychology litera-
ture; however, they share some essential limitations. For exam-
ple, some aesthetics-relevant attributes may be unexplored and
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thus poorly defined as objective criteria. Meanwhile, most pho-
tographic or psychological rules are descriptive. The computed
features are approximations of those rules, then, are limited to
approximations. To overcome such limitations, image features
commonly used for image classification or image retrieval
(generic features) were applied to image aesthetics [9], [10],
[11], such as SIFT and Fisher Vector [12], [9]. Whereas
generic image features have shown better performance in [9]
than handcrafted aesthetics features have, they may not provide
an optimal representation for aesthetics-related problems due
to their generic nature.

We are motivated by the feature learning power of deep
convolutional neural networks [13], where feature learning is
unified with classifier training using RGB images, and we
propose to learn effective aesthetics features using convolu-
tional neural networks. However, applying classic architecture
to our task is not straightforward. Image aesthetics depends
on a combination of local cues (e.g., sharpness and noise
levels) and global visual cues (e.g., the rule of thirds). To learn
aesthetics-relevant representations of an image, we generate
two heterogeneous inputs to represent its global cues and
local cues respectively, as shown in Figure 1. Meanwhile,
we develop a double-column neural network architecture that
takes parallel inputs from the two columns to support network
training on heterogeneous inputs, which extends the method
in [13]. In the proposed double-column neural network, one
column takes a global view of the image and the other
column takes a local view of the image. The two columns are
aggregated after some layers of transformations and mapped
to the label layer.

We apply the proposed double-column neural network ap-
proach to the generic image aesthetics problem and propose a
network adaptation approach for content-based image aesthet-
ics. We also propose a regularized neural network approach
by exploring related attributes such as style and semantic at-
tributes associated with images. We show that our approaches
achieve state-of-the-art results on the recently-released AVA
dataset and further improve the performance by introducing
a 1.5 million dataset (IAD) and performing network training
using the IAD dataset.

A. Related Work
In this section, we review the handcraft and generic image

features that have been explored for image aesthetics. We also
review the successful applications of deep convolutional neural
networks in recent studies.

Common visual cues such as color [1], [7], [8], texture [1],
[2], composition [3], [5], [6], and content [5], [6] have been ex-
amined in earlier visual aesthetics assessment research. Color
features typically include lightness, colorfulness, color har-
mony, and color distribution [1], [7], [8]. Texture descriptors
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Fig. 1. Global views and local views of an image. Global views are represented by normalized inputs: center-crop, warp, and padding (shown in the top
row). Local views are represented by randomly-cropped inputs from the original high-resolution image (examples shown in the bottom row).

cover wavelet features [1], edge distributions, blur descriptors,
and shallow depth-of-field features [2]. Composition features
range from the rule of thirds, size and aspect ratio [5] to fore-
ground and background composition [3], [5], [6]. Meanwhile,
the content of images has been studied by taking account of
people and portrait descriptors [5], [6], scene descriptors [6],
and generic image features [9], [10], [11].

Despite the success of handcrafted and generic features
for analyzing image aesthetics problems, unifying the au-
tomatic feature learning and classifier training using deep
neural networks has shown promising performance in various
applications [13], [16], [17], [18]. In particular, convolutional
neural network (CNN) [19] is one of the most powerful deep
learning architectures in vision problems; other deep learning
architectures include Deep Belief Net [20] and Restricted
Boltzmann Machine [21]. In [13], Krizhevsky et al. signifi-
cantly improved the image classification performance on the
ImageNet benchmark using CNN, along with dropout and
normalization techniques. In [18], Sermanet et al. achieved
the best performance compared with other reported results
on all major pedestrian detection datasets. In [16], Ciresan
et al. reached a near-human performance on the MNIST1

dataset. The effectiveness of extracted CNN features has also
been demonstrated in image style classification [22] and image
popularity estimation [25].

Few studies have investigated automatic feature learning for
image aesthetics prediction, as designing handcrafted features
has long been regarded as an appropriate method in predicting
image aesthetics. The emergence of the AVA dataset, contain-
ing 250, 000 images with aesthetics ratings, makes it possible
to learn features automatically and assess image aesthetics
using deep learning.

In this study, we systematically evaluate deep neural net-
works on the problem of image aesthetics assessment. In
particular, we develop a double-column CNN to capture
image aesthetics-relevant features from two heterogeneous
input sources and improve the image aesthetics prediction

1http://yann.lecun.com/exdb/mnist/

accuracy given new images. The proposed architecture is
different from recent efforts on multi-column neural net-
works [16], [24]. In [24], Agostinelli et al. extended stacked
sparse autoencoder to a multi-column version, computed the
optimal column weights, and then applied the model to image
denoising. In [16], Ciresan et al. averaged the output of several
columns, where each column was associated with training
input produced by different standard preprocessing methods.
Unlike [16], the two columns in our architecture are jointly
trained using two input sources: One column takes a global
view as the input, and the other column takes a local view as
the input. Such an approach allows us to capture both global
and local visual information of images.

B. Contributions

Our main contributions are as follows.
• We systematically evaluate the single-column deep con-

volutional neural network approach using different types
of input modalities to predict image aesthetics.

• We develop a novel double-column deep convolutional
neural network architecture to capture both global and
local information of images.

• We develop a network adaptation-based approach to
perform content-based aesthetic categorization.

• We develop a regularized double-column deep convolu-
tional neural network to further improve aesthetic cate-
gorization using style attributes and semantic attributes.

