
A. Some Challenging Projects

The following pages contain some projects that will challenge you to

write programs using the skills you’ve learned in this book. Give them

a try!

Project 1: Cannonball Run

Introduction: The Visitor
Imagine that you’re an artilleryman in Napoleon’s army. Your job is to

fire a cannon, and to drop cannonballs as close as possible to a given

target. You take your job seriously, and spend a lot of time thinking

about the factors that limit your cannon’s accuracy.

Ignoring effects of the wind and rain (which you can’t control), you

know that if the cannon always fired cannonballs at the same speed

and angle, they’d always hit the same spot. But in reality, the speed

and angle aren’t always the same. Damp gunpowder or badly-formed,

ill-fitting cannonballs change the speed, and the cannon doesn’t stay in

exactly the same position from one shot to the next, tilting a little up or

down, or side to side.
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2000 4000 6000 8000 10000

he
ig

ht
 (

m
et

er
s)

distance (meters)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2000 4000 6000 8000 10000

he
ig

ht
 (

m
et

er
s)

distance (meters)

Figure A.1: The figures above illustrate
how a cannonball’s final position
depends on the upward angle at which
it’s fired (top) and its initial velocity
(bottom).

If you could fix even one of these problems you’d deserve a medal! But,

sadly, it would take years of experimentation and tons of gunpowder

to develop a new cannon design. If only there were some way to

accurately simulate a real cannon with something smaller, like the toy

cannons that tin soldiers use.

As you’re standing beside your cannon, musing about this, a mighty

concussion knocks you off your feet! An attack! But no. Rolling

onto your stomach and peering through the settling dust you see, not

a cannonball’s crater, but an oddly-dressed man. He’s lying on the

ground, waving his hands in the air. “I’ve done it!”, he shouts, “I’ve

done it! I’m the first man to travel back in time!”

Over the course of the next hour you find out that this man has come

from the 21st Century, and that the technology of his time is almost

magical. The time-traveller has brought with him an object the size of a

book which, when unfolded, can display moving images and even play

music! The traveller calls it a “computer”. This device is the solution to

your problem! It can instantly simulate thousands of cannon shots!

506 practical computing for science and engineering

Program 1: Simulating the Cannon
This project will require you to write three programs. The first of them

will be named “simulate.cpp”, and it will simulate a cannon. The

program will allow the user to specify a speed and vertical angle for

the cannonballs, but will add some random “jitter” to these values to

simulate the cannon’s imperfections. It will also add some random

jitter to the side-to-side direction in which the cannon is pointing. The

program’s output will be a file containing the x, y coordinates at which

each simulated cannonball lands1. 1 Note that in all of the following we’ll
ignore the effects of air resistance.

Figure A.2: Canon de 16 Gribeauval.
Source: Wikimedia Commons

The program should accept all of its parameters on the command line,

as described in Section 9.15 of Chapter 9. The usage should be:

./simulate nshots vinit theta outfile

where:

• nshots is the number of cannonballs to fire.

• vinit is the ideal initial velocity of the cannonballs (before adding

any jitter).

• theta is the ideal angle between the cannon and the ground (before

adding jitter), expressed in degrees. An angle of zero means the

cannon is horizontal, and an angle of 90 means the cannon is pointing

straight up into the air. (See Figure A.3.)

• outfile is the name of a file into which the program will write

the x and y coordinates at which each cannonball lands. Assume

that the cannon points along the x axis, but cannonballs may veer by

some small random angle, β, to the right or left. (See Figure A.4.)

If the user doesn’t supply enough command-line arguments, the pro-

gram should print out a friendly usage message and then stop without

trying to do anything else.

After running the program, the output file should contain two columns

of numbers with a space between them. The first column is x and the

second column is y.

https://commons.wikimedia.org/wiki/File:Canon_de_16_Gribeauval_pour_les_sieges_before_1923.jpg

chapter a. some challenging projects 507

Figure A.3: Side view of the cannon’s
upward angle, θ.

Figure A.4: Overhead view of a
cannonballs side-to-side angle, β, its
range, r, and the landing positions of
some cannonballs.

β

r sin(β)

r cos(β)

x,y

Intended direction

= angle to left or right

r = ra
nge of c

annonball

Figure A.5: Finding the x and y
coordinates of a cannonball, given its
range and the horizontal angle β.

To get you started, the helpful time-traveller has already written much

of the program for you (see Program A.1). All you need to do is

complete the program by filling in main and adding a help function

that prints out a friendly usage message when the user doesn’t supply

enough arguments on the command line. As you can see, you’ll be

using several functions that have appeared in Chapters 9 and 11. These

are at the top of Program A.1.

Your program should determine the landing positions of the cannon-

balls as follows:

508 practical computing for science and engineering

1. Convert the upward angle (theta) into radians, since C’s trigonome-

try functions use radians instead of degrees. You can use the function

to_radians to do this. (This function is taken from Chapter 9, Sec-

tion 9.8.)

2. Open the output file for writing. (See examples like Program 5.3 in

Chapter 5.) Note that the name of the file will be in the command-line

argument argv[4].

3. Now loop through all of the cannon shots, using a for loop.

4. Each time the cannon shoots, set the cannonball’s initial velocity

and upward angle to the values of vinit and theta, plus some

random “jitter”. To do this, use the function named normal (taken

from Section 11.4 of Chapter 11). The normal function generates

numbers that tend to be close to zero, but sometimes have other

values. (See Figure A.6.)

• For each shot your program makes, set the cannonball’s initial

velocity to vinit + 0.1*vinit*normal(). This will give a

value that tends to be within +/- 10% of the “ideal” velocity,

vinit. 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

-3 -2 -1 0 1 2 3

C
ou

nt
, o

ut
 o

f 1
00

,0
00

 T
rie

s

Pseudo-Random Number

Figure A.6: The normal function
generates pseudo-random numbers that
are most likely to be near zero, with
smaller probabilities for other values.
This figure shows 100,000

pseudo-random numbers generated by
normal.

• Set each cannonball’s upward angle to theta + 0.01*normal().

This will give a value that tends to be close the “ideal” angle,

theta, but has some small random variation.

5. Now that you have the cannonball’s velocity and upward angle, use

the range function (taken from Chapter 9, Section 9.8) to calculate

its range. This function takes the cannonball’s initial velocity and its

upward angle, and returns the cannonball’s “range” (the horizontal

distance from the launch point to the landing point). (See Figure

A.4.)

6. To determine the cannonball’s landing position you’ll also need to

know β, the angle by which its path deviates to the right or left. (See

Figure A.4.) Use the normal function for this by setting β equal to

0.01*normal(). This will give you a random, small angle.

7. Now that you have the cannonball’s range and the angle β, you

calculate the x and y coordinates of its landing spot. See Figure A.5.

8. Finally, write the x and y coordinates into the output file. (See

examples like Program 5.3 in Chapter 5 if you don’t remember how

to do this.)

Once you’ve written and compiled your program, run it like this to

produce an output file to use with your next program:

./simulate 10000 250 45 simulate.dat

chapter a. some challenging projects 509

Program A.1: simulate.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

double rand01 () {

static int needsrand = 1;

if (needsrand) {

srand(time(NULL));

needsrand = 0;

}

return (rand()/(1.0+RAND_MAX));

}

double normal () {

int nroll = 12;

double sum = 0;

int i;

for (i=0; i<nroll; i++) {

sum += rand01();

}

return (sum - 6.0);

}

double g = 9.81; // Acceleration of gravity.

double to_radians (double degrees) {

return (2.0 * M_PI * degrees / 360.0);

}

double time_of_flight (double v0, double angle) {

double t;

double vy0;

vy0 = v0 * sin(angle);

t = 2.0 * vy0 / g;

return (t);

}

double range (double v0, double angle) {

double d;

d = v0 * cos(angle) * time_of_flight(v0, angle);

return (d);

}

int main (int argc, char *argv[]) {

//

// Insert program here!

//

}

510 practical computing for science and engineering

Program 2: Analyzing the Results
Your second program will be named analyze.cpp. It will read a data

file produced by your first program, and give you a statistical summary

of the data it contains.

Like the first program, analyze should accept all of its parameters on

the command line, and give users a helpful message if they don’t give

it the right number of arguments. The usage should be:

./analyze filename

where filename is the name of a data file produced by your simulate.cpp

program.

The output of the analyze program should look like this:

Average x = 6428.287617
Std. dev. of x = 1286.944844
Min x = 2568.660526
Max x = 13046.427659
Average y = -0.611109
Std. dev. of y = 65.978704
Min y = -284.001774
Max y = 313.589122

showing the average values of x and y, the standard deviations of x

and y, and the minium and maximum values of x and y.

The helpful time-traveller has come to your aid again, and written some

of the program for you (see Program A.2). You’ll just need to fill in

main and write a help function.

To analyze the data, the program should proceed as follows:

1. First, open the data file for reading. See Program 7.5 in Chapter 7

for an example of this. Refer to that program to see how to read the

data and calculate the average and standard deviation.

2. The time-traveller has kindly provided you with an easy way to find

minimum and maximum values, using the two functions findmin

and findmax. Each time you read a new value of x, for example,

just say xmax = findmax(x,xmax,n). This will update the value

of xmax if necessary. When you’re done reading all of the data, xmax

will contain the largest value of x.

Run your program to analyze the simulate.dat file you produced

earlier. Check to make sure its results look realistic. (Compare them to

the sample output above.)

chapter a. some challenging projects 511

Program A.2: analyze.cpp

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

double findmax (double x, double oldvalue, int n) {

if (n == 0) {

oldvalue = x;

} else {

if (x > oldvalue) {

oldvalue = x;

}

}

return (oldvalue);

}

double findmin (double x, double oldvalue, int n) {

if (n == 0) {

oldvalue = x;

} else {

if (x < oldvalue) {

oldvalue = x;

}

}

return (oldvalue);

}

int main (int argc, char *argv[]) {

//

// Insert program here!

//

}

512 practical computing for science and engineering

Program 3: Making Pictures
Your final program will be called visualize.cpp and it will let you

make pictures like the ones shown in Figure A.8. These figures show

the distribution of landing positions of 10,000 simulated cannonballs.

[i][j-1]

[i-1][j] [i][j] [i+1][j]

[i][j+1]

Figure A.7: Each element of grid
records the number of cannonballs that
landed within a particular section of the
battlefield.

The figures represent 2-dimensional histograms. We talked about

histograms in Chapter 7, but we didn’t say much about 2-dimensional

ones. Because of that, our friendly time-traveller has written almost all

of this program for you. (See Program A.3.)

This program uses a 2-dimensional, nbins × nbins array named

grid. Each element of the array represents an area of the battlefield.

The number stored in each element is the number of cannonballs that

landed in that area.

Like the preceding programs, this one will expect parameters on its

command line. Its usage will be:

./visualize xmin xmax ymin ymax infile outfile

where xmin, xmax, ymin, and ymax specify the limits of rectangular

area of the battlefield. infile is the name of a data file produced by

your simulate program. outfile is the name of a file into which

the current program will write its results.

Two key parts of the program have been left for you to fill in. First, near

the top of main, you need to set all of the elements of grid to zero. To

do this, you’ll need two nested “for” loops. Inside the loops, set each

element, grid[xbin][ybin], to zero.

Second, near the end of main, you need to open the output file for

writing and write your results into it. (You’ll again need two nested

“for” loops to do this.)

The file should have three columns, x, y, and grid[xbin][ybin],

where x and y are the coordinates of the center of the grid element.

Use x=xmin+xbinwidth*(0.5+xbin), and y similarly, for the center

position of each grid element.

There should also be a blank line after every nbins rows. See the end

of Section 6.12 for an explanation of this blank line, and the last part of

Program 6.8 for an example showing how to create it.

After writing and compiling the program, try it out. Use your analyze

chapter a. some challenging projects 513

program to find good values for xmin, xmax, ymin, and ymax. Use

these values and your newest program to process the data in simulate.dat

and create a new file, visualize.dat, that can be plotted with gnu-

plot:

./visualize 2569 13046 -284 314 simulate.dat visualize.dat

Try plotting your results with gnuplot. To produce the top graph in

Figure A.8, give gnuplot the following command:

plot "visualize.dat" with image

To produce the bottom graph in Figure A.8, use this gnuplot command:

splot "visualize.dat" with image, "" with histeps

514 practical computing for science and engineering

-200

-100

 0

 100

 200

 300

 4000 6000 8000 10000 12000

y
(m

et
er

s)

x (meters)

 0

 50

 100

 150

 200

 250

 300

 350

 4000
 6000

 8000
 10000

 12000
-200

-100

 0

 100

 200

 300

 0

 50

 100

 150

 200

 250

 300

 350

x (meters)

y (meters)

 0

 50

 100

 150

 200

 250

 300

 350

Figure A.8: Two views of the
distribution of cannonball landing
positions. The color scale shows how
many cannonballs (out of 10,000) landed
in each grid element.

chapter a. some challenging projects 515

Program A.3: visualize.cpp

#include <stdio.h>

#include <stdlib.h>

void help() {

printf ("Usage: ./visualize xmin xmax ymin ymax input.dat output.dat\n");

}

int main (int argc, char *argv[]) {

const int nbins = 20;

int grid[nbins][nbins];

double x, y;

double xmin, xmax;

double ymin, ymax;

double xbinwidth, ybinwidth;

FILE *output;

FILE *input;

int xbin, ybin;

if (argc != 7) {

help();

exit(1);

}

// Insert code here to reset all bins to zero.

xmin = atof(argv[1]);

xmax = atof(argv[2]);

ymin = atof(argv[3]);

ymax = atof(argv[4]);

xbinwidth = (xmax - xmin)/(double)nbins;

ybinwidth = (ymax - ymin)/(double)nbins;

input = fopen (argv[5],"r");

while (fscanf(input, "%lf %lf", &x, &y) != EOF) {

xbin = (x-xmin)/xbinwidth;

ybin = (y-ymin)/ybinwidth;

if (xbin >= 0 && ybin >= 0 && xbin < nbins && ybin < nbins) {

grid[xbin][ybin]++;

}

}

fclose (input);

// Insert code here to open the output file and write

// the contents of "grid" into it.

}

516 practical computing for science and engineering

Last Words
As your friend from the future fades away in a cloud of sparkles, you

stand there savoring your brief glimpse of the future. “If only we had

such technology today,” you sigh, as you hear your commander shout

the order to begin breaking camp.

Figure A.9: Wellington at Waterloo.
Source: Wikimedia Commons

Figure A.10: Part of Babbage’s
“Difference Engine”.
Source: Wikimedia Commons

While you prepare to march into Russia during the Spring of 1812, far

away in England a mathematician named Charles Babbage is looking

at mathematical tables, like the ones used by artillerymen for aiming

their cannons, and thinking about how these tables could be generated

automatically, by machinery instead of humans.

After Napoleon’s defeat at Waterloo in 1815, Babbage exchanges ideas

with other mathematicians, English and French, and in 1822 he be-

gins work on the series of computing machines that will become the

ancestors of all modern computers.

