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Summarizing high-dimensional data

o Financial time series data can be
overwhelming: the number of
variables to anayze jointly (N) is large

Large number of variables N

@ Reduce dimension by using a factor

model:
% | | High-dimensional data xit = Nify + ejt,
S matrix X ]
§ R << N is the number of factors
< both f; and \; are unobserved.
3 X=FAt+E :
| @ Standard approach: estimate factors
using PCA on the second moment
Application: monthly FRED-MD covariation of the N variables: X*X
=720 @ Question: Can we do better using

PCA on the third moment covariation
of the N variables:
XE((XXE) o (XX1))X
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PCA-based factor analysis to decompose X = FA" + E

@ Reliable when E has low explanatory power for XtX such that
X'X =~ NFFEAL,

— Clear separation of eigenvalues of XX into a group of large
eigenvalues representing factor-related variation and a group of small
eigenvalues representing idiosyncratic variation

Scree plot of covariance matrix (theta = 1)
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PCA-based factor analysis to decompose X = FA" + E

e Following Ahn and Horenstein (2013): Select the number of factors
based on maximizing the ratio of two adjacent eigenvalues arranged
in descending order

r — th largest eigenvalue of X'X
(r 4+ 1) — th largest eigenvalue of XtX'

S0
R = argmaxi<,<g,..

@ Set the loading A to VN times the eigenvectors of XX
o Compute the factors as the linear fit F = XA/N
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Limits of covariance analysis in case of weak factors

@ Often, the variance of E is large such that it has a substantial finite
sample contribution to

XX ~ NFFEA + E'E

@ Due to the large explanatory power of the idiosyncratic factors, there
is no clear separation of the eigenvalues

Scree plot of covariance matrix (theta = 7)
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That's bad news
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Besides being big or fat, data is often non-normal

—— standard normal
— skew-t
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Non-normality is summarized in coskewness and cokurtosis

matrix

Case of three assets:

o Coskewness between 3 assets: C,-J(-3) = E[X;iXjX¢]

@ Coskewness matrix:

TR
G G G Gn

_ (—0.458 —1.107 -1.107 —1.950 % 106
- \-1.107 -1.950 -1.950 —4.522

We transform this to a square matrix: C)£3) C)S3)t
A general estimator of the third-order covariation is:

Pt = %xf((xxf) o (XX1)X

R/Finance 2022

Kris Boudt



Higher order factor analysis to decompose X = FA! + E

@ Consider that non-normality is mostly driven by exposure to
non-normal factors: C)((3) C)S3)t ~ /\C§3) C£3)t/\t

@ Sucess in estimating factors by doing eigenanalysis on 6)53) E)£3)t

instead of XX

Scree plot of third-order multi-cumulant matrix (theta = 7)
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Higher order factor analysis to decompose X = FA! + E

@ Unlike PCA on covariance, we do PCA on (_~',£3)(_~}£3)t
e Select the number of factors based on maximizing the ratio of adjacent
eigenvalues of 5 3)5 arranged in descending order
e Set the loading A to VN times the eigenvectors of c! 3)C 3t
o Compute the factors as the linear fit F = XA/N
o Backed by theory:
e Asympotic properties: Consistency and asymptotic normality of HFA
for N, T — o0
e When to use it? Efficiency gain in case of weak factors: largest
eigenvalue of E*E grows at rate N® with a € (0,1] (DeMol et
al.(2008)) (4 strong factors have a = 0)
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Simulation study

e A two-factor model x;z = A1 fir + Ainfor + €r, A\i ~ N(0,1),

e ~ /\/(0, GN)

Explanatory power of factors differs: Var[fi;] = 5 (strong factor),
Var[ft] =1

Largest eigenvalue of E'E is of the order N<.

When « increases, explanatory power of fy; is only moderately larger
than o1(N~1Gy) (Weakly influential factor).

What you will see: Covariance-based approaches break down to
estimate and select the weak factors as « increases.
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Sensitivity of accuracy of loading estimates to explanatory

power of idiosyncratic factors («)

@ Assume you know there are two factors, how accurately are the
loadings estimated? Trace ratio which is 1 if perfect estimation.

050 050
alpha alpha

(a) (N T) = (100, 130) (b) (N T):(SOO,SH:)O)
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Sensitivity of eigenvalue ratio estimates to explanatory

power of idiosyncratic factors («)

@ Factor selection: True number is 2.

Eigenvalue Ratio
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(c) Eigenvalue Ratio test with X*X
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(d) Eigenvalue Ratio test with X*((XX*)o
(XXX
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@ Methodology is the same, but uses the following fourth order
cumulant matrix:

i~ 1
cH e _ ﬁxt((xxt) o (XX') o (XX")X + N1+ No + N3,

where N7 = —3(Xt((b+ b') o (XX1))X)/T?,

b= (aa,...,a) €~RTXT,3: (a1,a2,...,a1),

ar = Zizjx,-txjtix,,-j fort=1,2,...,T;

Ny = 3vec(Zy)tvec(XZx)XxXy; N3 =62, X, Y, Y, and X, = X' X/T.
@ Seems cumbersome, but computationally convenient.

@ Increases power to detect also the factors that are symmetric.
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US Equity Risk Premium forecasting

@ A key variable in portfolio maangement is the expected equity risk
premium:

ERP: = log(1 4 r™) — log(1 + rf),
@ Many candidate predictors. We consider factors extracted from the
134 monthly macroeconomic time series in the FRED-MD
(N =134, T =720)
ERPes1 = o+ B(L)f + va(L)ERP: + €e41,

@ Period: 1959-2018. Rolling samples of 26 years (312 observations).
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Scree plots of of FRED-MD database disagree
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Out of sample performance for predicting the equity

premium

@ Our of sample period: 1985-2018.

@ Accuracy evaluation in terms of Mean Squared Error

1985-2007/10  2007/11-2018  1985-2018
Panel A: Select factors based on covariance

PCA on covariance 2.316
PCA on 3rd order cumulant 2.308
PCA on 4th order cumulant 2.309
Panel B: Select factors based on covariance, coskewness and cokurtosis (the largest R)
PCA on covariance 2.323
PCA on 3rd order cumulant 2.280*
PCA on 4th order cumulant 2.284*
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Out of sample performance for predicting the equity

premium

@ Conclusion of gains of using PCA on higher order moments is robust across
subsamples.

1985-2007/10 2007/11-2018  1985-2018
Panel A: Select factors based on covariance

PCA on covariance 2.113 2.730 2.316
PCA on 3rd order cumulant 2.075* 2.786 2.308
PCA on 4th order cumulant 2.076* 2.787 2.309
Panel B: Select factors based on covariance, coskewness and cokurtosis (the largest R)
PCA on covariance 2111 2.758 2.323
PCA on 3rd order cumulant 2.081* 2.687* 2.280*
PCA on 4th order cumulant 2.068* 2.727 2.284*
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Conclusion

Often data is high-dimensional and factors are used to summarize them
Standard PCA fails in case of weak factors
Solution is PCA on the higher order moments

Complete framework: Factor selection and estimation. Computationally
convenient.

R package: hofa (https://github.com/GuanglinHuang/hofa)

@ HFA in R: illustration using simulations (https://rpubs.com/guanglin/876536)

@ Paper is available on SSRN. (https://ssrn.com/abstract=3599632)
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