• We introduce a 1.5 million dataset (IAD) and further
improve the aesthetics categorization accuracy on the
AVA test set.

II. THE APPROACH

Photographers’ visual preferences are often indicated
through patterns in aesthetically-pleasing photographs, where
composition [26] and visual balance [27] are two major
factors [28]. Such factors are reflected in both global and local
views of images. For instance, we present the global views of
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Fig. 2. Single-column convolutional neural network for image aesthetics
assessment. The network architecture consists of four convolutional and
two fully-connected layers. The max-pooling and normalization layers are
following the first and second convolutional layers. To avoid overfitting, the
input patch (224× 224× 3) is randomly cropped from the normalized input
(256× 256× 3) as performed in [13].

an image in the top row and the local views in the bottom row
(as shown in Figure 1). Commonly used composition rules
in photography include the rule of thirds, diagonal lines, and
the golden ratio [29]; and visual balance is closely connected
with position, form, size, tone, color, brightness, contrast, and
proximity to the fulcrum [27]. Generating accurate computa-
tional representation of these patterns is highly challenging
because those rules are usually descriptive and vague in terms
of definition. This issue motivates us to explore deep network
training approaches that can automatically learn aesthetics-
relevant features and perform aesthetics prediction.

Applying CNN to the problem of image aesthetics is not
straightforward. The CNN is commonly trained on normalized
training examples with fixed size and aspect ratio. However,
in image aesthetics, normalizing images may lose important
information because the visual perception of aesthetics is
influenced by both the global view and local details. To address
this difficulty, we propose using heterogeneous representations
of an image as training examples. In doing so, we expect the
deep networks to be able to capture both global and local
views jointly for image aesthetics assessment.

In the following sections, we first review single-column
CNN (SCNN) training and evaluate the performance of SCNN
using different outputs. We then present the proposed double-
column CNN (DCNN) architecture and the design rationale.
We also introduce the network adaptation for content-based
image aesthetics. Finally, we study how to leverage external
attributes to help image aesthetics assessment. We present the
regularized double-column network (RDCNN) architecture, to
perform network training for image aesthetics using style and
semantic attributes, respectively.

A. Single-column Convolutional Neural Network

Deep convolutional neural network [13] is commonly
trained using inputs of fixed aspect ratio and size; however,
images could be of arbitrary size and aspect ratio. To normalize
input images, a conventional approach is to isotropically resize
original images by normalizing their shorter sides to a fixed
length s, and crop the center patch as the input [13]. We refer
to this approach as center-crop (gc). In addition to gc, we
attempted two other transformations to normalize images, i.e.,
warp (gw) and padding (gp), in order to represent the global
view (Ig) of an image I . gw anisotropically resizes (or warps)
the original image into a normalized input with a fixed size

s × s × 3. gp resizes the original image by normalizing the
longer side of the image to a fixed length s and padding
border pixels with zeros to generate a normalized input of
a fixed size s × s × 3. For each image I and each type of
transformation, we generate an s × s × 3 input Ijg with the
transformation gj , where j ∈ {c, w, p}. Because normalizing
inputs may cause harmful information loss (i.e., the high-
resolution local views) for aesthetics assessment, we randomly
sampled fixed size (at s×s×3) crops with the transformation
lr from original high-resolution images. Here we denote by g
the global transformations and l the local transformations. This
results in a collection of normalized inputs {Irl } (r refers to an
index of normalized inputs in the collection), which preserve
the local details on the original high-resolution image. We
took these normalized inputs It ∈ {Icg , Iwg , Ipg , Irl } for SCNN
training2.

We show examples of the four transformations, gw, gc, gp,
and lr, in Figure 1. In the top row, we present the global views
of an image depicted by gc, gw, and gp. It is clear that Iwg and
Ipg maintain the relative spatial layout among elements in the
original image while the Icg does not. In the bottom row, we
show that the local views of an original image are represented
by randomly-cropped patches {Irl }, which describe the local
details in the original high-resolution image.

We present the architecture of the SCNN used for image
aesthetics in Figure 2. The network architecture consists of
four convolutional and two fully-connected layers. The max-
pooling and normalization layers follow the first and second
convolutional layers. To avoid overfitting, the input patch
(224 × 224 × 3) is randomly cropped from the normalized
input (256× 256× 3), as performed in [13].

For the input Ip of the i-th image, we denote by xi the
feature representation extracted from the fc256 layer, i.e., the
outcome of the convolutional layers and the fc1000 layers, and
yi ∈ C the label. We maximize the following log likelihood
function to train the last layer:

l(W) =

N∑
i=1

∑
c∈C

I(yi = c) log p(yi = c | xi,wc) , (1)

where N is the number of images, W = {wc}c∈C is the set
of model parameters, and I(x) = 1 iff x is true and vice versa.
The probability p(yi = c | xi,wc) is expressed as

p(yi = c | xi,wc) =
exp (wT

c xi)∑
c′∈C exp (w

T
c′xi)

. (2)

In our experiments, image aesthetics assessment is formu-
lated as a two-class classification problem, where each input
is associated with an aesthetic label c ∈ C = {0, 1}. The
image style classification to be discussed in Section II-C is
formulated as a multi-class classification task.

The general guideline that we have found to train a deep
network is first to allow sufficient learning capacity by using
a sufficient number of neurons. Meanwhile, we adjust the
number of convolutional layers and the fully-connected layers
to support automatic feature learning and classifier training.