Figure A.11: The Emperor Napoleon
(left), and Babbage’s brain (right).
Source: Wikimedia Commons 1, 2

https://commons.wikimedia.org/wiki/File:Wellington_at_Waterloo_Hillingford.jpg
https://en.wikipedia.org/wiki/File:Difference_engine_plate_1853.jpg
https://commons.wikimedia.org/wiki/File:Jacques-Louis_David_-_The_Emperor_Napoleon_in_His_Study_at_the_Tuileries_-_Google_Art_Project.jpg
https://en.wikipedia.org/wiki/File:Babbages_Brain.jpg

Project 2: Diffusion Confusion

Introduction: Randomly-Bouncing Molecules
Imagine that you’re in a large room full of perfectly still air. At the

opposite end of the room is a just-opened bottle of perfume. The

volatile molecules from the perfume have started to wander out into

the room, bouncing off of molecules in the air. How long would it take

these molecules to bounce their way across the room to your nose?

dis
ta
nc
e

(x,y,z)

x

y
Figure A.12: A molecule leaves the
perfume bottle, then bounces around
among the air molecules for a while,
ending up at a position (x, y, z) some
distance from where it started.

A typical speed for a molecule in air is about 1,000 miles per hour,

but our perfume molecules don’t travel in a straight line. Figure A.12

shows a typical perfume molecule’s path. Since it bounces around at

518 practical computing for science and engineering

random, it tends to linger near the bottle for a long time. The process

by which molecules spread out by bouncing around this way is called

“diffusion”.

In this project you will write three programs: simulate.cpp, analyze.cpp,

and visualize.cpp. The first will simulate the paths of perfume

molecules through air, the second will analyze the simulated data, and

the third will help us visualize one of the results.

Program 1: Simulating the Paths of Molecules
Your first program will be named simulate.cpp. It will track the

random movement of some number of perfume molecules as they

undergo some number of collisions. The program will write the final

position of each molecule, and how long it took the molecule to get

there, into an output file.

The perfume molecule’s path is an example of a random walk, and

this program will be very similar to Practice Problem 5 in Chapter

7. One difference is that the new program tracks a random path in

three dimensions instead of two, so you’ll need to keep track of the

molecule’s x, y, and z coordinates. Another difference is that we won’t

assume that each step of the path has the same length, as we did in

the earlier program. This time, we’ll let the step length vary a little.

Each step in the molecule’s random path will be the distance from

one collision to the next. Finally, the new program won’t bother with

keeping track of sums or averages.

The program should accept all of its parameters on the command line,

as described in Section 9.15 of Chapter 9. The usage should be:

./simulate nparticles ncollisions output.dat

where:

• nparticles is the number of perfume molecules we want to simu-

late.

• ncollisions is the number of collisions each molecule will experi-

ence.

• output.dat is the name of a file into which the program’s results

will be written.

If the user doesn’t supply enough command-line arguments, the pro-

chapter a. some challenging projects 519

gram should print out a friendly usage message and then stop without

trying to do anything else. See Section 9.15 of Chapter 9 for an example

showing how to do this.

After running the program, its output file should contain four columns

of numbers: The x,y, and z coordinates where the molecule ended up,

and the time it took to get there. We’ll measure time in microseconds

(1 microsecond = 10−6 seconds) and distances in microns (1 micron =

10−6 meters).

Each time a perfume molecule collides with an air molecule, we’ll

need to generate a new random direction for it, and a new random

distance to the next collision. In 3-dimensional space, we can describe

a particle’s direction with two angles, θ (theta) and ϕ (phi) (see Figure

A.13):

x

y

z

φ

θ

Δ z=d cos(φ)

Δ y=d sin(φ)sin(θ)

Δ x=d sin(φ)cos(θ)

(x,y,z)

d

Figure A.13: After a collision, the
molecule’s new direction is given by two
angles, θ and ϕ. The distance to the next
collision is d.

• The angle θ can point in any direction away from the Z axis. It can

have any value between zero and 2π radians (360°).

• The angle ϕ can have any value between straight up (zero) and

straight down (π radians, or 180°).

The distance, d, will vary around some average value called the “mean

free path”, which we’ll assume to be 0.14 microns. Each time we

generate a value for d we’ll do so by adding a little bit of random “jitter”

to this distance.

520 practical computing for science and engineering

To get you started, I’ve already written some of the program for you

(see Program A.4). All you need to do is complete the program by

filling in main. As you can see, you’ll be using two functions that have

appeared in Chapter 11. These are at the top of Program A.4. You’ll

also see that I’ve defined the values of the mean free path (meanpath)

and the speed of the molecules (speed), which we assume to be 500

microns/microsecond.

Figure A.14: Trading card for Hoyt’s
German Cologne, circa 1900.
Source: Wikimedia Commons

To track the molecules, your program should do the following:

1. Open the output file for writing2. The output file name will be

2 For a reminder about how to write
output into files, see examples like
Program 5.3 in Chapter 5.

given by argv[3], so you can say something like “output =

fopen(argv[3],"w");”.

2. You’ll need a pair of nested for loops: An outer loop for each

molecule, and an inner one for each collision3.

3 This is similar to what we did in
Program 2.7 in Chapter 2.

3. Keep track of the molecule’s position with three variables, xpos,

ypos, and zpos. Keep track of the time elapsed with a variable

named t. Remember to set all of these back to zero whenever you

begin tracking a new molecule.

4. Every time the molecule collides, do the following:

(a) Generate two random angles like this:

theta = 2.0*M_PI*rand01();

phi = M_PI*rand01();

(b) Generate a random distance like this:

d = meanpath * (1.0 + 0.1*normal());

where normal is a function shown in Program A.4 below.

(c) Add ∆x, ∆y, and ∆z (as shown in Figure A.13) to the values of

xpos, ypos, and zpos, respectively, to get the molecule’s new

position4. 4 If you’re not familiar with the symbols
in Figure A.13, remember that θ is
theta and ϕ is phi. These are the
random angles you generated in step (a)
above.

(d) Update t by adding d/speed to it. This is the time it will take

the molecule to travel the distance d.

5. Use the trick described in Section 4.4 of Chapter 4 to print out

progress reports as your program is running. After every 10 molecules,

print a message like this on the screen: Working on molecule

10... (or 20, or 30, and so on). It’s OK if the program prints

“Working on molecule 0” when it starts.

https://commons.wikimedia.org/wiki/File:E.W._Hoyt_and_Co._(Proprietors)_(3093565672).jpg

chapter a. some challenging projects 521

6. After tracking the molecule through ncollisions collisions, write

xpos, ypos, zpos, and t into the program’s output file5. These 5 See examples like Program 5.3 in
Chapter 5.should be written as four numbers separated by single spaces, with

a \n at the end of the line.

Once you’ve written and compiled your program, run it like this to

produce an output file to use with your next program:

./simulate 1000 16000 simulate-16000.dat

This should produce an output file (simulate-16000.dat) contain-

ing the final positions and times for 1,000 perfume molecules after each

of them bounces 16,000 times.

-30
-20

-10
 0

 10
 20

 30-30
-20

-10
 0

 10
 20

 30
 40

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

z

x

y

z
 4.465

 4.47

 4.475

 4.48

 4.485

 4.49

 4.495

T
im

e
(m

ic
ro

se
co

nd
s)

Figure A.15: You can check your first
program’s results by plotting them with
gnuplot. This figure shows what you
should see if you type:
splot "simulate-16000.dat"

with points palette pointsize

3 pointtype 7

It shows the final x, y, and z positions
of the molecules, color-coded by how
long it took them to get there.

Program A.4: simulate.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <math.h>

double rand01 () {

static int needsrand = 1;

if (needsrand) {

srand(time(NULL));

needsrand = 0;

}

return (rand()/(1.0+RAND_MAX));

}

double normal () {

int nroll = 12;

double sum = 0;

int i;

for (i=0; i<nroll; i++) {

sum += rand01();

}

return (sum - 6.0);

}

int main (int argc, char *argv[]) {

double meanpath = 0.14; // Microns per collision

double speed = 500; // Microns per microsecond

//

// Insert program here!

//

}

522 practical computing for science and engineering

Program 2: Analyzing the Results
Your second program will be named analyze.cpp. It will read a data

file produced by your first program, and give you a statistical summary

of the data it contains.

Like the first program, analyze should accept all of its parameters on

the command line, and give users a helpful message if they don’t give

it the right number of arguments. The usage should be:

./analyze input.dat

where input.dat is the name of a data file produced by your simulate.cpp

program.

The output of the analyze program should look like this:

Average distance = 16.292850 microns
Std. dev. of distance = 6.987062 microns
Min distance = 0.684207 microns
Max distance = 45.581858 microns
Average time = 4.480129 microseconds
Std. dev. of time = 0.003552 microseconds
Min time = 4.469744 microseconds
Max time = 4.491567 microseconds
Diffusion Coefficient is 0.29626 cm^2/s

where distance is the final distance of a molecule from the origin,

which is given by

distance =
√

x2 + y2 + z2

and time is the amount of time the molecule took to get there, which

is just the fourth column in your data file.

Figure A.16: Broken glass perfume
amphora from Ephesus, 2nd century CE.
Source: Wikimedia Commons

The “Diffusion Coefficient” is a way of measuring how fast molecules

diffuse through the air. It’s usually given in units of cm2/s. If your

program calls the average distance davg and the average time tavg,

you can calculate the diffusion coefficient like this:

dcm = davg/1.0e4;

tseconds = tavg/1.0e6;

dcoeff = dcm*dcm/2.0/tseconds;

where dcm is the distance converted to centimeters and tseconds is

the time converted to seconds. dcoeff is the Diffusion Coefficient. It

should end up having a value of around 0.3 cm2/s if your programs

are working properly.

https://commons.wikimedia.org/wiki/File:EAM_-_Perfume_amphora.jpg

chapter a. some challenging projects 523

Again, I’ve already written some of the program for you (see Program

A.5). You’ll just need to fill in main.

To analyze the data, the program should proceed as follows:

1. First, open the data file for reading. See Program 7.5 in Chapter 7

for an example of this. Refer to that program to see how to read the

data and calculate the average and standard deviation.

2. At the top of Program A.5 below I’ve provided you with an easy

way to find minimum and maximum values, using the two functions

findmin and findmax. Each time you read a new value of t, for

example, just say tmax = findmax(t,tmax,n), where n is the

number of molecules you’ve processed so far. This will update the

value of tmax if necessary. When you’re done reading all of the data,

tmax will contain the largest value of t. Note: It’s important that n

be equal to zero the first time you use these functions.

3. After reading all of the data from the input file, calculate the Diffu-

sion Coefficient (as shown above) and print all of the results.

Figure A.17: “The Perfume Maker”, by
Rudolf Ernst.
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Ernst,_Rodolphe_-_The_Perfume_Maker.jpg

524 practical computing for science and engineering

Program A.5: analyze.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

double findmax (double x, double oldvalue, int n) {

if (n == 0) {

oldvalue = x;

} else {

if (x > oldvalue) {

oldvalue = x;

}

}

return (oldvalue);

}

double findmin (double x, double oldvalue, int n) {

if (n == 0) {

oldvalue = x;

} else {

if (x < oldvalue) {

oldvalue = x;

}

}

return (oldvalue);

}

int main (int argc, char *argv[]) {

//

// Insert program here!

//

}

chapter a. some challenging projects 525

Program 3: Visualizing the Distance

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

distance (microns)

Figure A.18: Distribution of the final
positions of 1,000 perfume molecules
after each has experienced 16,000

collisions.

Your final program will be called visualize.cpp and it will let you

make pictures like the one shown in Figure A.18. This figure shows the

distribution of final distances of 1,000 perfume molecules after 16,000

collisions.

This figure is a histogram, like the ones we discussed in Chapter 7. Your

third program will be similar to Program 7.1 in that chapter. Again, to

get you started, I’ve written part of the program for you (see Program

A.6 below). Notice that I’ve defined a 50-element array, bin, to hold

the histogram data.

Like the preceding programs, this one will expect parameters on its

command line, and should complain and exit if it doesn’t get the proper

number of parameters. Its usage will be:

./visualize dmin dmax input.dat output.dat

where dmin and dmax are the minimum and maximum distances (as

determined by your analyze program) input.dat is the name of a

file produced by your simulate program, and output.dat is a file

into which your new program will write the histogram data.

The output file should contain two columns of numbers, separated by

a single space. Unlike Program 7.1, the first column here will contain

a distance instead of a bin number (see below for instructions about

converting bin number to distance). The second column will be the

number of molecules in that bin.

To make the histogram, the program should proceed as follows:

1. First, determine the binwidth, like this:

binwidth = (dmax-dmin)/nbins;

2. Next, use a while loop to read data from the input file. Each line of

the file will contain four values: x, y, z, and t.

3. Every time you read a line, determine the distance from distance =
√

x2 + y2 + z2.

4. Determine which bin this distance belongs in, and increment that

bin. Be sure to keep a count of the number of over/underflows, as

Program 7.1 does.

5. After processing all of the input data, write the histogram data into

526 practical computing for science and engineering

the output file. For each bin of the histogram, write two numbers

separated by a single space: the distance represented by that bin,

and the number of molecules that fell within it. The distance can be

calculated from the bin number, like this:

distance = dmin + binwidth*(0.5+i);

where i is the bin number.

6. Finally, at the bottom of the output file, write a line beginning with

a # that tells how many overflows or underflows were seen.

Run your program like this to make a histogram of the data you

produced earlier:

./visualize 0.684207 45.581858 simulate-16000.dat visualize-16000.dat

You can plot the resulting data file with gnuplot like this:

plot "visualize-16000.dat" with impulses lw 5

The result should look like Figure A.18.

Program A.6: visualize.cpp

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main (int argc, char *argv[]) {

const int nbins=50;

int bin[nbins];

//

// Insert program here!

//

}

chapter a. some challenging projects 527

Results

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.2 0.4 0.6 0.8 1

T
im

e
(h

ou
rs

)

Distance (meters)

Diffusion Coefficient = 0.3 cm2/s

Figure A.19: How long would it take
our perfume molecules to diffuse across
a room? A long time!

What do your results tell you? If you were to run your simulate

program two more times, like this:

./simulate 1000 1000 simulate-1000.dat

./simulate 1000 4000 simulate-4000.dat

and then use your analyze program to analyze each of these files

and your simulate-1600.dat file, you might notice a pattern. Every

time you increase the number of collisions by a factor of four, the

average distance increases by a factor of two. This fact is reflected in

the definition of the Diffusion Coefficient, which tells us that the time

it takes molecules to travel a given distance by diffusion is:

t =
d2

2D

where t is the time, d is the distance, and D is the diffusion coefficient.

If we plotted time versus distance, we’d get a graph like Figure A.19.

As you can see from the graph, it would take hundreds of hours for our

perfume molecules to travel even one meter. Diffusion is apparently

very slow! Scents usually reach our nose by riding on air currents,

rather than through diffusion.

Why is diffusion so slow? From Chemistry class we know that a small

amount of air (say, a ballon full) contains on the order of 1023 molecules.

