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Summarizing high-dimensional data

Financial time series data can be
overwhelming: the number of
variables to anayze jointly (N) is large

Reduce dimension by using a factor
model:

xit = λ′
i ft + eit ,

R << N is the number of factors
both ft and λi are unobserved.

Standard approach: estimate factors
using PCA on the second moment
covariation of the N variables: X tX

Question: Can we do better using
PCA on the third moment covariation
of the N variables:
X t((XX t) ◦ (XX t))X

Kris Boudt HFA R/Finance 2022 2 / 19



PCA-based factor analysis to decompose X = FΛt + E

Reliable when E has low explanatory power for X tX such that

X tX ≈ ΛFF tΛt .

→ Clear separation of eigenvalues of X tX into a group of large
eigenvalues representing factor-related variation and a group of small
eigenvalues representing idiosyncratic variation
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PCA-based factor analysis to decompose X = FΛt + E

Following Ahn and Horenstein (2013): Select the number of factors
based on maximizing the ratio of two adjacent eigenvalues arranged
in descending order

R̂(k) = argmax1≤r≤Rmax

r − th largest eigenvalue of X tX

(r + 1)− th largest eigenvalue of X tX
.

Set the loading Λ̂ to
√
N times the eigenvectors of X tX

Compute the factors as the linear fit F̂ = X Λ̂/N
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Limits of covariance analysis in case of weak factors

Often, the variance of E is large such that it has a substantial finite
sample contribution to

X tX ≈ ΛFF tΛt + E tE

Due to the large explanatory power of the idiosyncratic factors, there
is no clear separation of the eigenvalues
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That’s bad news
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Besides being big or fat, data is often non-normal
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Non-normality is summarized in coskewness and cokurtosis
matrix

Case of three assets:

Coskewness between 3 assets: C
(3)
ijk = E[XiXjXk ]

Coskewness matrix:

C
(3)
x =

(
C

(3)
111 C

(3)
112 C

(3)
211 C

(3)
212

C
(3)
121 C

(3)
122 C

(3)
221 C

(3)
222

)

=

(
−0.458 −1.107 −1.107 −1.950
−1.107 −1.950 −1.950 −4.522

)
× 10−6

We transform this to a square matrix: C
(3)
x C

(3)t
x

A general estimator of the third-order covariation is:

C̃
(3)
x C̃

(3)t
x =

1

T 2
X t((XX t) ◦ (XX t))X
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Higher order factor analysis to decompose X = FΛt + E

Consider that non-normality is mostly driven by exposure to

non-normal factors: C̃
(3)
x C̃

(3)t
x ≈ ΛC

(3)
f C

(3)t
f Λt

Sucess in estimating factors by doing eigenanalysis on C̃
(3)
x C̃

(3)t
x

instead of X tX
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Higher order factor analysis to decompose X = FΛt + E

Unlike PCA on covariance, we do PCA on C̃
(3)
x C̃

(3)t
x

Select the number of factors based on maximizing the ratio of adjacent

eigenvalues of C̃
(3)
x C̃

(3)t
x arranged in descending order

Set the loading Λ̂ to
√
N times the eigenvectors of C̃

(3)
x C̃

(3)t
x

Compute the factors as the linear fit F̂ = X Λ̂/N

Backed by theory:

Asympotic properties: Consistency and asymptotic normality of HFA
for N,T → ∞
When to use it? Efficiency gain in case of weak factors: largest
eigenvalue of E tE grows at rate Nα with α ∈ (0, 1] (DeMol et
al.(2008)) (↔ strong factors have α = 0)
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Simulation study

A two-factor model xit = λi1f1t + λi2f2t + eit , λi ∼ N (0, I),
et ∼ N (0,GN)

Explanatory power of factors differs: Var [f1t ] = 5 (strong factor),
Var [f2t ] = 1

Largest eigenvalue of E’E is of the order Nα.

When α increases, explanatory power of f2t is only moderately larger
than σ1(N

−1GN) (Weakly influential factor).

What you will see: Covariance-based approaches break down to
estimate and select the weak factors as α increases.
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Sensitivity of accuracy of loading estimates to explanatory
power of idiosyncratic factors (α)

Assume you know there are two factors, how accurately are the
loadings estimated? Trace ratio which is 1 if perfect estimation.

(a) (N,T ) = (100, 100) (b) (N,T ) = (500, 500)
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Sensitivity of eigenvalue ratio estimates to explanatory
power of idiosyncratic factors (α)

Factor selection: True number is 2.

(c) Eigenvalue Ratio test with X tX (d) Eigenvalue Ratio test with X t((XX t)◦
(XX t))X
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Quid kurtosis?

Methodology is the same, but uses the following fourth order
cumulant matrix:

C̃
(4)
x C̃

(4)t
x =

1

T 2
X t((XX t) ◦ (XX t) ◦ (XX t))X +N1 +N2 +N3,

where N1 = −3(X t((b + b′) ◦ (XX t))X )/T 2,
b = (a, a, . . . , a) ∈ RT×T , a = (a1, a2, . . . , aT )

′,
at =

∑
i

∑
j xitxjtΣ̃x ,ij for t = 1, 2, . . . ,T ;

N2 = 3vec(Σ̃x)
tvec(Σ̃x)Σ̃x Σ̃x ; N3 = 6Σ̃x Σ̃x Σ̃x Σ̃x and Σ̃x = X tX/T .

Seems cumbersome, but computationally convenient.

Increases power to detect also the factors that are symmetric.
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US Equity Risk Premium forecasting

A key variable in portfolio maangement is the expected equity risk
premium:

ERPt = log(1 + rmt )− log(1 + r ft ),

Many candidate predictors. We consider factors extracted from the
134 monthly macroeconomic time series in the FRED-MD
(N = 134,T = 720)

ERPt+1 = α+ β(L)f̂t + γh(L)ERPt + ϵt+1,

Period: 1959-2018. Rolling samples of 26 years (312 observations).
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Scree plots of of FRED-MD database disagree
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Out of sample performance for predicting the equity
premium

Our of sample period: 1985-2018.

Accuracy evaluation in terms of Mean Squared Error

1985-2007/10 2007/11-2018 1985-2018
Panel A: Select factors based on covariance
PCA on covariance 2.316
PCA on 3rd order cumulant 2.308
PCA on 4th order cumulant 2.309
Panel B: Select factors based on covariance, coskewness and cokurtosis (the largest R)
PCA on covariance 2.323
PCA on 3rd order cumulant 2.280*
PCA on 4th order cumulant 2.284*
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Out of sample performance for predicting the equity
premium

Conclusion of gains of using PCA on higher order moments is robust across
subsamples.

1985-2007/10 2007/11-2018 1985-2018
Panel A: Select factors based on covariance
PCA on covariance 2.113 2.730 2.316
PCA on 3rd order cumulant 2.075* 2.786 2.308
PCA on 4th order cumulant 2.076* 2.787 2.309
Panel B: Select factors based on covariance, coskewness and cokurtosis (the largest R)
PCA on covariance 2.111 2.758 2.323
PCA on 3rd order cumulant 2.081* 2.687* 2.280*
PCA on 4th order cumulant 2.068* 2.727 2.284*
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Conclusion

Often data is high-dimensional and factors are used to summarize them

Standard PCA fails in case of weak factors

Solution is PCA on the higher order moments

Complete framework: Factor selection and estimation. Computationally
convenient.

R package: hofa (https://github.com/GuanglinHuang/hofa)

HFA in R: illustration using simulations (https://rpubs.com/guanglin/876536)

Paper is available on SSRN. (https://ssrn.com/abstract=3599632)
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