2In our experiments, we set s to be 256, and the size of It is 256×256×3.
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Fig. 3. Double-column convolutional neural network for aesthetic quality categorization. Each training image is represented by both global and local views,
and is associated with its aesthetic quality label: 0 refers to a low quality image and 1 refers to a high quality image. Networks in different columns are
independent in convolutional and the first two fully-connected layers. All parameters in DCNN are jointly trained trained.

We then evaluate networks trained using different numbers of
convolutional and fully-connected layers, and with or without
normalization layers. Finally, we conduct empirical evalua-
tions on candidate architectures under the same experimental
settings. An empirically optimal architecture for a specific task
can then be selected. In our experiments, we list candidate
architectures, and we determine an empirically optimal archi-
tecture for our task by conducting experiments on candidate
architectures using the same experimental settings and picking
the one that has achieved the best performance.

Using the selected network architecture, we trained and
evaluated SCNN with four types of inputs (Icg , Iwg , Ipg , Irl )
on the AVA dataset [10]. In training, we adopted dropout and
shuffled the training data in each epoch to alleviate overfitting.
Interestingly, we found that lr might be an effective data
augmentation approach. Because Irl is generated by random
cropping, one image is actually represented by different ran-
dom patches in different epochs.

Given a test image, we computed its normalized input and
generated the input patch. We then computed the probability
of the input patch being assigned to each aesthetics category.
We repeated the process 50 times and averaged those results to
identify the class with the highest probability as the prediction.

B. Double-column Convolutional Neural Network

Transforming an input image to a certain normalized input
(gc, gw, gp, or lr) may result in information loss of either
the global view or local details. This potential loss motivates
us to explore the network training approach to support het-
erogeneous inputs. To achieve this goal, we propose a novel
double-column convolutional neural network (DCNN), allow-
ing network training using two inputs extracted from different
spatial scales of one image. We present the DCNN architecture
in Figure 3, where the two columns are independent in the
convolutional and the first two fully-connected layers. Then,
the two output vectors of the fc256 layers are concatenated
and mapped to the label layer. The interaction between the two
columns happens at a later fully-convolutional layer to allow
sufficient flexibility in feature learning from heterogeneous
inputs. In DCNN network training, all parameters in DCNN
are jointly trained, which enables the network to judge image

aesthetics while simultaneously considering both the global
and local views of an image. Specifically, the error is back
propagated to the networks in each column respectively with
stochastic gradient descent.

As shown, the proposed DCNN architecture could easily be
expanded to multiple columns and support multiple types of
normalized inputs as training examples. Even more flexible,
the DCNN allows different architectures and initializations in
individual networks prior to their interaction, which usually
happens at a later fully-connected layer. Such design facilitates
parameter learning, especially in the case of multiple-column
architectures. To predict the aesthetics value of a new image,
we follow the same procedure as we evaluate the SCNN for
image aesthetics assessment.

Given an image of a semantic category, is there a better
solution to estimate its image aesthetics besides applying the
trained DCNN on images of any semantic category? A most
straightforward approach is to collect images of a specific
semantic category that are associated with aesthetic labels and
train DCNN on that image collection. Unfortunately, collecting
such datasets and training individual DCNN for each of the
semantic category is time-consuming. We expect to develop a
generic network that can be reused for content-based image
aesthetics, where the number of images in each semantic
category is not large. To fit that purpose, we build upon the
DCNN network structure, and propose a network adaptation
strategy to approach content-based image aesthetics. Given a
DCNN network trained on a large collection of images with
arbitrary content, we adaptively update the DCNN network
parameters in a few training epochs using a small collection of
images in a specific semantic category. The advantages are that
images of all semantic categories are used for training as well
as for simplifying the data collection process. Importantly, the
time used for network adaptation is much shorter than training
a network from scratch. We demonstrate the performance of
network adaptation in the experimental section.

C. Learning and Categorization with Style and Semantic
Attributes

Images are divided into aesthetics categories by quantizing
their aesthetics values. Limited categories (i.e., high and low
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Fig. 4. Regularized double-column convolutional neural network (RDCNN).
The style attributes are used as extra attributes to facilitate network training
for image aesthetics. The style attributes xs are produced by pre-trained
Style-SCNN, leveraging which we regularize the aesthetics column network
training. The dashed line indicates that the parameters of the style column
is fixed during RDCNN training. In backpropagation, only the parameters in
the aesthetic column are fine-tuned, and the parameter fine-tuning process
is supervised by the aesthetic label. We used style attributes as an example
to show how extra attributes are leveraged in RDCNN training. The same
procedures are applied to semantic attributes.

aesthetics in this work) result in large intra-class variation in
terms of image content. This limitation makes the network
training difficult for the classification tasks because the label
may not sufficiently guide the network training. This motivates
us to exploit extra attributes of images as a complement
of aesthetics labels in order to facilitate network training.
Considering style and semantic attributes are highly relevant to
perceived aesthetics [10], we propose to use those two types of
attributes in this work as extra guidance for automatic feature
learning. We first formulate the aesthetic categorization prob-
lem with style attributes, and we then apply the same approach
to categorize image aesthetics using semantic attributes.