That’s a lot of obstacles to bounce off of. Even though our perfume

molecule might be traveling at 1,000 miles per hour, it collides with air

molecules billions of times per second, and each collision sends it off in

another random direction.

Figure A.20: In the Carboniferous
period Earth’s oxygen levels were much
higher than they are today. This
allowed giant inects like the dragonfly
Meganeura (top) to survive, even
without lungs. Meganeura had a
two-foot wingspan! The bottom
illustration shows tracheae inside an
insect’s body.
Source: Wikimedia Commons and D.G. Mackean

The low speed of diffusion explains why we have lungs, and why

there aren’t any human-sized insects. Breathing moves oxygen by two

mechanisms: diffusion and advection. When we breath, air is drawn into

our lungs by advection (the bulk motion of a fluid) and it brings oxygen

molecules along with it. When the air gets down into our lungs, oxygen

molecules then diffuse through the thin walls of blood vessels. This is

a very short distance, so diffusion can do the job relatively quickly. The

blood then carries the oxygen all through our body (advection again).

Insects don’t have lungs. Their bodies contain hollow tubes called

tracheae that open to the outside world. Oxygen molecules wander into

these tubes by diffusion, and then wander through the tubes until they

reach cells inside the insect’s body. This is a slow process, but since

insects are small, the distances are short. If insects were human-sized,

they couldn’t get oxygen quickly enough through this mechanism.

https://en.wikipedia.org/wiki/Meganeura
https://commons.wikimedia.org/wiki/File:Meganeura.jpg
http://www.biology-resources.com/drawing-insect-spiracle.html

Project 3: Proton Power

Introduction: Particle Beam Therapy
We all know that radiation can cause cancer, but radiation can also

be used to fight cancer. One example of this is particle beam cancer

therapy, in which a beam of charged particles (usually protons or pions)

is shot into a tumor with the goal of destroying it.

Figure A.21: An apparatus used for
pion-beam radiation therapy at the Paul
Scherrer Institut. The patient lies in the
semicircular cradle, which is inserted
into the apparatus behind during
treatment.

As particles from such a beam travel through the body, they gradually

lose energy and eventually come to rest. As it turns out, much of the

particle’s energy is lost close to the point at which it stops. This makes

such beams well-suited for killing tumors without doing too much

damage to the other tissues they pass through on the way to the tumor,

or tissues beyond the tumor.

Particles with higher energies will travel farther into the body. By

adjusting the energy of the particles, we can cause them to stop at a

chosen depth (ideally, inside a tumor).

At moderate energies, a beam of particles traveling through a body

loses energy mostly through interactions with electrons. Although it’s

possible that some of the particles will bump into an atomic nucleus,

that doesn’t happen very often. Since protons are 2,000 times heavier

than electrons, beams of these particles tend to travel in a straight line,

knocking puny electrons aside as they go.

+

Figure A.22: A proton (shown with a
plus sign because of its positive charge)
is much larger than the electrons it
knocks aside while travelling through
the body.

Figure A.23 shows how much energy protons deposit as they travel

through the body. The four curves show what happens when you use

protons of four different starting energies, ranging from 50 MeV to 125

MeV. The energy deposited damages the body’s tissues. The goal is to

destroy the tumor without doing too much damage to healthy tissue.

https://www.psi.ch/
https://www.psi.ch/

530 practical computing for science and engineering

 0 2 4 6 8 10 12 14

E
ne

rg
y

D
ep

os
ite

d

Depth (cm)

50 MeV
75 MeV

100 MeV
125 MeV

Figure A.23: Energy deposited at various
depths by incoming protons having
energies of 50, 75, 100, or 125 MeV. As
you can see, more energetic protons
penetrate to greater depths. Also notice
that most of a proton’s energy is
deposited near its stopping point.

The Assignment
Imagine you’re a doctor working at a radiation therapy facility. You

have at your command a beam of protons. You can aim the beam

precisely, and control its energy.

You’re preparing for a visit by a patient with a 2-centimeter-thick tumor

buried 8 centimeters deep in her body (see Figure A.24). You need to

determine what energy the protons should have in order to deposit

most of their energy in the region of the tumor.

A physicist colleague has given you a formula to calculate the energy

lost by a particle while going through a thin slice of material. The

formula has a form like this6: 6 The actual equation is called the
Bethe-Bloch formula.

∆E = ∆x · f (E, proton properties, material properties)

where ∆E is the amount of energy the particle loses, ∆x is the thickness

of the slice, and f is some function that depends on E (the energy at the

beginning of the slice) as well as the constant properties of the particle

(like charge and mass) and properties of the material (like density).

Unfortunately, your physicist friend tells you that eight centimeters is

too big to call a “thin slice”. But that’s OK, she says. Just treat the

eight centimeters as though it was a stack of thinner slices, as shown

in Figure A.25. Each time the proton passes through one of the slices,

https://en.wikipedia.org/wiki/Bethe_formula

chapter a. some challenging projects 531

it loses some amount of energy, ∆E. This lost energy damages the

tissue in that slice. The proton then enters the next slice with its energy

reduced by the amount ∆E.

Your assignment is to write three programs: simulate.cpp, visualize.cpp,

and analyze.cpp. The first will simulate the passage of protons

through the patient’s body, the second will help visualize these results,

and the third will help choose the right proton energy.

2 cm

X0
Tumor

Figure A.24: Our patient’s tumor is 2 cm
thick, and is centered at a depth of 8 cm.
Here “x” represents the depth below the
patient’s skin.

x0 Δx

E E-ΔE
+ +

ΔE

Energy
going in

Energy
coming out

Energy
deposited

Figure A.25: We can look at the patient’s
body as a series of thin slices through
which the proton must pass. Each time
the proton passes through one of the
slices, it loses some amount of energy,
∆E. This lost energy damages the tissue
in that slice.

532 practical computing for science and engineering

Program 1: Simulating Protons
Your first job will be to write a program named simulate.cpp that

keeps track of the energy that protons lose as they travel through such a

stack of thin slices. Each slice will have a thickness of 0.01 cm. Assume

each proton travels in a straight line, starting at x = 0 and progresses

along the x axis until it runs out of energy. Each time a proton passes

through a slice, the program should write the proton’s position, energy

loss, and remaining energy into an output file.

Figure A.26: The international symbol
for ionizing radiation, which was first
used at Berkeley Radiation Laboratory
in 1946.
Source: Wikimedia Commons

Your physicist friend has kindly provided you with the beginning of

a program, but she’s too busy to finish it. The part she’s written for

you is shown in Program A.7. Near the top of the program are some

numbers you’ll need. The program assumes that humans are just made

out of water, since they mostly are.

She’s also written some useful functions in a header file named dedx.h,

which is shown below as Program A.8. The biggest function in it is

named dEdx, and it does most of the work of calculating how much

energy a proton loses while going through one of the slices. Notice that

simulate.cpp has an include statement near the top that fetches

dedx.h.

Program A.7: simulate.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include "dedx.h"

int main (int argc, char *argv[]) {

double pmass = 938.27; // MeV, Proton mass.

double pcharge = 1.0; // Proton charge.

double rho = 1.0; // Density, g/cm^2, for water.

double amass = 18.01; // Atomic mass, AMU, for water.

double anum = 10.0; // Atomic number, Z, for water.

double activation = 75.0; // Activation energy, eV, for water.

double dx = 0.01; // Slice thickness, cm.

int nprotons;

double estart, energy;

double x, de;

FILE *output;

// Sorry! got to run to a faculty meeting. You'll

// have to insert the rest of the program here.

}

https://en.wikipedia.org/wiki/Hazard_symbol

chapter a. some challenging projects 533

To complete the program, you’ll need to do the following:

1. First, copy Program A.8 (dedx.h) into a file named dedx.h and save

it. Then create a file named simulate.cpp and start by putting the

contents of Program A.7 into it. This will be the program that does

your proton simulation.

2. Your program should accept three arguments on the command line.7 7 We learned how to use command-line
arguments in Sections 9.15 and 9.16 of
Chapter 9.

When you’re done writing your program, you should be able to run

it like this:

./simulate nprotons estart output

where:

• nprotons is the number of protons you want to simulate.

• estart is the starting energy of the protons.

• output is the name of an output file into which the program will

write its results.

If the user doesn’t supply enough command-line arguments, the

program should print out a friendly usage message and then stop

without trying to do anything else8. 8 See Section 9.16 of Chapter 9 for
information about how to do this.

Since nprotons is an integer, you’ll need to use the atoi function

to convert this command-line argument9. For estart you’ll need to 9 See Problem 7 (add.cpp) at the end of
Chapter 9.use atof, since this number can contain decimal places. The output

file name won’t need any conversion, since it’s already a character

string. You can just use that argument directly, like this:

output = fopen(argv[3], "w");

3. Your program will need a pair of nested loops: An outer “for” loop

that generates protons, one a at a time, and an inner “do-while”

loop that tracks each proton through the slices until the proton loses

all of its energy.

Figure A.27: A “wind” of charged
particles, including many protons,
blows outward from the Sun. It
interacts with the earth’s magnetic field
to produce the aurora.
Source: Wikimedia Commons

4. Each time the program starts tracking a new proton it should set

the proton’s initial position and energy. To be more realistic, the

program should add some “wiggle” to these values. In the real

world, the particles in a proton beam don’t all have exactly the same

energy, and they won’t necessarily enter the body at exactly the same

spot (the patient might move a little, for example). Use the function

named “normal” (defined in dedx.h) for this. Here’s how to do it:

energy = estart + 0.01*estart*normal();

https://commons.wikimedia.org/wiki/File:Polarlicht_2.jpg

534 practical computing for science and engineering

x = 0 + 0.1*normal();

This sets the proton’s initial energy to estart ± 1% and the starting

position to zero cm ± 1 mm.

5. Each time a proton goes through a slice of tissue, your program

should do the following:

(a) Calculate the amount of energy the proton deposits in the slice

(we’ll call that “de”). Our physicist friend has given us the func-

tion named dEdx to help us calculate this.

de = dx * dEdx(energy, pmass, pcharge, rho, amass, anum, activation);

(b) Calculate the proton’s new energy:

energy = energy - de;

(c) Update the proton’s position:

x = x + dx;

6. Every time we change the values of x, de, and energy, the program

should write those values into the output file specified on the com-

mand line10. These should be written as three numbers, separated 10 See examples like Program 5.3 in
Chapter 5.by single spaces, with a \n at the end of the line.

7. We can’t know in advance how many slices a proton will travel

through before its energy is all gone. We just have to look at the

energy after each slice, and see if it’s still greater than zero11.

11 This is similar to the baselpi.cpp
program you wrote for Problem 6

in Chapter 4. In that program, we
kept calculating smaller and smaller
terms, until we got to one that was less
than some limit. That program used a
“do-while” loop, and we can use one
of those here, too.

Near the end of the proton’s path, because of the approximations

we’re making, the dEdx function might tell us that the proton loses

no energy, even though it has some energy left. That means you also

need to check the value of de at the end of your “do-while” loop:

} while (energy > 0 && de > 0);

Once you’ve written and compiled your program, run it like this to

produce an output file to use with your next programs:

./simulate 1000 100 100-mev.dat

Figure A.28: You can check your first
program’s results by plotting them with
gnuplot. This figure shows what you
should see if you type:
plot "100-mev.dat" using 1:2

It shows the energy deposited in each
slice by each proton.

This should produce an output file named 100-mev.dat containing

information about the energy deposited by each proton, in each slice of

the patient’s body.

chapter a. some challenging projects 535

The file dedx.h, below, contains a function named dEdx for calculating

the energy lost (∆E) in a slice of matter with thickness ∆x. This file

also contains two random-number functions that we’ve used before.

rand01 generates random numbers uniformly distributed between

zero and one, and normal generates random numbers in a Gaussian

or “normal” distribution12. 12 You can read about both of these in
Chapter 11.

Program A.8: dedx.h

double rand01 () {

static int needsrand = 1;

if (needsrand) {

srand(time(NULL));

needsrand = 0;

}

return (rand()/(1.0+RAND_MAX));

}

double normal () {

int i, nroll = 12;

double sum = 0;

for (i=0; i<nroll; i++) {

sum += rand01();

}

return (sum - 6.0);

}

// Returns dE/dx, in MeV * cm^2/g (see units of "constant", below.)

double dEdx (double T, double pmass, double pcharge,

double rho, double a, double z, double activation) {

const double constant = 0.1535; // MeV cm^2/g

const double me = 0.5110034; //MeV/c^2, Electron mass.

double E, p, beta, gamma, wmax, excite;

double term1, term2, term3, bbdedx;

E = T + pmass;

p = sqrt(T*T + 2.0*pmass*T);

beta = sqrt(p*p/E/E);

gamma = 1.0/sqrt(1.0-beta*beta);

wmax = 2.0*me*beta*beta/(1.0-beta*beta); // MeV

excite = activation/1.0e6 ; // Convert to MeV.

term1 = constant*rho*z*pcharge*pcharge/a/(beta*beta);

term2 = log(2.0*me*gamma*gamma*beta*beta*wmax/excite/excite);

term3 = 2.0*beta*beta;

bbdedx = term1*(term2-term3);

if (bbdedx < 0.0) {

bbdedx = 0.0;

}

// Add 10% gaussian noise:

bbdedx += 0.1*sqrt(bbdedx)*normal();

return (bbdedx);

}

536 practical computing for science and engineering

Program 2: Visualizing the Results
Your next program will be named visualize.cpp and it will help

us see how much total energy our beam of protons has deposited at

various points along its path. To do this, you’ll make what’s called a

“weighted histogram”.

Bin 0 Bin 1 Bin 2 Bin 3 Bin 4

Ann Ben Carol Dave Edith

Figure A.29: The top histogram just
counts things. The bottom histogram
gives each thing a different weight. A
weighted histogram doesn’t just add 1

for each thing. Instead, it adds some
“weight”, given by a property that we’re
interested in (how much water is in a
glass, for example). These weights
generally won’t be integers.

In Chapter 7 we learned about histograms, which are graphs that tell us

which values in our data occur most frequently. We imagined dropping

marbles into bins to count how many times we’d seen a data value

within a particular range.

Think about a similar situation: Imagine you’re the owner of a restau-

rant, and you’re concerned about wasting water. You’ve noticed that

sometimes full glasses of water are left on tables after the diners have

left. You suspect that some of your wait staff are filling glasses too

often. To investigate, you get five large beakers, one for each of your

waitpersons. Whenever diners leave, you dump their leftover water

into the beaker representing that table’s waitperson.

As you can see in Figure A.29, this is almost the same as the histograms

we’ve made before, but instead of putting an integer number of marbles

into each bin, we’re pouring some (non-integer) amount of water into

a beaker. We can think of this as a “weighted” histogram. Instead of

just counting each glass as “1 glass”, and adding “1” to our histogram,

we’re giving the glasses different weights, depending on how much

water they contain, and adding that weight to the histogram.

In your visualize.cpp program, you’ll make a weighted histogram

that shows how much total energy our proton beam deposited at

various points along its path. Your program will be very similar to

Program 7.1 in Chapter 7.

Again, to get you started, your physicist friend has taken a break from

her busy schedule and written part of the program for you (see Program

A.9 below). Notice that she’s defined a 100-element array, hist, to

hold the histogram data. Also notice that this is an array of double

values instead of integers, since we’re making a weighted histogram.

chapter a. some challenging projects 537

Program A.9: visualize.cpp

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[]) {

const int nbins = 100;

double hist[nbins];

FILE *input;

FILE *output;

// Gotta go give a lecture. You'll have to

// write the rest of the program.

}

Like the preceding program, this one will expect parameters on its

command line, and should complain and exit if it doesn’t get the

proper number of parameters13. Its usage will be: 13 See Sections 9.15 & 9.16 of Chapter 9.

./visualize xmin xmax input output

where xmin and xmax are the minimum and maximum depth we’re

interested in, in centimeters, input is the name of a file produced by

your simulate program, and output is the name of a file into which

your program will write the histogram data.

The output file should contain two columns of numbers, separated by

a single space. Unlike Program 7.1, the first column here will contain

a depth instead of a bin number (see below for instructions about

converting bin number to distance). The second column will be the

total energy deposited at that depth, in MeV.

Figure A.30: A painting by Gretchen
Andrew, from her series “Malignant
Epithelial Ovarian Cancer”, which aims
to “humanize the experience of having
cancer”.

To make the histogram, the program should proceed as follows:

1. Make sure the program sets all of the bins to zero at the beginning.

2. Determine the binwidth, like this:

binwidth = (xmax-xmin)/nbins;

3. Next, use a while loop to read data from the input file. Each line of

the file will contain three values: x, de, and energy.

4. Determine which bin this x value belongs in, as Program 7.1 does.

5. Be sure to keep a count of the number of over/underflows, as

Program 7.1 does.

https://en.wikipedia.org/wiki/Gretchen_Andrew
https://en.wikipedia.org/wiki/Gretchen_Andrew
https://malignant-epithelial-ovarian-cancer.com/
https://malignant-epithelial-ovarian-cancer.com/
https://artillerymag.com/gretchen-andrew-searching-for-different-truths/
https://artillerymag.com/gretchen-andrew-searching-for-different-truths/

538 practical computing for science and engineering

6. If it’s not an over- or underflow, add the value of de to this bin.

(Note that this is different from Program 7.1, which just adds 1 to

the bin.)

7. After processing all of the input data, write the histogram data into

the output file. For each bin of the histogram, write two numbers

separated by a single space: the depth represented by that bin, and

the total amount of energy deposited within it. The depth can be

calculated from the bin number, like this:

depth = xmin + binwidth*(0.5+i);

where i is the bin number.

8. Finally, at the bottom of the output file, write a line beginning with

a # that tells how many overflows or underflows were seen.

Run your program like this to make a histogram of the data you

produced earlier:

./visualize 0 10 100-mev.dat hist100.dat
 0

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0 1 2 3 4 5 6 7 8 9 10E
ne

rg
y

D
ep

os
ite

d
(M

eV
)

Depth (cm)

Figure A.31: The total energy deposited
at each depth by a 1,000 100-MeV
protons.

You can plot the resulting data file with gnuplot like this:

plot "hist100.dat" with lines

The result should look like Figure A.31.

Program 3: Analyzing the Data
Your last program will be called analyze.cpp. It will read data pro-

duced by your first program and determine how much total energy was

deposited in the patient’s body, and how much energy was deposited

in the tumor.

Like the preceding programs, this one should accept all of its param-

eters on the command line, and give users a helpful message if they

don’t give it the right number of arguments. The usage should be:

./analyze input tcenter tsize

Where “input” is the name of a data file produced by your simulate

program, “tcenter” is the depth of the center of the tumor, in cm,

and “tsize” is the size of the tumor, in cm.

chapter a. some challenging projects 539

Program A.10: analyze.cpp

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[]) {

// Ack! My lab is on fire (again)!

// You're on your own here!

}

Once again, your physicist friend has written the first part of the

program for you, as shown in Program A.10. She didn’t have time for

much, but you shouldn’t have any trouble completing it. Here’s how to

do it:

Figure A.32: A Russian “Proton” rocket.
Source: Wikimedia Commons

Figure A.33: The BBC Micro“Proton”
computer.
Source: Wikimedia Commons

Figure A.34: A 2016 “Proton Persona”
automobile.
Source: Wikimedia Commons

1. First, make sure you define two double variables to keep track of

the total amount of energy and the amount of energy deposited in

the tumor. Make sure both of these are set to zero initially.

2. Next, you’ll need to find the depth at which the tumor begins, and

the depth at which it ends. These can be found from tcenter and

tsize, like this:

xmin = tcenter - tsize/2.0;

xmax = tcenter + tsize/2.0;

3. Use a while loop to read data from the input file. Each line of the

file will contain three values: x, de, and energy.

4. Each time you read a de value, add it to the total energy.

5. If x is between xmin and xmax, also add de to the amount of energy

deposited in the tumor.

6. After reading all of the data, print your results in a nice way that

tells the user the total energy and the energy in the tumor. Also tell

the user what fraction of the total energy was deposited in the tumor,

expressed as a percentage. Note that you can tell printf to print a

percent sign by writing %%.

After you’ve written your program, run it like this:

./analyze 100-mev.dat 8 2

This tells the program to read the data for 100 Mev protons that you

produced with your simulate program, and look at the amount of

energy that would end up in a two-centimeter-thick tumor located

at a depth of eight centimeters. The program’s output should look

something like this:

https://commons.wikimedia.org/wiki/File:Proton_Zvezda_crop.jpg
https://commons.wikimedia.org/wiki/File:BBC_Micro_Front_Restored.jpg
https://commons.wikimedia.org/wiki/File:Proton-Persona-Red.jpg

540 practical computing for science and engineering

Total energy deposited: 102252.422287 MeV

Energy deposited in tumor: 28645.976102 MeV

Fraction deposited in tumor: 28.014961%

Results

Figure A.35: Proton therapy is a
valuable treatment for some types of
cancer. It’s becoming more widely used,
with over 100 treatment centers online
now or in planning. Shown above are a
facility in Orsay, France (top) and the
Mayo Clinic in the US (bottom). The
cost, while still significant, is coming
down. The ability to minimize radiation
damage to surrounding tissues makes it
particularly appealing in pediatric cases,
where collateral radiation damage can
have long-term effects on development.

Using the tools you’ve written you could find the proton energy that

best suits your patient’s needs. For example, you could simulate protons

of several energies using your simulate program:

./simulate 1000 50 50-mev.dat

./simulate 1000 75 75-mev.dat

./simulate 1000 100 100-mev.dat

./simulate 1000 125 125-mev.dat

then take a look at the energy distribution created by each energy:

./visualize 0 10 50-mev.dat hist50.dat

./visualize 0 10 75-mev.dat hist75.dat

./visualize 0 10 100-mev.dat hist100.dat

./visualize 0 10 125-mev.dat hist125.dat

You’d see distributions like those shown in Figure A.23 in the intro-

duction. Each distribution has a distinct peak, called the “Bragg peak”,

near the end of the proton’s path. If you saw that one of these peaks

lies in the region of the tumor, you might use your analyze program

to see what fraction of the energy would go into the tumor, like this:

./analyze 100-mev.dat 8 2

Congratulations, Doctor! You’ve helped a patient along the road to

recovery.

If you’re interested in learning more about proton beam therapy, you

can find information here:

• Proton Therapy, from Wikipedia.

• The evolution of proton beam therapy: Current and future status,

from the NIH’s National Center for Biotechnology Information.

• The physics of proton therapy, by Wayne D Newhauser and Rui

Zhang.

https://commons.wikimedia.org/wiki/File:Orsay_proton_therapy_dsc04460.jpg
https://commons.wikimedia.org/wiki/File:MayoProton.jpg
https://en.wikipedia.org/wiki/Proton_therapy
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772792/
http://iopscience.iop.org/article/10.1088/0031-9155/60/8/R155/meta

Project 4: Population Explosion

Introduction

Boat (1922-1928), Adriano de Sousa
Lopes.
Source: Wikimedia Commons

Imagine that a derelict boat washes up on the shore of an uninhabited

island. Aboard the boat is a crew of ten rats, all grateful to be on dry

land again. Finding plenty of food and water on the island, the happy

rats settle down and begin raising families14.

14 This is reminiscent of the famous
radio drama Three Skeleton Key, first
broadcast in 1949. If you want to hear
a scary story, you can listen to it here:
mp3 at archive.org

Floating from place to place like this (a
phenomenon called "rafting") is one
way organisms colonize new territories.
About 50 million years ago the first
lemurs floated on wind-swept debris
across the Mozambique Channel from
the African mainland to the island of
Madagascar. In 1995, a dozen iguanas
floating on trees uprooted by a
hurricane colonized the previously
iguana-fee Caribbean island of
Anguilla.
Sources: Wikimedia Commons and Wikimedia Commons.

We might wonder how rapidly our rat population grows in their new

island home. Common brown Norway rats are known to have a very

high reproductive rate of 0.015 offspring per day. In a perfect envi-

ronment, we might expect their population to grow over time like

this:

N(t) = N0e0.015t

where N(t) is the population after t days, given an initial population of

N0. If we graphed the population over a few years, we’d see something

like Figure A.36.

This predicts a rat population of 6 trillion trillion after 10 years! Clearly

that’s unrealistic. Although there are a lot of rats in the world, their

total population is probably only a few billion15.

15
See https://www.worldatlas.com/articles/how-many-rats-are-there-

in-the-world.html

The problem is that our estimate assumes that birth and death rates

will stay the same as the population grows. Observations of the natural

world show that this isn’t really the case. For example, populations

typically share a limited amount of food and other resources. As the

population grows, food is harder to find and some individuals die of

starvation. Malnutrition also throttles population growth by reducing

birth rates. Typically death rates increase and birth rates decline as

populations grow. Taking these effects into account, a more realistic

graph of our rat population might look like Figure A.37.

This graph shows the population initially increasing, but then levelling

https://commons.wikimedia.org/wiki/File:Boat_(1922_-_1928)_-_Adriano_de_Sousa_Lopes_(1879_-_1944)_(20760150249).jpg
https://en.wikipedia.org/wiki/Three_Skeleton_Key
https://archive.org/download/OTRR_Escape_Singles/Escape_49-11-15_-085-_Three_Skeleton_Key_-William_Conrad-_-2-.mp3
https://commons.wikimedia.org/wiki/File:IMG-89595a4e304480974accb0a7f2b52ca5-V.jpg
https://commons.wikimedia.org/wiki/File:Iguana_Iguana_from_Margarita_Island.jpg
https://www.worldatlas.com/articles/how-many-rats-are-there-in-the-world.html
https://www.worldatlas.com/articles/how-many-rats-are-there-in-the-world.html

542 practical computing for science and engineering

off at some constant value. This value (called the carrying capacity of

the environment) is the population at which the birth rate is equal to

the death rate. When these rates are equal, the population no longer

increases. The S-shaped curve of this graph is called a logistic curve

and is typical of the growth of a population colonizing a new, initially

resource-rich, environment.

 0

 1e+24

 2e+24

 3e+24

 4e+24

 5e+24

 6e+24

 0 500 1000 1500 2000 2500 3000 3500

P
o
p
u
la

ti
o
n

Day

Figure A.36: Rat population given by
the equation N(t) = N0e0.015t.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

P
o
p
u
la

ti
o
n

Day

Figure A.37: Rat population with
limited resources.

Illustration from Jules Verne’s story La
Famille Raton, written in 1886.
Source: Wikimedia Commons

The Assignment
Now consider a post-apocalyptic scenario where a group of 100 humans

is stranded on an island. The island is a pleasant place where the plants

and animals could easily provide food and shelter for a population

of 1,000 humans. Resigned to their fate, the humans settle down and

begin making the best of a bad situation. Ultimately, they have children

who grow up knowing no home but the island. These children have

grandchildren, and so on down the generations.

Your task in this project is to write three programs that simulate, visu-

alize, and analyze the growth of such a population.

In order to write a program to model the population’s growth, we’ll

need to know how birth and death rates change as the population

increases. The shape of the functions governing birth and death rates

will vary from one species to another, and will generally depend on

many environmental factors. For the purpose of our simulation, though,

let’s assume that these rates depend solely on the amount of food

available per individual. When food is plentiful, the birth rate is high

and the death rate is low. In times of famine, the birth rate is low, and

the death rate is high.

We’ll assume that we’re told the total food-producing capacity of the

environment, in terms of the number of individuals that can be fully

fed. To find each person’s share of this bounty (his or her ration), we

can just divide the total amount of food by the number of people. Birth

and death rates will be functions that depend on this ration.

Figure A.38 shows the shapes of the two functions we’ll use. These

functions give the annual probability of dying or having offspring

when the ration has various values. When the ration is 1, everybody is

well fed: the annual probability of having offspring is at its maximum,

and the probability of dying is at some minimum value due purely

to accident, disease, or old age. As the ration approaches zero, the

probability of dying approaches 1 (100%) and the probability of giving

https://fr.wikisource.org/wiki/La_Famille_Raton
https://fr.wikisource.org/wiki/La_Famille_Raton
https://commons.wikimedia.org/wiki/File:'Aventures_de_la_famille_Raton'_by_Felicien_de_Myrbach_07.jpg

chapter a. some challenging projects 543

birth trails off to some tiny value. We’ll assume that if the ration is

greater than 1, the birth and death rates stay constant at the same values

they had when the ration was 1. (We’ll ignore any possible ill-effects of

overeating!)

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

b
a

b
ili

ty

Resouces per individual

Birth Probability
Death Probability

Figure A.38: Annual probability of birth
or death as a function of ration.

The birth probability function we’ve graphed looks like this:

b(r) =

bmax

10(1 − r) + 1
if r ≤ 1

bmax if r > 1

(A.1)

and the death probability function looks like this:

d(r) =

dmin +
1

10r + 1
− 0.09 if r ≤ 1

dmin if r > 1

(A.2)

where r is the ration, bmax is the maximum probability per year of

having offspring, and dmin is the minimum probability per year of

dying.

Now let’s get programming! You’ll be writing three programs: simulate.cpp,

visualize.cpp, and analyze.cpp. The first will simulate the pop-

ulation’s growth, the second will help visualize the results, and the

third will do some statistical analysis on them.

544 practical computing for science and engineering

Program 1: Simulating Population Growth

Théodore Géricault’s The Raft of the
Medusa (1818-1819).
Source: Wikimedia Commons

Your first job will be to write a program named simulate.cpp that

simulates the growth of the population over some number of years and

writes its results into a file.