We have formulated the problem in two ways to leverage
the extra attributes. The first solution is to borrow the idea
from multi-task learning [31], where feature representation and
the classification error minimization are constructed in a joint
manner for both labels. Assuming we have aesthetics quality
labels {yai} and style labels {ysi} for all training images, the
problem could be formulated as:

max
X,Wa,Ws

N∑
i=1

(
∑
c∈CA

I(yai = c) log p(yai | xi,wac)+∑
c∈CS

I(ysi = c) log p(ysi | xi,wsc)) ,

(3)

where X is the features of all training images, CA is the
label set for aesthetic quality, CS is the label set for style
(or semantics), and Wa = {wac}c∈CA and Ws = {wsc}c∈CS
are the model parameters. Nevertheless, associating all images
with style attributes is not easy, and we are lack of such
datasets where images are associated with both aesthetics and
style labels. The AVA dataset only contains 14, 000 images
that have both aesthetics and style labels among the 230, 000
training images. Therefore, we are unable to follow the multi-
task learning formulation due to the missing attributes in the
training dataset.

Alternatively, we take ideas from inductive transfer learn-
ing [30], where we minimize the classification error with one
label, while we construct feature representations with both
labels. We first train a style classifier using the subset of
images that are associated with style labels, and then extract
style attributes for all training images. Using style attributes,

we train regularized deep networks for image aesthetics as-
sessments.

We learn style attributes by SCNN (introduced in Sec-
tion II-A) using images associated with style labels in the
AVA dataset. We denote it by Style-SCNN. We have also
tried to use DCNN for style classification. Due to the limited
number of training data (11, 000), the warped column did not
contribute much to boost the style classification performance,
so we skipped it. We present the architecture of Style-SCNN
in Figure 2. Due to the smaller number of training examples,
we reduced the number of filters in the first and fourth
convolutional layers by half compared to the number of filters
used in aesthetics network training. The style attributes are
extracted as the output of the fc256 layer in the Style-SCNN.

To train deep networks for image aesthetics using extra
attributes (such as styles and semantics), we propose a regular-
ized double-column convolutional neural network (RDCNN).
We show a RDCNN example using style attributes in Figure 4.
As shown, two normalized inputs of the aesthetics column are
Iwg and Irl , same as in DCNN (Section II-B). The input of
the style column is Irl . The training of RDCNN is done by
solving the following optimization problem:

max
Xa,Wa

N∑
i=1

∑
c=1∈Ca

I(yai = c) log p(yai | xai,xsi,wac) , (4)

where xsi is the style attributes of the i-th training image, and
xai is the feature to be learned. In particular, the maximization
does not involve style attributes xs, which means that we
only fine-tuned the parameters in the aesthetic column in
backpropagation and that the learning process is supervised
by the aesthetic label. The parameters of the style column
are fixed, and the style attributes xis essentially serve as a
regularizer to train the aesthetic column for image aesthetics
assessment.

Similar to style attributes, semantic attributes of an image
may also share high correlations with image aesthetics. For
instance, images of a cute baby and images of gardens or
beautiful scenes may be aesthetically more appealing. This
motivates us to use semantic attributes to regularize the
aesthetics network training using the proposed RDCNN. As
limited semantic tags are associated with images in the AVA
dataset, we took pre-trained ImageNet model as the pre-trained
column and conducted regularized DCNN training using the
proposed RDCNN approach. The parameters of the ImageNet
column are fixed and the semantic attributes regularized the
network training in the aesthetics columns.

III. EXPERIMENTAL RESULTS

We evaluated the proposed methods for image aesthetics
on the AVA3 dataset [10] and the IAD dataset. On the AVA
dataset, we divided training images into two categories, i.e.,
low-quality and high-quality images, according to criteria

3The AVA dataset includes 250, 000 images, each of which is associated
with an aesthetics score, averaged by about more than 200 ratings. The scale
of the aesthetics score is from 1 to 10. We took the same experimental settings
as in [10]. Particularly, we took the same division of training and testing data
as in [10], i.e., 230, 000 images for training and 20, 000 for testing.



6

TABLE I
ACCURACY FOR DIFFERENT SCNN ARCHITECTURES

conv1 pool1 rnorm1 conv2 pool2 rnorm2 conv3 conv4 conv5 conv6 fc1K fc256 fc2 Accuracy
(64) (64) (64) (64) (64) (64)

Arch 1
√ √ √ √ √ √ √ √ √ √ √

71.20%
Arch 2

√ √ √ √ √ √ √ √ √
60.25%

Arch 3
√ √ √ √ √ √ √ √ √ √

62.68%
Arch 4

√ √ √ √ √ √ √ √ √ √ √
65.14%

Arch 5
√ √ √ √ √ √ √ √ √ √

70.52%
Arch 6

√ √ √ √ √ √ √ √ √ √ √ √
62.49%

Arch 7
√ √ √ √ √ √ √ √ √ √ √ √ √

70.93%

Fig. 5. Filter visualization of DCNN for image aesthetics. In particular, 128
convolutional kernels of the size 11×11×3 learned by the first convolutional
layer. The first 64 are from the local view column (with the input Irl ) and
the last 64 are from the global view column (with the input Iwg ).

presented in [10], and we learned style attributes using the
AVA style dataset4.