Our simulation program’s strategy will be this: We’ll give the program

an initial population, the total amount of food, the values of bmax and

dmin, and tell it how many years to simulate. The program will then

loop through the years, one at a time. For each year it will loop through

all of the individuals in the population. For each person, the program

will check to see whether the person has offspring during that year

and whether the person dies during that year, using the b(r) and d(r)

functions in Equations A.1 and A.2 above. If the person dies, the

population will be reduced by one. If the person has offspring, the

population will increase by one16. 16 for simplicity, we’re assuming one
child per person per year, at most.

The program should accept all of its parameters on the command line,

as described in Section 9.15 of Chapter 9. The usage should be:

./simulate population food bmax dmin nyears outfile

where:

• population is the initial population.

• food is the total amount of food the island can produce, in terms of

the number of people who can be well-fed.

• bmax is bmax from Equation A.1 above.

• dmin is dmin from Equation A.2 above.

• nyears is the number of years to simulate.

• outfile is the name of a data file into which the program will write

its results.

To get you started, I’ve already written some of the program for you

(see Program A.11). All you need to do is complete the program by

filling in main and the two functions birthprob and deathprob.

Notice that I’ve added a handy function named rand01 near the top of

the program17. It can be used to generate a random number between 17 This function is described in Section
11.4 in Chapter 11.zero and one.

https://commons.wikimedia.org/wiki/File:JEAN_LOUIS_THÉODORE_GÉRICAULT_-_La_Balsa_de_la_Medusa_(Museo_del_Louvre,_1818-19).jpg

chapter a. some challenging projects 545

Program A.11: simulate.cpp

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include <stdio.h>

double rand01 () {

static int needsrand = 1;

if (needsrand) {

srand(time(NULL));

needsrand = 0;

}

return (rand()/(1.0+RAND_MAX));

}

double birthprob (double bmax, double ration) {

// Insert function here.
}

double deathprob (double dmin, double ration) {

// Insert function here.
}

int main (int argc, char *argv[]) {

double population;

double popgrowth;

int nyears;

int year;

int individual;

double food;

double ration;

double bmax, dmin;

double bprob, dprob;

FILE *output;

// Insert program here.
}

To complete the program, you’ll need to add code to do the following:

1. Check to make sure the user has supplied enough command-line

arguments. If there aren’t enough command-line arguments, the

program should print out a friendly usage message and then stop

without trying to do anything else18. 18 See Section 9.16 of Chapter 9 for an
example of how to do this.

2. Convert the command-line arguments into the variables population,

food, bmax, dmin, and nyears by using the atoi and atof func-

tions. The last command-line argument (the output file name)

doesn’t need to be converted. You can just use it directly, like

this:

546 practical computing for science and engineering

output = fopen(argv[6], "w");

Crowded Boardwalk, Atlantic City, New
Jersey (1910).
Source: Wikimedia Commons

3. Your program will need a pair of nested “for” loops: An outer loop

that goes through all the years, and an inner loop that goes through

all of the individuals in the population and, for each one, checks to

see whether that person died or had offspring during the current

year.

The outer loop might start like this:

for (year=0; year<nyears; year++) {

and the inner loop might start like this:

for (individual=0; individual<population; individual++) {

4. At the beginning of each year the program will need to do a few

things:

• Find the ration by dividing food by population

• Find the probability of having offspring, which we’ll call bprob,

by using the birthprob function defined at the top of the pro-

gram (we’ll describe this and the deathprob function below).

• Find the probability of dying, which we’ll call dprob, by using

the deathprob function defined at the top of the program.

• Set popgrowth to zero. We’ll use this variable to keep track of

how much the population grows during the current year. (If there

are more deaths than births, this number might be negative, but

that’s OK.)

5. Inside the inner loop we’ll do some things for each individual who’s

currently in the population:

• Check to see if that person had offspring during the year. We do

this by using the rand01 function to give us a random number

between zero and one, and then checking to see if that number is

less than bprob. If it is, then we add 1 to popgrowth, indicating

that a person has been added to the population this year.

• Similarly, we check to see if the person died this year. We do this

by looking to see if rand01 gives us a number less than dprob.

If it does, then we subtract 1 from popgrowth, indicating that a

person has been removed from the population. (Remember that

it’s OK for popgrowth to be negative.)

6. At the end of each year, we add popgrowth to population to get

https://commons.wikimedia.org/wiki/File:Crowded_Boardwalk,_Atlantic_City,_New_Jersey.png

chapter a. some challenging projects 547

the new value for population, and we write data about this year

into our output file. The values of year, population, popgrowth,

bprob, dprob, and ration should be written to the file, in that

order, separated by spaces19.

19 See Chapter 5 for information about
writing data into a file.

Edoardo Matania, Die geschlossene Bank
(1870s).
Source: Wikimedia Commons

7. The last step in completing the program is to write the two functions

birthprob and deathprob. The birthprob function takes the

value of bmax and ration and uses the relationship shown in

Equation A.1 to calculate the birth probability. Similarly, deathprob

uses dmin and ration to calculate the death probability, as given

by Equation A.2. Note that you’ll need an if/else statement in

each of these functions, to deal with the cases when ration is less

than one or greater than one.20

20 See Chapter 3 for information about
writing if/else statements, and
Chapter 9 for information about writing
functions.

After you’ve completed your program, compile it and run it three times,

with these arguments:

./simulate 2000 1000 0.0182 0.0077 1000 hipop.dat

./simulate 500 1000 0.0182 0.0077 1000 medpop.dat

./simulate 100 1000 0.0182 0.0077 1000 lopop.dat

The three simulations are the same except for the starting population.

In the first one, the initial population is higher than the amount of food

available in the environment (2,000 people, but only food enough for

1,000). The second simulation has an initial population of 500, with the

same amount of food, and the third simulation shows what happens

when the initial population is only 100. The values used for bmax

and dmin are actual current worldwide average values for birth and

death rates in human populations21. Each of the simulations tracks the 21 CIA World Factbook, estimated
values for 2018.population growth over a period of 1,000 years.

You can plot your results by giving gnuplot the command:

plot [0:300] "hipop.dat" with lines, "medpop.dat" with lines, "lopop.dat" with lines

which shows just the first 300 years. The result should look something

like Figure A.39. Notice that, in all cases, the population eventually set-

tles down to a stable level that’s slightly greater than 1,000 individuals.

https://commons.wikimedia.org/wiki/File:Eduardo_Matania_Beim_Die_geschlossene_Bank_1870s.jpg
https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html

548 practical computing for science and engineering

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 50 100 150 200 250 300

P
o

p
u

la
ti
o

n

Year

"hipop.dat"
"medpop.dat"

"lopop.dat"

Figure A.39: Population growth when
there is sufficient food for 1,000 people,
starting with populations of 100, 500,
and 2,000 people.

Program 2: Visualizing the Stable Population
So now we know that the island’s population always tends toward a

particular value, but what is that value exactly? Let’s start to investigate

this by writing a program to visualize the data from our simulations

in a different way. The program will be called visualize.cpp and

it will let you make graphs like the one shown in Figure A.40. This

graph shows population on the horizontal axis, divided into 50 bins.

The vertical axis shows how many years had a population within each

bin.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1000 1020 1040 1060 1080 1100

N
u
m

b
e
r

o
f
Y

e
a
rs

Population

Figure A.40: Histogram of population
values from lopop.dat.

This figure is a histogram, like the ones we discussed in Chapter 7.

Your program will be similar to Program 7.1 in that chapter. Again, to

get you started, I’ve written part of the program for you (see Program

A.12 below). Notice that I’ve defined a 50-element array, bin, to hold

the histogram data.

Program A.12: visualize.cpp

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main (int argc, char *argv[]) {

const int nbins=50;

int bin[nbins];

double binwidth;

int binno;

int overunderflow=0;

int i;

FILE *input;

FILE *output;

// Insert program here.

}

chapter a. some challenging projects 549

Like the preceding program, this one will expect parameters on its

command line, and should complain and exit if it doesn’t get the

proper number of parameters. Its usage will be:

“Cynicus”, The last car for Miramar
(c. 1910).
Source: Wikimedia Commons

./visualize popmin popmax inputfile outputfile

where popmin and popmax are the minimum and maximum popula-

tion you want to include in your histogram, inputfile is the name of

a file produced by your simulate.cpp program, and outputfile is

a file into which your new program will write the histogram data.

The input and output files can be opened like this22: 22 Notice that we open one file for
reading (with "r") and the other for
writing (with "w").input = fopen(argv[3],"r");

output = fopen(argv[4],"w");

The output file should contain two columns of numbers, separated by

a single space. Unlike Program 7.1, the first column here will contain a

population value instead of a bin number (see below for instructions

about converting bin number to population). The second column will

be the number of years in that bin.

To make the histogram, the program should proceed as follows:

1. First, determine the binwidth, like this:

binwidth = (popmax-popmin)/nbins;

2. Next, use a while loop to read data from the input file23. Each line 23 See Chapter 5 for information about
reading data from files.of the file will contain six values: year, population, popgrowth,

bprob, dprob, and ration. The first value is an integer, and the

other five are doubles.

3. Determine which bin this population value belongs in, and increment

that bin. Be sure to keep a count of the number of over/underflows,

as Program 7.1 does. Since the range of our histogram is popmin to

popmax, the bin number will be:

binno = (population-popmin)/binwidth;

4. After processing all of the input data, write the histogram data into

the output file. For each bin of the histogram, write two numbers

separated by a single space: the population value represented by

that bin, and the value of bin[i]. The population value can be

calculated from the bin number, like this:

population = popmin + binwidth*(0.5+i);

https://commons.wikimedia.org/wiki/File:"Cynicus"_-The_last_car_for_Miramar._(Postcard._ca_1910)._(20171958368).jpg

550 practical computing for science and engineering

where i is the bin number.

5. Finally, at the bottom of the output file, write a line beginning with

a # that tells how many overflows or underflows were seen.

Run your program like this to make a histogram of the data you

produced earlier. Start out by looking at population values between 0

and 1,100:
 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000 1200

N
u
m

b
e
r

o
f
Y

e
a
rs

Population

Figure A.41: A histogram of population
values from lopop.dat in the range 0

to 1,100.

./visualize 0 1100 lopop.dat visualize.dat

You can plot the resulting data file with gnuplot like this:

plot "visualize.dat" with impulses lw 5

The graph should look like Figure A.41. Now let’s zoom in on the

region around a population of 1,000 by running your visualize program

again, this time setting popmin to 1,000 and popmax to 1,100:

./visualize 1000 1100 lopop.dat visualize.dat

You can plot the resulting data file with gnuplot like this:

plot "visualize.dat" with impulses lw 5

The result should look like Figure A.40 at the beginning of this section.

As you can see, the population values cluster around 1,040 or so, slightly

above the 1,000 individuals that can be fully fed. Think for a minute

about what this means: We’re finding that the population tends to

settle in at a level where there’s not quite enough food to go around.

This raises the death rate and lowers the birth rate until the two rates

are equal. In your final program you’ll find an exact value for this

equilibrium population.

Program 3: Finding the Mean and Standard De-

viation

Manuel Tovar Siles, “Any stop of any line
of any tramway of Madrid” (1920).
Source: Wikimedia Commons

Your third program will be named analyze.cpp. It will read a data

file produced by your first program, and give you a statistical summary

of the data it contains.

Like the first two programs, analyze should accept all of its param-

eters on the command line, and give users a helpful message if they

https://commons.wikimedia.org/wiki/File:Cualquier_parada_de_cualquier_línea_de_cualquier_tranvía_de_Madrid,_de_Tovar,_La_Voz,_14_de_octubre_de_1920.jpg

chapter a. some challenging projects 551

don’t give it the right number of arguments. The usage should be:

./analyze popmin popmax inputfile

where popmin and popmax delimit the range of population values

you’re interested in, as they do in your preceding program, and

inputfile is the name of a data file produced by your simulate.cpp

program.

The output of the analyze program should look like this:

Mean population = 1046.245636
Std. dev. = 9.590271

Again, I’ve written some of the program for you (see Program A.13).

You’ll just need to fill in main.

Program A.13: analyze.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

int main (int argc, char *argv[]) {

int year;

double population, popgrowth;

int popmin, popmax;

double dprob, bprob, ration;

double sum=0;

double sum2=0;

double mean, stddev;

int nvalues=0;

FILE *input;

// Insert program here.

}

To analyze the data, the program should proceed as follows:

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

P
ro

b
a
b
ili

ty

Ration

bprob
dprob

Figure A.42: bprob and dprob versus
ration, from our lopop.dat
simulation.

1. First, open the data file for reading. See Program 7.5 in Chapter 7

for an example of this. Refer to that program to see how to read the

data and calculate the average and standard deviation.

2. Like your visualize.cpp program, this new program should use

a while loop to read data from the input file. Each line of the file

will contain six values: year, population, popgrowth, bprob,

dprob, and ration.

3. Unlike Program 7.5, our new program will need to check to see

whether a population value is between popmin and popmax before

adding it to sum and sum2.

552 practical computing for science and engineering

If you run your program like this:

./analyze 1000 1100 lopop.dat

you should see that the mean population value is about24 1,046, which 24 The value you see will vary, because
the simulation uses random numberscorresponds to a ration of 1, 000/1, 046 or about 95.6%. If we plot our

simulation’s birth and death probabilities versus ration, using gnuplot

commands like this:

set xrange [0.92:1]

set yrange [0.008:0.02]

plot "lopop.dat" using 6:4, "" using 6:5

(column 6 of our output file is ration, column 4 is bprob and column

5 is dprob) we would see something like Figure A.42. This confirms

that birth probability and death probability are equal when the ration is

around 95.6%, the ration where our analysis shows that our population

is stable.

Conclusion

Thomas Malthus (left) and Charles
Darwin.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 500 1000 1500 2000

P
o

p
u

la
ti
o

n
 (

M
ill

io
n

s
)

Year

World Population

Figure A.43: World population growth.
Source: Wikimedia Commons

In 1798, English scholar Thomas Robert Malthus wrote An Essay on the

Principle of Population, in which he observed that English populations

were growing more rapidly than the increase in agricultural production.

Malthus anticipated the phenomenon we’ve explored in this project:

Populations tend to grow to the point where resources are no longer

sufficient for everyone, causing death rates to increase and birth rates

to decline until the population stabilizes. Malthus’s ideas about com-

petition for scarce resources were an inspiration for Charles Darwin’s

theory of evolution by natural selection.

Such plateaus in population have occurred many times in human his-

tory, but have typically been temporary and limited to a geographic

region. In Malthus’s time, for example, England was heading for a

shortage of food, while Russia had an overabundance of agricultural

capacity. Malthus expected these shortages to last only until new agri-

cultural land had been developed, or until improvements in agriculture

increased the yield of existing land.