We first present the performance of SCNN using different
network architectures and taking Irl as the input. We select
the best performing architecture and evaluate SCNN using
different types of inputs. Next, we present image aesthetics
prediction results produced by DCNN, and qualitatively ana-
lyzed the advantage of the double-column architecture over
a single-column one. We evaluated the network adaptation
approach for content-based image aesthetics on the eight
representative image categories [10] (portrait, animal, stilllife,
fooddrink, architecture, floral, cityscape, and landscape), and
compared the network adaptation results (including both the
SCNN and DCNN) with the state-of-the-art aesthetics accu-
racy in each of the eight categories. Further, we show the
accuracy of trained style classifier and aesthetic categoriza-
tion results generated by RDCNN with style attributes or
semantic attributes incorporated. Moreover, we introduce a 1.5
million image dataset (IAD) with aesthetics scores, including
images derived from DPChallenge5 and PHOTO.NET6. We
further boost the aesthetics assessment accuracy, presented
in Section III-F, by training SCNN and DCNN on the IAD
dataset. Finally, we discuss the computational efficiency of the
proposed approaches on the AVA dataset and the IAD dataset.

4The AVA style dataset includes 11, 000 images for training and 2, 500
images for testing. Each of the images in the training set is associated with
one of the 14 style labels, i.e., complementary colors, duotones, HDR, image
grain, light on white, long exposure, macro, motion blur, negative images,
rule of thirds, shallow DOF, silhouettes, soft focus, and vanishing point. Each
of images in the test dataset is associated with one or multiple style labels as
the ground truth.

5http://www.dpchallenge.com
6http://photo.net

Fig. 6. Filter visualization of CNN for image classification on CIFAR dataset.
64 convolutional kernels of the size 5×5×3 learned by the first convolutional
layer.

TABLE II
ACCURACY OF AESTHETIC CATEGORIZATION WITH DIFFERENT INPUTS

δ Irl Iwg Icg Ipg
0 71.20% 67.79% 65.48% 60.43%
1 68.63% 68.11% 69.67% 70.50%

A. SCNN Results

We first examine the performance of SCNN on different
network architectures and present overall accuracy of image
aesthetics using seven different architectures listed in Table I.
The selected layer for each architecture is labeled with a
check mark. To fairly compare the performance of network
architectures, we took the same normalized input, Irl , as
training examples, and we let δ = 0. As shown in the Table, the
highest accuracy was achieved by the Arch 1. We thus fixed the
network architecture to Arch 1 in the following experiments.

We evaluate the performance of SCNN with various nor-
malized inputs as training examples, i.e., Icg , Iwg , Ipg , and
Irl . We trained deep networks with both δ = 0 and δ = 1
for each input type, and presented the overall accuracy in
Table II. We observed from the Table that the best performance
was achieved by Irl , which indicates that lr is an effective
data augmentation strategy to capture the fine-grained details
pertinent to image aesthetics. We also noticed that Iwg produces
the highest accuracy among the three inputs for capturing
the global view of images. We present the best performance
of SCNN using Arch 1 and Irl as the training input in Ta-
ble III. As shown, our performance is better than the previous
study [10] for both δ = 0 and δ = 1.

B. DCNN Results

As we have shown that Arch 1 performs the best among all
attempted architectures in Section III-A. In DCNN training
and testing, we adopted the SCNN architecture Arch 1 for
both columns. We took three inputs combinations to train the
proposed double-column network, i.e., Irl and Icg , Irl and Ipg ,
and Irl and Iwg . Let δ = 0, we empirically evaluated results
achieved by the three variations. The combination of Irl and
Icg achieves 71.8% accuracy, and Irl and Ipg achieves 72.27%
accuracy. The combination of Irl and Iwg performs the best
among the three, achieving 73.25% accuracy. Thus, we used
the two inputs of Irl and Iwg in DCNN training and evaluation.



7

TABLE III
ACCURACY OF AESTHETIC QUALITY CATEGORIZATION FOR DIFFERENT METHODS

δ [10] SCNN AVG SCNN DCNN RDCNN style RDCNN semantic
0 66.7% 71.20% 69.91% 73.25% 74.46% 75.42%
1 67% 68.63% 71.26% 73.05% 73.70% 74.2%

(a) Images ranked the highest in aesthetics by DCNN

(b) Images ranked the lowest in aesthetics by DCNN
Fig. 7. Images ranked the highest and the lowest in aesthetics generated by DCNN. Differences between low-aesthetic images and high-aesthetic images
heavily lie in the amount of textures and complexity of the entire image.

In Figure 5, we visualize the filters of the first convolutional
layer in the trained DCNN. The first 64 filters are from the
local column (using the input Irl ), and the last 64 filters are
from the global column (using the input Iwg ). For comparison,
we showed filters trained in the object recognition task on

CIFAR dataset7 in Figure 6. Interestingly, we found that
the filters learned with image aesthetic labels are free from
radical intensity changes and look smoother and cleaner. Such
observation indicates that differences between low-aesthetic
and high-aesthetic cues primarily lie in the amount of texture

7http://www.cs.toronto.edu/∼kriz/cifar.html



8

Low$Low$High$High$High$

Low$Low$High$High$High$
Fig. 8. Test images correctly classified by DCNN but misclassified by SCNN. The first row shows the images that are misclassified by SCNN with the input
Irl . The second row shows the images that are misclassified by SCNN with the input Iwg . The label on each image indicates the ground-truth aesthetic quality.

and complexity of the entire image. Such intuitions could also
be observed from example images, presented in Figure 7.
In general, the images ranked the highest in aesthetics are
smoother than those ranked the lowest. This finding substan-
tiates the significance of simplicity and complexity features
recently developed for analyzing perceived emotions [32].