Arnold Böcklin, The Isle of the Dead,
third version (1883) and The Isle of the
Living (1888).
Source: Wikimedia Commons and Wikimedia Commons

Globally, the human race has shown no slowing of its exponential

growth rate (see Figure A.43). So far, development of new land and

improvements in agricultural science have, on average, kept ahead of

population growth, but humans also depend on fresh water, shelter,

and other limited resources. Some people estimate25 that the global

25
See https://en.wikipedia.org/wiki/Planetary_boundaries.

https://commons.wikimedia.org/wiki/File:Population_curve.svg
https://commons.wikimedia.org/wiki/File:Arnold_Böcklin_-_Die_Toteninsel_III_(Alte_Nationalgalerie,_Berlin).jpg
https://commons.wikimedia.org/wiki/File:B%C3%B6cklin_-_Die_Lebensinsel_-1888.jpeg
https://en.wikipedia.org/wiki/Planetary_boundaries

chapter a. some challenging projects 553

population already exceeds the Earth’s carrying capacity26.

26 Apparently we’re not running short
of physical space. John Brunner’s novel
Stand on Zanzibar notes that 7 billion
people (the current population of Earth)
could fit on the island of Zanzibar – if
they stood shoulder to shoulder!

What will happen to our islanders? Will they find a clever way to

avoid a “Malthusian crisis?” Let’s wish them luck, and the same for the

inhabitants of this island Earth.

https://en.wikipedia.org/wiki/Stand_on_Zanzibar

Project 5: Yard Sale!

Introduction
Every August a 630-mile-long yard sale stretches from Michigan to

Alabama along US Highway 127. It’s called the “World’s Longest Yard

Sale”. Thousands of people visit it. In the early 21st century Economists

began to realize that yard sales like this provide a good model for

the whole world’s economy. By simulating the interactions between

buyers and sellers at such a sale, we can make predictions about wealth

distribution that match data observed in the real world. The trick is

to assume that the economy is made up of many, many one-to-one

interactions where a buyer and a seller exchange some wealth.
Source: Wikimedia Commons

Economists gauge a person’s wealth by looking not just at how much

money you have, but also the value of the goods you own. Imagine

that I’m a vendor at the yard sale and you’re a shopper. If you pay me

five dollars for a toaster, an economist would traditionally have said

that there was no net change in either person’s wealth: I have your five

dollars, but you now have a toaster worth five dollars.

Source: Wikimedia Commons

But is it really? What if, when you get home, you find that the toaster

doesn’t work. Then you really have a toaster worth less than five dollars,

but I still have your money. We could say that you’ve lost some wealth

by giving me five dollars and getting something worth less than that,

and I’ve gained some wealth by getting five dollars in exchange for

a worthless toaster. In that case, wealth has flowed from you to me,

making you poorer and me richer.

This happened because you mis-judged the value of the toaster. Tradi-

tionally, economists have assumed that shoppers are good at judging

the value of things, and economic models have used this assumption

to make predictions about the economy. But recently economists have

become interested in models that take into account the fact that buyers

https://commons.wikimedia.org/wiki/File:Yard_Sale_At_Mayweed_Corners_(104625085).jpeg
https://commons.wikimedia.org/wiki/File:Toaster.jpg

556 practical computing for science and engineering

and sellers often make mistakes about the value of things. A seller

might sell a “worthless” painting for five dollars, only to find later that

it’s a valuable Picasso, or a buyer might pay a lot of money for a “Rolex”

watch only to find that it’s a cheap knock-off.

Anirban Chakraborti, who first
proposed the “yard sale” model of
economics in 2002.

The mistakes we make are usually small, but we probably always make

some small error when we assign a value to something we buy or sell.

The effect of this is that wealth flows around the economy, with some

people becoming more wealthy than others. If everyone had an equal

chance of gaining or losing an equal amount because of these mistakes,

we might assume that, on average, they don’t matter, and that any

inequalities of wealth would even out over time. But the yard sale

models that Economists have developed, and which match real-world

economic data, make an additional assumption: They assume that the

biggest possible mistake in each transaction is the total wealth of the

poorest person involved in the transaction. (A person with only one

dollar can’t buy the five-dollar toaster, no matter whether the toaster

is broken or not.) By doing this we’re ignoring people who win the

lottery or accidentally sell a Picasso for five dollars, but it turns out that

those situations are rare and don’t have much effect on the economy as

a whole27. 27 These models also assume that wealth
of any kind can be exchanged. I can
pay you five dollars for that toaster, or I
can trade you a record player for it. My
wealth includes both the money I have
and the value of the items I own.

In this project we’re going to write three programs that investigate such

a yard-sale model of the economy. The first program (simulate.cpp)

will simulate lots of interactions between buyers and sellers. The second

(visualize.cpp) will visualize the distribution of wealth after some

time has passed. The third (analyze.cpp) will analyze the data and

boil it down to a single number that measures how evenly wealth is

distributed. Let’s get started!

Program 1: Buyers and Sellers
Our first program will be named simulate.cpp, and it should start

out like Program A.14 below. The program will simulate many random

transactions between pairs of people, and track the wealth flowing from

person to person. We’ll assume everybody starts out with the same

amount of wealth.

How the Program Works

The program should accept three parameters on the command line:

The initial wealth of each person, the number of transactions we want

chapter a. some challenging projects 557

Program A.14: simulate.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main (int argc, char* argv[]) {

const int N = 10000; // Number of people.

double wealth[N]; // Wealth of each person.

double wstart; // Starting wealth of each person.

double mistake; // Size of a mistake.

double flip; // A random number, used for deciding who made the mistake.

double ntransactions; // Number of transactions.

int alice, bob; // The two people involved in a transaction.

int poor; // which of the two people is poorer.

int i;

FILE *output;

srand(time(NULL)); // Set the seed of the random number generator.

// Put the rest of the program here!

}

to simulate, and the name of a file we want to write our results into.

For example:

./simulate 100 2e+5 output.dat

The first number is the initial wealth of each person, the second is how

many transactions we want to simulate28, and the final argument is the 28 This number is in C-style scientific
notation. In this example, we’ve used
2e+5 which is 2 × 105, or 200,000. See
Section 4.3 of Chapter 4.

name of the output file we want to create.

The program should assume that this is a very big yard sale, with

10,000 people swapping money and goods. That’s the population of a

small town or a rural county. To keep track of how much wealth each

person has, it should use an array with 10,000 elements. The wealth of

person number i will be wealth[i]. A person’s wealth will generally

be a number with decimal places, so wealth will need to be an array

of doubles.

We’ll start each person out with the same amount of wealth. Let’s call

it wstart. After setting the initial wealths, the program should enter

a loop that simulates some number of random transactions. For each

transaction, we’ll pick two people at random. Let’s call them alice and

bob, and their wealths will be wealth[alice] and wealth[bob].

After we’ve picked two people, we need to see which one is poorer by

comparing their wealths. Let’s have another variable, poor, and say

558 practical computing for science and engineering

that if Alice is poorer, poor=alice and if Bob is poorer, poor=bob.

Now assume that somebody makes a mistake in the transaction. Re-

member that we’re limiting the size of the mistake to the wealth of the

poorer person, so at most the mistake will be wealth[poor]. Let’s

say that the size of the mistake is a random number between zero and

one, multiplied by wealth[poor].

Aaah, wealth! (Portuguese actor
António Silva portraying a wealthy
man)
Source: Wikimedia Commons

Then we “flip a coin” to decide which person, Alice or Bob, benefits

from this mistake. We do this by generating a random number between

zero and one. If this number is greater than 0.5 Alice wins, otherwise

Bob wins. If Alice wins, the amount of the mistake is added to her

wealth and subtracted from Bob’s wealth. If Bob wins, the mistake is

added to his wealth and subtracted from Alice’s.

After the program has done the requested number of transactions, it

should write the final wealth of each person into the file specified on

the command line. The output file should have two columns separated

by a space: person number and the wealth of that person.

How to Write the Program

To get you started, Program A.14 shows part of simulate.cpp. It

includes all of the variables you’ll need. You just need to write the

middle part, where all the work gets done. To complete the program,

you’ll need to add code to do the following:

1. Check to make sure the user has supplied enough command-line

arguments. If there aren’t enough command-line arguments, the

program should print out a friendly usage message and then stop

without trying to do anything else29. 29 See Section 9.16 of Chapter 9 for an
example of how to do this.

2. Convert the command-line arguments into the variables wstart and

ntransactions by using the atof function30.The last command- 30 Notice that we’ve chosen to make
ntransactions a double, even
though it will always have some integer
value. That’s because we’ll be using
large numbers of transactions, and it’s
convenient to write things like 1e+7
instead of 10000000, so we don’t have
to carefully count zeros. C only lets you
use scientific notation with doubles.

line argument (the output file name) doesn’t need to be converted.

You can just use it directly, like this:

output = fopen(argv[3], "w");

3. Next you’ll need a “for” loop to set the initial wealth of each person

to wstart.

4. Then you’ll need a second “for” loop that goes through ntransactions

https://commons.wikimedia.org/wiki/File:Ant%C3%B3nio_Silva.jpg

chapter a. some challenging projects 559

transactions. During each transaction the program will need to do

several things:

(a) Pick two random people to be Alice and Bob for this transaction.

You might do something like this:

alice = rand()/(1.0+RAND_MAX) * N;

bob = rand()/(1.0+RAND_MAX) * N;

Notice that this generates a random number between zero and

(almost) one, and then multiplies it by N, the total number of

people 31. 31 On rare occasions, at random, it will
turn out that “Alice” and “Bob” are the
same person, but we won’t worry about
that. It happens rarely, and it won’t
affect the results.

(b) Then we need to use an “if” statement to check which person has

the smaller wealth. Set the variable poor to equal either alice

or bob, as appropriate.

(c) Next the program needs to determine a random size for the

mistake that’s made in this transaction. Remember that it should

be an amount between zero and wealth[poor]. One way to do

this is:

mistake = wealth[poor]*rand()/(1.0+RAND_MAX);

(d) As the last thing in the loop the program should “flip a coin” to

see whether Alice or Bob gets the benefit of the mistake. To do

this, generate a random number between zero and one, and then

use an “if” statement to see if it’s greater than 0.5. If it is, then

Alice wins. Transfer mistake amount of wealth from the loser to

the winner.

5. After the loop is done, the program should write its results into a

file32. This should be done with a third “for” loop. For each person, 32 See examples like Program 5.3 in
Chapter 5.there should be one line in the file with two numbers separated by a

space. For person “i” the numbers should be i and wealth[i].

Running the Program

After you’ve created the program, run it several times to make some

output files that you’ll use with the next two programs. Try these

commands:

./simulate 100 0 simulate-0.dat

./simulate 100 1e+4 simulate-10K.dat

./simulate 100 1e+6 simulate-1M.dat

./simulate 100 1e+9 simulate-1G.dat

560 practical computing for science and engineering

Those commands will create four output files representing a starting

wealth of $100 for each person, and simulating 0 transactions, 10 thou-

sand transactions, then 1 million and 1 billion transactions. If you

look inside any of these files with nano you should see two columns of

numbers. The first column will be the person number (an integer) and

the second column will be that person’s wealth (a number with decimal

places) after the specified number of transactions. You can graph the

results with gnuplot if you like, using gnuplot commands like:

plot "simulate-1M.dat" with impulses

You should see graphs like the ones in Figure A.44.

0

50

100

150

200

0 5 k 10 k

W
e
a
lt
h

Person Number

0 Transactions

0

2 k

4 k

6 k

8 k

10 k

12 k

0 5 k 10 k

W
e
a
lt
h

Person Number

10
6
 Transactions

0

100 k

200 k

300 k

400 k

500 k

600 k

700 k

800 k

900 k

1 M

0 5 k 10 k

W
e
a
lt
h

Person Number

10
9
 Transactions

Figure A.44: The top graph shows the
distribution of wealth after 0

transactions. Everybody has the same
amount of money ($100). The middle
graph shows the situation after 1

million transactions. Now some people
have a lot more wealth than others. The
bottom graph show the situation after 1

billion transactions. Now one random,
lucky person has all of the money, and
everyone else has nothing!

Look at what happens as the number of transactions increases. At

zero transactions everybody has the same amount of money. After

a million transactions wealth has spread around, and some people

have thousands of dollars. This isn’t too surprising. But after a billion

transactions we find that one lucky person has all of the money, and

nobody else has any! If you run this billion-transaction simulation

several times, you’ll find that one person always ends up with all the

money, but it will be a different person each time.

That’s something that economists have found to be an inescapable

property of the yard sale model: If you let it run long enough one

person inevitably ends up with all the wealth.

Program 2: Visualizing at the results
Let’s take a closer look at how our simulation distributes wealth. To

investigate this, we might make a graph that shows wealth across the

bottom, divided into equal-sized ranges like $0-$25, $25-$50, $50-$75,

and so on. On the vertical axis we could show how many people have

a wealth in each range. We learned in Chapter 7 that a graph like this

is called a histogram.

The next program you’ll write is named visualize.cpp and it will

make histograms of the simulated wealth data created by your first

program. The new program will be similar to Program 7.1 in Chapter

7. It should start out like Program A.15 below.

chapter a. some challenging projects 561

Program A.15: visualize.cpp

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main (int argc, char *argv[]) {

const int nbins=100;

int bin[nbins]; // How many people are in each wealth range.

double binsize; // Width of wealth ranges.

int n; // "Person number".

double wealth; // Wealth of that person.

double maxwealth; // Maximum wealth we want to graph.

int binno; // Bin number for a person, based on person's wealth.

int overunderflow=0; // How many people were outside the range of the graph?

int i;

FILE *input;

FILE *output;

// Insert program here.

}

How the Program Works

Like the preceding program, this one will expect parameters on its

command line, and should complain and exit if it doesn’t get the

proper number of parameters. Its usage will be:

Postcard: “Youth poverty at the
beginning of the 20th century in
Europe.”
Source: Wikimedia Commons

./visualize maxwealth input.dat output.dat

where maxwealth is the maximum wealth you want to include in

your histogram, input.dat is the name of a file produced by your

simulate.cpp program, and output.dat is a file into which your

new program will write the histogram data.

The output file should contain two columns of numbers, separated by

a single space. Unlike Program 7.1, the first column here will contain

a wealth value instead of a bin number (see below for instructions

about converting bin number to wealth). The second column will be

the number of people who have that amount of wealth.

How to Write the Program

To make the histogram, the program should proceed as follows:

1. Check to make sure the user has supplied enough command-line

arguments. If there aren’t enough command-line arguments, the

https://commons.wikimedia.org/wiki/File:La_pauvret%C3%A9_chez_les_jeunes_au_d%C3%A9but_du_20e_si%C3%A8cle_en_Europe.png

562 practical computing for science and engineering

program should print out a friendly usage message and then stop

without trying to do anything else.

2. Convert the first command-line argument into the variable maxwealth

by using the atof function. The other two command-line arguments

(the input and output file names) don’t need to be converted. The

input and output files can be opened like this33: 33 Notice that we open one file for
reading (with "r") and the other for
writing (with "w").input = fopen(argv[2],"r");

output = fopen(argv[3],"w");

3. Next, determine the binwidth, like this:

binwidth = maxwealth/nbins;

4. Use a “for” loop to set all the elements of bin to zero.

5. Now use a while loop to read data from the input file34. Each line of 34 See Chapter 5 for information about
reading data from files. In particular,
look at Program 5.4.

the file will contain two values: A person number and that person’s

wealth. The first value is an integer, and second is a double.