To further show the power of DCNN, we quantitatively
compared its performance with that of the SCNN and [10].
We show in Table III that DCNN outperforms SCNN for
both δ = 0 and δ = 1, and significantly outperforms the
earlier study. We further demonstrate the effectiveness of joint
training strategy adopted in DCNN by comparing DCNN with
AVG SCNN, which averaged the two SCNN results taking Iwg
and Irl as inputs. We present the comparisons in Table III,
and the results show that DCNN performs better than the
AVG SCNN with both δ = 0 and δ = 1.

To analyze the advantage of the double-column architecture,
we visualize test images correctly classified by DCNN and
misclassified by SCNN. Examples are presented in Figure 8,
where images in the first row are misclassified by SCNN
with the input Irl , and images in the second row are mis-
classified with the input Iwg . The label annotated on each
image indicates the ground-truth aesthetic quality. We found
that images misclassified by SCNN with the input Irl mostly
dominated by an object, which is because the input Irl fails to
consider the global information in an image. Similarly, images
misclassified by SCNN with the input Iwg usually contain fine-
grained details in their local views. The result implies that
both global view and fine-grained details help improve the
aesthetics prediction accuracy as long as the information is
properly leveraged.

As discussed in Section II-B, a natural extension of DCNN
is to use multiple columns in CNN training, such as a quad-
column CNN. Let δ = 0, we attempted to use the four inputs
Irl , Icg , Ipg , and Iwg to train a quad-column CNN. Compared
with the DCNN, training a quad-column network architecture
requires GPU with a larger memory. We adopted the SCNN
architecture, the Arch 1, for all the four columns, and it
turns out that a GPU with 5G memory (such as Nvidia Tesla
M2070/M2090 GPU) is no longer applicable for network
training with a mini-batch size of 128. Meanwhile, optimizing
parameters in quad-column CNN is more difficult than a
double-column CNN because an individual column may re-

quire a different learning rate and training duration. In practice,
we initialized each of the four columns with SCNN trained
using Irl , Icg , Ipg , and Iwg , respectively. We then fine-tuned
the last layer of the quad-column neural network. Compared
with DCNN, a quad-column CNN achieved a slightly higher
accuracy of 73.38%.

C. Content-based Image Aesthetics
To demonstrate the effectiveness of network adaptation for

content-based image aesthetics, we took the eight most popular
semantic tags as used in [10]. We used the same training and
testing image collection with [10], roughly 2.5K for training
and 2.5K for testing in each of the categories8.

In each of the eight categories, we systematically com-
pared the proposed network adaptation approach (denoted by
“adapt”) built upon the SCNN (with the input Irl and Iwg )
and the DCNN with two baseline approaches (“cats” and
“generic”) and a state-of-the-art approach [10]9. “cats” refers
to the approach that trains the network using merely the
categorized images (i.e., roughly 2.5K in each category), and
“generic” refers to the approach that trains the network using
the AVA training set (i.e., including images of arbitrary seman-
tic categories). As presented in Figure 9 (a), (b), and (c), the
proposed network training approach significantly outperforms
the state of the art [10] (except the category of stilllife). In
particular, the “generic” produces higher accuracy in general
than the “cats” for SCNN with the input Iwg and the DCNN,
and “general” performs similar with “cats” for SCNN with
the input Irl . This indicates the effectiveness of gr. For the
SCNN with both the inputs and the DCNN, “adapt” show
better performance in most of the categories than “cats” and
“generic”.

We also observed that the SCNN with the input Iwg performs
better than the SCNN with the input Irl , as shown in Figure 9.
This result indicates that once an image is associated with
an obvious semantic meaning, then the global view is more
important than the local view in terms of assessing image
aesthetics. Moreover, for both the “generic” and the “adapt”,

8Few images in the AVA dataset have been removed from the Web-
site, so we might have slightly smaller number of test images compared
with [10]. Specifically, the number of test images in each of the eight
categories is: portrait(2488), animal(2484), stilllife(2491), fooddrink(2493),
architecture(2495), floral(2495), cityscape(2494), and landscape(2490).

9We refer to the best performance of content-based image aesthetics in [10].
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(c) DCNN
Fig. 9. Classification accuracy of image aesthetics in the eight semantic categories.
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Fig. 10. Image examples in the stilllife category. Left: Images in the stilllife category. Right: Images with artistic styles in the stilllife category.

the DCNN outperforms the SCNN with the input Iwg and Irl ,
which indicates that both the global view and the local view
contribute to the aesthetic quality categorization of content-
specific images. The DCNN does not show improvement in
the “cats” due to the limited number of training examples.

In combination with image classification [13], this content-
based method can produce overall aesthetics predictions given
uncategorized images.

We investigated the reason why the performance of SCNN
is worse than [10] in the “stilllife” category, while in the
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TABLE IV
ACCURACY FOR DIFFERENT NETWORK ARCHITECTURES FOR STYLE CLASSIFICATION

conv1 pool1 rnorm1 conv2 pool2 rnorm2 conv3 conv4 conv5 conv6 fc1K fc256 fc14 mAP Accuracy
(32) (64) (64) (32) (32) (32)

Arch 1
√ √ √ √ √ √ √ √ √ √ √

56.81% 59.89%
Arch 2

√ √ √ √ √ √ √ √ √
52.39% 54.33%

Arch 3
√ √ √ √ √ √ √ √ √ √

53.19% 55.19%
Arch 4

√ √ √ √ √ √ √ √ √ √ √
54.13% 55.77%

Arch 5
√ √ √ √ √ √ √ √ √ √

53.94% 56.00%
Arch 6

√ √ √ √ √ √ √ √ √ √ √ √
53.22% 57.25%

Arch 7
√ √ √ √ √ √ √ √ √ √ √ √ √

47.44% 52.16%

other 7 categories, the SCNN performs better than [10]. We
observed that unlike images in the other 7 categories, images
in the stilllife category do not share obvious visual similarity.
As shown in Figure 10 (left), images in this category involve
objects and scenes of various semantic categories that we may
encounter in our everyday life, such as animals, fruits, houses,
and people. Moreover, we found that images in the stilllife
category tend to be associated with certain artistic styles, as
shown in Figure 10 (right). This fact makes the problem of
assessing the aesthetics of stilllife images more challenging
than the other 7 categories using the deep network training
approach. Due to the diverse content of images in this category
and the limited number of training data (2491), compared to
[10], the performance of SCNN in this category is worse in
general. An exception, according to Figure 9 (b), is the results
produced by “adapt” with the inputs of Iwg , which slightly
outperforms [10].

In our experiments, the adaptation of the SCNN with the
input Irl takes about 50 epochs, and the adaptation of SCNN
with the input Iwg takes about 10 epochs. The fact that the
SCNN adaptation with the input Iwg requires less epochs is
because the random selection of patches lr results in more
training examples than the warping operation gw.

D. Categorization with Style Attributes

We evaluate the performance of RDCNN in two steps to
show the effectiveness of using style attributes in helping
image aesthetics prediction. We first evaluate the style clas-
sifier, and then we evaluate the aesthetics prediction accuracy
achieved by RDCNN.

The style classification performance achieved by SCNN was
compared with the performance reported in [10]. The Average
Precision (AP) and mean Average Precision (mAP) were used
as the evaluation metrics. We trained and evaluated the SCNN
on the same collection of training and testing images as
presented in [10]. We conducted similar experiments as we
have presented in Section III-A to select a best-performed
network architecture. We fixed the architecture and compare
performance of SCNN using the four input types. As shown
in Table IV, the best mAP we achieved is 56.81% which
outperforms the accuracy of 53.85% reported in [10]. The best
performance is produced by Arch 1, shown in Table IV, using
the Irl as the input. We visualize the filters learned by the first
convolutional layer of SCNN for image style classification in
Figure 11.

To demonstrate the effectiveness of style attributes, the
RDCNN was compared with DCNN for both δ = 0 and
δ = 1. The results, shown in Table III, reveal that RDCNN
outperforms DCNN. We qualitatively analyzed the results

Fig. 11. 32 convolutional kernels of the size 11× 11× 3 learned by the first
convolutional layer of Style-SCNN for style classification.

TABLE V
ACCURACY OF STYLE CLASSIFICATION WITH DIFFERENT INPUTS

Irl Iwg Icg Ipg
AP 56.93% 44.52% 45.74% 41.78%

mAP 56.81% 47.01% 48.14% 44.07%
Accuracy 59.89% 48.08% 48.85% 46.79%

produced by RDCNN and found that examples correctly
classified by RDCNNstyle are mostly associated with obvious
stylistic characteristics, such as rule-of-thirds, HDR, black and
white, long exposure, complementary colors, vanishing point,
and soft focus. Examples are presented in Figure 12. The
observation implies that style attributes help image aesthetics
prediction in cases when images are associated with obvious
styles.

E. Categorization with Semantic Attributes

We evaluate the RDCNNsemantic approach in the same way
with RDCNNstyle. In our experiments, we first fine-tuned the
ImageNet to the image aesthetics problem by adding an fc256
layer and replacing the label layer. We then trained regularized
RDCNNsemantic as introduced in Section II-C. The categoriza-
tion results with semantic attributes are shown in Table III,
where RDCNNsemantic improves the accuracy produced by
DCNN. By comparing the best aesthetic quality categorization
accuracy with and without semantic attributes, we demonstrate
the effectiveness of using semantic attributes in determining
the aesthetics of images.

We conducted qualitative analysis to analyze the advantage
of the RDCNN architecture using semantic attributes. We
present the examples in Figure 13, where we show repre-
sentative test images that have been correctly classified by
RDCNNsemantic but misclassified by DCNN. Our observation
is that the classification accuracy improves with images that
contain obvious objects.

F. The IAD dataset

We introduce a new large-scale image aesthetics dataset
(IAD), containing 1.5 million images, to explore the impact
of a larger-scale training dataset to the proposed approach in
terms of classification accuracy. Among the images in the IAD
dataset, 300K images were derived from the DPChallenge10,

10We crawled all the images on the DPChallenge uploaded upon April
2014.
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Fig. 12. Test images correctly classified by RDCNNstyle and misclassified by DCNN. The label on each image indicates the ground truth aesthetic quality of
images.
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Fig. 13. Test images correctly classified by RDCNNsemantic and misclassified by DCNN. The label on each image indicates the ground truth aesthetic quality
of images.

and 1.2 million were derived from the PHOTO.NET11. The
score distributions of the two sub-collections are presented in
Figure 14.