6. Determine which bin each person’s wealth value belongs in, and

increment that bin. Be sure to keep a count of the number of

over/underflows, as Program 7.1 does. Since the size of each bin is

binwidth, the bin number will be:

binno = wealth/binwidth;

7. After processing all of the input data, write the histogram data into

the output file. For each bin of the histogram, write two numbers

separated by a single space: the first number is the wealth value

represented by that bin, and the second is the value of bin[i]. The

wealth value can be calculated from the bin number, like this:

wealth = binwidth*(0.5+i);

where i is the bin number. This will give you the wealth at the

midpoint of that bin’s wealth range.

8. Finally, at the bottom of the output file, write a line beginning with

a # that tells how many overflows or underflows were seen.

After you’ve written the program, run it a few times like this to create

histograms from the files you created previously, limiting the graph to

chapter a. some challenging projects 563

a maximum wealth of $2,500:

./visualize 2500 simulate-0.dat visualize-0.dat

./visualize 2500 simulate-10K.dat visualize-10K.dat

./visualize 2500 simulate-1M.dat visualize-1M.dat

./visualize 2500 simulate-1G.dat visualize-1G.dat

You can use gnuplot to view the histograms by giving it commands like:

set log y

set yrange [0.1:]

plot "visualize-10K.dat" with impulses

This will draw a vertical line for each wealth range, with the height

of the line indicating the number of people who have a wealth in that

range. The first command makes the Y-axis logarithmic. If we didn’t

do this, we wouldn’t be able to the bins that only have a few people

in them. Your graphs should look something like the ones shown in

Figure A.46.

 0.1

 1

 10

 100

 1000

 10000

0 200 k 400 k 600 k 800 k 1 M

N
u

m
b

e
r

o
f

P
e

o
p

le

Wealth

1e+09 Transactions

Figure A.45: Wealth distribution after 1

billion transactions, showing wealth up
to $1 million.

You can see that the data in the last graphs is starting to run off the right-

hand edge of the graph. The total amount of money in our population

is $1 million ($100 per person × 10,000 people). Let’s graph the data

from our longest simulation using this as maxwealth. To do that, run

your visualize program again, like this:

./visualize 1000000 simulate-1G.dat visualize-long-1G.dat

This extends the wealth scale out to $1,000,000. If you graph the new

file with gnuplot (again using a logarithmic Y-axis) you should see

something like Figure A.45.

This is another way of seeing that only one person ends up with all of

the money. The short spike on the right-hand side represents the one

person who now has 1 million dollars. The tall spike on the left-hand

side is everyone else, with zero dollars35. 35 Sometimes after a billion transactions
you’ll find that there are still two people
who have some money. After more
transactions, though, one of them
always ends up with all of the money.

Program 3: Quantifying Wealth Inequality
Our simulated economy produces severe wealth inequality, but how

does it compare to real-life economies? How can we measure the

amount of wealth inequality? One way of quantifying it is called the

“Gini Coefficient36”. 36 See
https://en.wikipedia.org/wiki/Gini_coefficient.

https://en.wikipedia.org/wiki/Gini_coefficient

564 practical computing for science and engineering

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500

N
u

m
b

e
r

o
f

P
e

o
p

le 0 Transactions

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500

N
u

m
b

e
r

o
f

P
e

o
p

le 1e+04 Transactions

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500

N
u

m
b

e
r

o
f

P
e

o
p

le 1e+05 Transactions

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500

N
u

m
b

e
r

o
f

P
e

o
p

le 1e+06 Transactions

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500

N
u

m
b

e
r

o
f

P
e

o
p

le

Wealth

1e+07 Transactions

Figure A.46: Histograms of wealth after
different numbers of transactions.

chapter a. some challenging projects 565

The Gini Coefficient starts by measuring the average difference in

wealth between any two individuals in the population. (It ignores the

sign of this difference by taking the absolute value.) Then it divides

the result by the total amount of wealth in the population. A Gini

Coefficient of zero corresponds to an economy where everybody has

the same amount of wealth. A value of one corresponds to an economy

where a single person has all the wealth, and everyone else has nothing.

Real-life economies fall somewhere between these two extremes.
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

W
o

rl
d

 G
in

i
C

o
e

ff
ic

ie
n

t

Year

Figure A.47: Estimated world-wide Gini
Coefficient, by year. See Milanovic and
World Bank in the “Further Reading”
section below.

Researchers at the World Bank have estimated values for the world-

wide Gini Coefficient for various years, beginning with 1820 (see Figure

A.47). The value seems to have risen to a peak of about 0.8 in the 1980s

and then begun a downward trend. The current value is about 0.6537.

37 Note that some writers refer to the
“Gini Index”, which is just 100 times the
Gini Coefficient. That means the current
world-wide Gini Index is about 65.

Your third program, analyze.cpp, will read the data produced by

your simulation and calculate the Gini Coefficient for your simulated

economy.

How the Program Works

Like the first two programs, this one should accept arguments on the

command line. In this case, there will be just one argument: the name

of a data file produced by your simulate.cpp program. For example,

you should be able to run your latest program like this:

./analyze simulate-10K.dat

Your program should start by reading the data from the data file and

putting it back into a 10,000-element array called wealth, just like the

array you used in your first program.

“Children sleeping in Mulberry Street”
(detail), by Jacob Riis (1890).
Source: Wikimedia Commons

Next your program will need to add up the total wealth of all of the

people. You’ll need this later for calculating the Gini Coefficient.

After that, you’ll need to go through each pair of people in the popu-

lation, find the difference in their income, and add its absolute value

to a sum. You should do this with two nested “for” loops. Once the

wealth differences have all been added up, you can use that sum and

the total wealth to calculate the Gini Coefficient. Mathematically, the

Gini Coefficient is defined as:

gini =

∑
i

∑
j

| wealth[i]− wealth[j] |

2N∑
i

wealth[i]

https://commons.wikimedia.org/wiki/File:Riischildren.jpg

566 practical computing for science and engineering

Program A.16 below shows how your program should start. It contains

all the variables you’ll need. You just need to fill in the rest of the

program.

Program A.16: analyze.cpp

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main (int argc, char* argv[]) {

const int N = 10000; // Number of people.

double wealth[N]; // Wealth of each person.

double sum = 0; // Sum of all the wealth.

double sumdiff = 0; // Sum of wealth differences between pairs of people.

double gini; // Gini coeffficient.

int n; // ``Person number''

int i,j;

FILE *input;

// Add the rest of the program here.
}

How to Write the Program

1. Check to make sure the user has supplied enough command-line

arguments. If there aren’t enough command-line arguments, the

program should print out a friendly usage message and then stop

without trying to do anything else.

2. The only command-line argument (the input file name) doesn’t need

to be converted. You can just use it directly, like this:

input = fopen(argv[1], "r");

3. Next you’ll need a “for” loop that repeats 10,000 times (the value of

N in the program) and reads one line out of the input file each time.

The input file has two columns of data: the person number and that

person’s wealth. That means you should have a statement like this

for reading a line from the input file:

fscanf(input, "%d %lf", &n, &wealth[i]);

As you read each wealth value, add it to the value of sum. This will

give you the sum of all the wealth in the population, which you’ll

need later for calculating the Gini Coefficient.

4. Now the program needs to find the difference in wealth between

each pair of people in the population. To do this you’ll need a pair

of nested “for” loops. Use the fabs function to get the absolute

value of the wealth difference, and then add it to sumdiff like this:

sumdiff += fabs(wealth[i] - wealth[j]);

chapter a. some challenging projects 567

Note that this will actually count each pair of people twice. For exam-

ple, if i is 20 and j is 30, the sum will include both wealth[20] -

wealth[30] and wealth[30] - wealth[20]. We’ll take care of

this later by dividing sumdiff by 2 when doing the Gini Coefficient

calculation.

5. Finally, the program just needs to calculate the Gini Coefficient

and print it out. The Gini Coefficient will be equal to sumdiff/(

2.0*N*sum).

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 k 100 k 1 M 10 M 100 M 1 G

G
in

i
C

o
e

ff
ic

ie
n

t

Number of Transactions

Figure A.48: Gini Coefficient calculated
for various numbers of transactions
using our yard sale simulation.

The Gini Coefficient calculated by your program will be a value between

zero and one. If you run it with your simulation data for 10,000

transactions, like this:

./analyze simulate-10K.dat

you should see a Gini Coefficient of about 0.37. If you run it with the

simulation data for 1 billion transactions, the value should be much

higher, almost 1.0. Figure A.48 shows how the Gini Coefficient varies

with the number of transactions. As you can see, it approaches a value

of one for large numbers of transactions, meaning that only a few

people end up with all of the wealth.

Conclusion
So what does this model of economics tell us about the real world? Al-

though there is great inequality of wealth (for example, five billionaires

now have more wealth than the poorest half of humanity combined), it

seems unrealistic that one person would end up with all of it.

The yard sale model seems pretty simple. It just makes two assump-

tions: pairs of people exchange wealth, and poor people can’t spend

more money than they have. Why does it make a prediction that’s so

different from what we see in the world around us? Clearly there’s

some factor that we’re leaving out of our model.

It might seem that everybody at the yard sale has an equal opportunity

to gain wealth, and at first they do. Initially wealth is distributed evenly

among all of them, with perfect symmetry. But this initial symmetry is

spontaneously broken as soon as some people become a little poorer

than others. Poorer people in the model are always at an economic

disadvantage because poverty limits the size of the economic risks they

can take. This creates a tendency for the rich to get richer and the poor

568 practical computing for science and engineering

to get poorer, causing the yard sale model to inevitably collapse into

oligarchy.

Why doesn’t this happen in the real world? Mathematician Bruce

Boghosian at Tufts University and his economist colleagues have shown

that by transferring a small fraction of wealth from rich people to poor

people after each transaction, the yard sale model’s wealth distribution

can be stabilized. In the real world, this corresponds to the wealth

redistribution that’s done by taxes and social programs.

Lou Hoover, First Lady of the United
States, with her sons.

Migrant Mother, Photo by Dorothea
Lange.
Source: Wikimedia Commons

With this one small change, Boghosian has found the modified yard

sale model can match recent European and U.S. wealth distribution

patterns to within 2%. By making two more tweaks, allowing people to

go into debt and accounting for advantages that wealthier people have

in business transactions, the model can match U.S. data over a span of

several decades with an accuracy of a fraction of a percent.

Boghosian also points to economies where social programs have broken

down, like Armenia after the fall of the Soviet Union. In those cases,

the economy really does devolve into oligarchy, with all of the wealth

being held by a few people after an initial struggle for resources, just

as our unmodified yard sale model would predict.

In a 2019 Scientific American article Boghosian said

“We find it noteworthy that the best-fitting model for empirical wealth

distribution discovered so far is one that would be completely unstable

without redistribution rather than one based on a supposed equilibrium

of market forces. In fact, these mathematical models demonstrate that far

from wealth trickling down to the poor, the natural inclination of wealth

is to flow upward, so that the ’natural’ wealth distribution in a free-

market economy is one of complete oligarchy. It is only redistribution

that sets limits on inequality.”

Further Reading
• “The Mathematics of Inequality”,

https://now.tufts.edu/articles/mathematics-inequality.

• Bruce M. Boghosian, “Is Inequality Inevitable?” (originally published under the title “The Inescapable Casino”),

Scientific American 321, 5, 70-77 (November 2019).

• Anirban Chakraborti, “Distributions of money in model markets of economy”,

https://arxiv.org/abs/cond-mat/0205221.

• Branko Milanovic, “Global Inequality and the Global Inequality Extraction Ratio”,

http://documents1.worldbank.org/curated/en/389721468330911675/pdf/WPS5044.pdf.

• World Bank, “Poverty and Prosperity 2016 / Taking on Inequality”,

https://openknowledge.worldbank.org/bitstream/handle/10986/25078/9781464809583.pdf.

https://commons.wikimedia.org/wiki/File:Migrant_Mother_sequence_by_Dorothea_Lange,_8b29525u.jpg
https://now.tufts.edu/articles/mathematics-inequality
https://www.scientificamerican.com/article/is-inequality-inevitable/
https://arxiv.org/abs/cond-mat/0205221
http://documents1.worldbank.org/curated/en/389721468330911675/pdf/WPS5044.pdf
https://openknowledge.worldbank.org/bitstream/handle/10986/25078/9781464809583.pdf

Project 6: Virus

Introduction
Imagine a time in the future when a new virus, deadlier than COVID-

19, is ravaging the country. You’re a health-care professional working

on the island of Natucket, off the coast of Massachusetts. So far, no

one on Natucket has contracted the virus, but you’re a good computer

programmer and your boss has asked you to simulate the potential

effect of a virus outbreak on the island’s residents. Nantucket, Massachusetts.
Source: Wikimedia Commons

Nantucket has a full-time population of a little over 10,000. During the

tourist season it normally swells to 50,000, but concerns over the virus

and restrictions on travel have kept visitors away this year. Nonetheless,

if the disease reaches Nantucket the number of patients could easily

exceed the twenty beds available in the island’s only hospital.

Fortunately, a very effective vaccine has been developed. One thing

your boss has asked you to look into is how different percentages of

vaccinated people would affect the impact of the virus.

You also know that measures like mask-wearing and social distancing

can slow the spread of the virus by reducing the probabilty that it

will be transmitted from one person to another. This is the second

thing your boss has asked you to investigate: How does transmission

probability influence the spread of the disease?

The SARS-CoV-2 virus, which causes
COVID-19.
Source: Wikimedia Commons

It’s late at night now, and you’ve started writing three programs that

will help answer these questions. Go get some sleep and finish them

tomorrow!

https://commons.wikimedia.org/wiki/File:Nantucket-08-2004.jpg
https://commons.wikimedia.org/wiki/File:Coronavirus._SARS-CoV-2.png

570 practical computing for science and engineering

Program 1: Simulating The Progress of the Disease
Your first program is called simulate.cpp (see Program A.17 on page

572). It tracks the health of 10,000 people (the same as Nantucket’s

population) for 100 days. Each person’s health status is represented by

one of the numbers shown in Table A.1. The program uses a 10,000-

element array of integers to keep track of the status of each person. The

program assumes that 100 people (1%) are infected on the first day.

Status Number Symbol

Susceptible 0 is_susceptible

Recovered -1 is_recovered

Vaccinated -2 is_vaccinated

Dead -3 is_dead

Infected Any positive number: # of days infected

Table A.1: Numerical status indicators
for each person in the simulation. The
last column shows symbols (defined in
virus.h – see below) that we can use
instead of numbers if we like. Notice
that any positive number indicates the
number of days that an infected person
has been sick.

Each day, the program simulates random interactions between people.

These interactions cause some susceptible people to get sick. Each day,

sick people have some chance of getting well or dying. At the end of

each day, the program counts how many people are in each of these

states and writes that data into a file.

The program should accept three arguments on the command line:

The fraction of people who are vaccinated (vprob), the probability of

catching the disease from an infected person (tprob), and the name of

the output file.