To generate a training dataset with two categories (low
aesthetics and high aesthetics), we divided the images crawled
from the PHOTO.NET based on their mean score 4.88 (i.e.,
images with score higher than 4.88 are labeled as high
aesthetics, and images with score lower than 4.88 are labeled
as low aesthetics.) For images crawled from DPChallenge,
we followed [10] and labeled the images as high aesthetics
when the score is larger than 5 and otherwise labeled the
images as low aesthetics. We handled the images crawled
from the two sources separately because the score scales in

11We included all the images on the PHOTO.NET uploaded upon April
2014 that have been associated with more than 5 aesthetic labels.

the PHOTO.NET (1 − 7) and the DPChallenge are different
(1−10). This results in 747K and 696K training images in the
categories of high aesthetics and low aesthetics respectively.

We trained the SCNN and DCNN on the IAD dataset using
the same architecture as introduced in [13]. We first trained
the SCNN with the input Irl , and we evaluated the network
on the AVA test set and achieved 73.21% accuracy, about 2%
higher than the SCNN trained on AVA dataset. We then trained
the SCNN with Iwg as the input, and the network achieved
73.65% accuracy, 5% percent higher than the SCNN trained
on the AVA dataset. We initialized the two columns of DCNN
with the SCNN with inputs of the Irl and Iwg , and the DCNN
achieved an accuracy of 74.6%, compared to 73.25% using
only the AVA training set. Even though the accuracy is not as
high as RDCNN using semantic attributes, the results indicate
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that by increasing the size of training data that associated with
only aesthetics labels, the prediction accuracy could also be
improved.

We attempted an alternative strategy to build the training
dataset, that is, using the top 20% rated images as positive
samples and the bottom 20% images as negative samples. The
accuracy produced by Iwg and Irl are 72.65% and 72.11%,
respectively, and the accuracy of DCNN is 72.9%. The results
are worse than using the entire IAD dataset for training with
the mean value of 4.88 as the boundary for positive and
negative training examples. The results may caused by two
reasons. First, the AVA test set contains images with ratings
in the middle. By cutting off images with medium scores from
training, the prediction accuracy on medium-range test images
may be affected. Second, utilizing the the top 20% and bottom
20% rated images reduce the number of training data. To fit
the new dataset, network architectures have to be carefully
adjusted in order to achieve good prediction results, which is
non-trivial. We will take it as our future work and discuss the
variations of problem formulation in image aesthetics and their
corresponding performance.

Beside the large scale, another advantage of the IAD
dataset is that a sub-collection of images in the dataset
is associated with camera parameters, such as Aper-
ture/FNumber, ISO/ISOSpeedRatings, Shutter/ExposureTime,
and Lens/FocalLength. While we did not use these information
in this work, we believe such information may facilitate future
studies and help users to take aesthetically appealing photos.
G. Implementation Details and Computational Efficiency

All the networks presented in this paper were implemented
using ConvNet12, which supports multi-column inputs for a
fully-connected layer. We used the logistic regression cost
layer in all network trainings. We initialized the weights
and biases learning rate of convolutional and fully-connected
layers as 0.001 and 0.002, respectively. Both the weight
momentum and the bias momentum were set to 0.9, and the
dropout rate was 0.5 on all fully-connected layers. The detailed
network architectures are presented in Sections III-A and III-F.

On the AVA dataset, it takes 2 days to train SCNN for
a certain input type, and about 3 days for DCNN. Training
SCNN for style classification takes roughly a day, and 3-4
days for RDCNN training. With Nvidia Tesla M2070/M2090
GPU, it took about 50 minutes, 80 minutes, and 100 minutes
for SCNN, DCNN, and RDCNN, to compute predictions of
2,048 images (each with 50 views) respectively. On the IAD
dataset, training SCNN for a specific input type takes about
four days, and training DCNN takes about one day using two
SCNN as initialization. Classifying 2048 images (each with
50 views) took about 60 minutes, 80 minutes for SCNN and
DCNN, respectively, with Nvidia Tesla K40 GPU13.

IV. CONCLUSIONS

This work studied deep neural network training approaches
for image aesthetics. In particular, we introduce a double-

12https://code.google.com/p/cuda-convnet/
13The Nvidia Tesla K40 GPU is faster than Nvidia Tesla M2070/M2090

GPU in testing because the SCNN and DCNN trained on the IAD dataset has
much larger capacity than the one trained on the AVA dataset.
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Fig. 14. The Mean Score Distributions of images collected from DPChallenge
and PHOTO.NET. Left: The mean score distributions of the 1.2 million
PHOTO.NET images; Right: The mean score distributions of the 300K
DPChallenge images.

column deep convolutional neural network approach to assess
image aesthetics. Using such novel architecture, we learned
aesthetic-related features automatically and unified the feature
learning and classifier training. The proposed double-column
architecture captures both the global and local views of an
image for judging its aesthetic quality. We further developed
a network adaptation strategy to apply the trained double-
column network training approach for content-based image
aesthetics. In addition, image style and semantic attributes
are leveraged respectively to boost performance. Experimental
results show that our approaches produce significantly higher
accuracy than earlier-reported results on the AVA test set, one
of the largest existing benchmark with rich aesthetic ratings.
Moreover, we introduced a 1.5 million IAD dataset for image
aesthetics and improved the aesthetic assessment accuracy on
the AVA test set. This result shows that the performance of
image aesthetics could be further improved given a larger-scale
training dataset.

One limitation of our work is that we have not yet been able
to explain what we have learned exactly from the proposed net-
work training approach and why those features help improve
the performance. Visualizing trained neuron networks is one
of the most active and significant research problems among
recent deep learning studies. We would like to treat it as our
future work.
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