By running the program with various values of vprob and tprob

you can investigate the effects of vaccination and masking or social

distancing on the spread of the disease, as you boss asked you to do.

Vaccination and mask-wearing can slow
the spread of some diseases.
Sources: Wikimedia Commons and Wikimedia Commons

How the Program Works

Your program actually has two 10,000-element arrays: one to hold each

person’s current health status, and the other to hold the status they’ll

have during the next day of the simulation. At the end of each day,

the data from the “next day” array should be copied into the “current

status” array.

The program should loop through all 100 days, and on each day it

should loop through all 10,000 people, determining each person’s new

status. The new status will be determined by two functions you need

to write.

https://commons.wikimedia.org/wiki/File:Preparations_for_vaccination.jpg
https://commons.wikimedia.org/wiki/File:Coronavirus_child_in_mask.jpg

chapter a. some challenging projects 571

To decide whether a susceptible person has been infected, you should

write a function named catch_or_not that simulates a random num-

ber of encounters between the person and other people in the popu-

lation. When an infected person is encountered, the function flips a

virtual coin to see if the susceptible person catches the infection.

To decide whether an infected person gets well, dies, or stays sick, you

should write another function named die_or_not. If the person sur-

vives more than about 14 days, this function determines that the person

has recovered and is no longer sick or susceptible to the infection.

The program should assume that vaccinated people are perfectly pro-

tected, and have no chance of becoming infected38. 38 This is obviously not the case for a
real vaccine, but it makes our program
simpler. The Pfizer vaccine is 95%
effective at preventing hospitalization
due to Covid-19, so 100% effectiveness
for a vaccine is not an unreasonable
approximation for purposes of our
simulation.

How to Write the Program

Your previous day’s work is shown in Program A.17. You’ll just need

to finish the two functions at the top, and finish the middle of the

main program. Follow the instructions below to complete the program.

Note that the program also uses two header files that you wrote the

previous day (Wow, you were really productive!), named random.h

and virus.h. You’ll find these in the “Header Files” section at the end

of this project.

The program contains two arrays named status and newstatus.

These are used to keep track of each person’s current status and the

new status they’ll have on the next day of the simulation.

Start by writing the catch_or_not and die_or_not functions.

Writing catch_or_not:

This function will simulate a random number of interactions between a

susceptible person and other people in the population and return an

integer that’s the new status for the person (one of the numbers in Table

A.1). This function takes three arguments: tprob, the transmission

probability; npeople, the number of people in the population; and

status, the array of current status information. To write this function,

follow these steps (and define any variables you need for them):

The island of Nantucket, once famous
for whaling. Herman Melville said
‘’Two thirds of this terraqueous globe
are the Nantucketer’s. For the sea is his;
he owns it, as Emperors own empires”.
Source: Wikimedia Commons

1. You’re first going to need to generate a random number of peo-

ple that this person is exposed to during the day. The header file

random.h contains a function that will be handy for this, named

rand01. It generates random numbers that are uniformly dis-

https://www.cdc.gov/mmwr/volumes/70/wr/mm7042e1.htm
https://www.cdc.gov/mmwr/volumes/70/wr/mm7042e1.htm
https://commons.wikimedia.org/wiki/File:Nantucket_map-fi.png

572 practical computing for science and engineering

Program A.17: simulate.cpp

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include "random.h"

#include "virus.h"

int catch_or_not (double tprob, int npeople, int status[]) {

// Insert function here!

}

int die_or_not (double dprob, int sick_days, int person, int npeople, int status[]) {

// Insert function here!

}

int main (int argc, char *argv[]) {

const int npeople=1e+4;

int status[npeople];

int newstatus[npeople];

int day,person;

double vprob; // Vaccination probability.

double tprob; // Transmission probability

double dprob = 0.015; // Death probability per day

int ndays = 100;

int initial_infections = 0.01*npeople;

int sick_days = 14;

FILE *output;

// Insert the rest of the program here!

printf ("Population: %d\n", npeople);

printf ("Vaccination Probability: %lf\n", vprob);

printf ("Transmission Probability: %lf\n", tprob);

printf ("Initial Infections: %d\n", initial_infections);

printf ("Simulation Period: %d days\n", ndays);

printf ("Number of Recovered: %d\n", nrecovered);

printf ("Number of Dead: %d\n", ndead);

printf ("Case Fatality Rate: %lf\n", (double)ndead/(nrecovered+ndead));

}

chapter a. some challenging projects 573

tributed between zero and one (see Figure A.49). Use the following

statement to generate a random number of people met that day:

nexposures = 20*rand01();

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

Figure A.49: Histograms of random
numbers in a uniform distribution (top)
from rand01() and a normal
distribution (bottom) from normal().

2. Then, you’ll need a “for” statement that loops through nexposures

people. Each time around the loop you’ll need to do a couple of

things:

(a) pick a random other person from the list of people, like this:

otherperson = rand01() * npeople

(b) Use an “if” statement to see if the other person is infected (in

other words, if status[otherperson] is greater than zero).

If the other person is infected, check to see if the person we’re

tracking catches the disease.

We do this by using the rand01 function to give us a random

number between zero and one, and then checking to see if that

number is less than tprob (the “transmission probability”). If it is,

the catch_or_not function should return a value of 1, meaning

that the person is now on his first day of infection.

If none of the encounters result in infection, catch_or_not should

return a value of is_susceptible, meaning that the person isn’t

infected, but is still susceptible39. 39 See the values in Table A.1.

Writing die_or_not:

This function checks to see if an infected person stays sick, dies, or

gets better. It takes five arguments: dprob, the probability of dying

each day; sick_days, the typical number of days someone is sick40; 40 Notice that simulate.cpp al-
ready defines dprob=0.015 and
sick_days=14. You don’t need to
change these.

person, this person’s index in the status array; npeople, the total

number of people; and the status array itself. Here’s how to write

this function:

1. Start by using the rand01 function to give a number between zero

and one, and then checking to see if that number is less than dprob.

If it is, that means that the person died, so the function should return

a value of is_dead.

2. If the person doesn’t die, we need to check to see if she recovers

or remains sick. To do this, check to see if the number of days the

person has been sick is greater than sick_days, plus or minus

a small random amount (everyone isn’t sick for exactly the same

amount of time). Do that like this:

if (status[person] > sick_days + 3.0*normal()) {

This uses the normal function, which generates random numbers

that tend to be around zero, but are sometimes bigger or smaller41. 41 See the bottom graph in Figure A.49.

(Remember that status[person] is the number of days an in-

574 practical computing for science and engineering

fected person has been sick.) If this condition is true, the func-

tion should return is_recovered. Otherwise it should return

status[person]+1, indicating that the person will stay infected

for another day.

Writing main:

To complete the program, you’ll need to add some lines to main to do

the following:

1. Check to make sure the user has supplied enough command-line

arguments42. If there aren’t enough command-line arguments, the

42 Syntax should be:
./simulate vprob tprob file

program should print out a friendly usage message and then stop

without trying to do anything else43. 43 See Section 9.16 of Chapter 9 for an
example of how to do this.

2. Convert the command-line arguments into the variables vprob and

tprob by using the atof function. The last command-line argument

(the output file name) doesn’t need to be converted. You can just use

it directly, like this:

output = fopen(argv[3], "w");

3. Next, calculate the number of vaccinated people, using vprob like

this:

nvaccinated = vprob*npeople;

4. Now your program is ready to set the initial status of each person.

The virus.h file contains a function named initialize_status

to help you do that44. Use it like this:

44 Notice that simulate.cpp already
defines initial_infections to be
0.01*npeople. You don’t need to
change this.

initialize_status(npeople, initial_infections, nvaccinated, status);

5. Your program will need a pair of nested “for” loops: An outer loop

that goes through all the days, and an inner loop that goes through

all of the individuals in the population and, for each one, checks to

see whether that person gets sick, gets well, dies, or stays the same.

The outer loop might start like this:

for (day=0; day<ndays; day++) {

and the inner loop might start like this:

for (person=0; person<npeople; person++) {

6. Inside the inner loop we’ll determine the person’s new status for

chapter a. some challenging projects 575

the next day (newstatus[person]). We’ll need an “if” statement

that has three branches that do different things depending on the

person’s current status:

• If the person is susceptible (in other words, if status[person] == is_susceptible)

then:

newstatus[person] = catch_or_not(tprob, npeople, status);

• If the person is infected (that is, if status[person] > 0) then:

newstatus[person] = die_or_not(dprob, sick_days, person, npeople, status);

• Otherwise, we’ll assume the person just stays the same the next

day, and set newstatus[person] = status[person].

7. At the end of each day, the program should update the status

of all the people by copying all of the elements of newstatus

to status. The virus.h header file includes a function named

update_status that will do that for us. Add the following line to

your program to use it:

update_status(npeople, status, newstatus);

8. The update_status function will also count how many people are

in each state and put those numbers into the variables nsusceptible,

nrecovered, nvaccinated, ninfected, and ndead. Use this

fprintf line to write the those values and the current day number

into the output file at the end of each day:

fprintf (output, "%d %d %d %d %d %d\n",

day, nsusceptible, nrecovered, nvaccinated, ninfected, ndead);

After you’ve completed your program, compile it and run it like this:

./simulate 0.0 0.015 simulate-0.0-0.015.dat

That will run the simulation with vprob equal to zero (nobody vacci-

nated) and tprob equal to 0.015 (1.5% chance of catching the disease

from an infected person). The program should print something like

Figure A.50 on the screen when it’s done.

Population: 10000

Vaccination Probability: 0.000000

Transmission Probability: 0.015000

Initial Infections: 100

Simulation Period: 100 days

Number of Recovered: 5271

Number of Dead: 1084

Case Fatality Rate: 0.170574

Figure A.50: Typical output from
simulate.cpp with vprob=0.0 and
tprob=0.015.

As you can see, under these conditions we might expect over a thousand

people to die during this 100-day period. The program also prints

a “Case Fatality Rate” (CFR) that tells us the likelihood of dying if

you catch the disease. The CFR for this disease is about 17%. For

comparison, the reported45 global CFR for COVID-19 is about 2% and 45 See ourworldindata.org for some
information about the difficulty of
interpreting real-world CFR numbers.

for seasonal flu in the US it’s about 0.2%.

https://ourworldindata.org/mortality-risk-covid

576 practical computing for science and engineering

You could graph the data in the output file using this gnuplot command:

plot "simulate-0.0-0.015.dat" using 1:2 with lines lw 5 title "Susceptible", \

"" using 1:3 with lines lw 5 title "Recovered", \

"" using 1:4 with lines lw 5 title "Vaccinated", \

"" using 1:5 with lines lw 5 title "Infected",\

"" using 1:6 with lines lw 5 title "Dead"

If you did, you should see a graph like the following:

 0

 2000

 4000

 6000

 8000

 10000

 0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

P
e

o
p

le

Day

Susceptible
Recovered
Vaccinated

Infected
Dead

Figure A.51: Results of a simulation with
vprob=0 and tprob=0.015.

vprob tprob Deaths

0.0 0.015 1205

0.1 0.015 937

0.6 0.015 38

0.0 0.007 71

0.1 0.007 44

0.6 0.007 21

Figure A.52: Some typical values for
number of deaths, given various values
for vprob and tprob. (Your program’s
results will vary slightly from these
because it uses random numbers.)

Try running the program with vprob set to 0.6 (60% of people vacci-

nated). You should see that the number of deaths is a lot smaller. Then

try running it with vprob=0.6 and tprob=0.007 (reducing tprob

by about half from the previous value). This simulates the effect of

masking and social distancing, which reduce the transmission probabil-

ity46, and should further reduce the number of deaths. Some typical 46 See “Why Masks Work
BETTER Than You’d Think”:
https://www.youtube.com/watch?v=Y47t9qLc9I4.

results are shown in Figure A.52.

Figures A.53 and A.54 on the next page show how you might expect

the number of deaths to change as you change vprob and tprob.

The graphs show that vaccinating even half the people would have a

dramatic effect, and similar results could be obtained by cutting the

transmission probability in half.

https://www.youtube.com/watch?v=Y47t9qLc9I4

chapter a. some challenging projects 577

Program 2: How Much Do Results Vary?

 0

 200

 400

 600

 800

 1000

 1200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

e
r

o
f

D
e

a
d

Vaccination Fraction

 0

 200

 400

 600

 800

 1000

 1200

 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

N
u
m

b
e
r

o
f
D

e
a
d

Transmission Probability

Figure A.53: The top graph shows the
number of deaths after 100 days for
various values of vprob when tprob is
1.5%. The bottom graph shows number
of deaths for various values of tprob
when vprob is 0%.

0.00
0.20

0.40
0.60

0.80
1.00

0.000
0.002

0.004
0.006

0.008
0.010

0.012
0.014

0.016

 0

 200

 400

 600

 800

 1000

 1200

vprob

tprob

N
u
m

b
e
r

o
f
D

e
a
th

s

 0

 200

 400

 600

 800

 1000

 1200

Figure A.54: Effect of changing vprob

and tprob on the number of deaths
after 100 days.

When we run our simulation program it gives us numbers that tell

us how many people were infected, recovered, died, and so forth, but

the program works by simulating random interactions between people.

It’s possible that the program could sometimes just “roll the dice” in a

really unlikely way, and give us results that are unrealistic.

How much random variation is there in the results our program pro-

duces? One way to get a handle on this would be by running the

program many times with the same set of parameters, and then looking

at how much the results vary.

We don’t have to do that by hand, though. As we’ve seen, computers

are very good at doing the same thing over and over again very quickly.

We can just get the computer to run our simulation many times for us.

That’s what you’ll do for your second program, which will be called

analyze.cpp.

How the Program Works

This new program will start out as a copy of simulate.cpp. Instead

of just simulating 100 days once, though, the new program will do the

same simulation 1,000 times. At the end, it will tell the user the average

number of deaths after 100 days, and the standard deviation of this

number. The program will also write the results of each trial into an

output file for later analysis. (We’ll use this file with the third program

you write.)

How to Write the Program

Follow these steps to write analyze.cpp:

1. Start by copying simulate.cpp:

cp simulate.cpp analyze.cpp

2. Then edit analyze.cpp and add a few new variables to main:

double sum=0;

double sum2=0;

int trial;

int ntrials=1000;

We’ll use these for looping through 1,000 trials and calculating the

average and standard deviation of the number of deaths.

578 practical computing for science and engineering

3. Next, you’ll need to add a “for” loop around most of the rest of

main. The “for” loop should start before the initialize_status

line (so that the status of all the people gets reset at the beginning of

each trial), and it should begin like this:

for (trial=0; trial<ntrials; trial++) {

4. This program will take a while to run, so immediately under the

beginning of the new “for” loop you should include some lines

to print progress messages. Do this by printing a message like

“Processing trial 20” whenever trial is a multiple of ten47. 47 See Section 4.4 of Chapter 4 for
information about how to do this.

5. Remove the existing fprintf statement, since we don’t want this

program to write results at the end of every day. (We’ll add a new

fprintf statement in an other place – see below – to write the

results at the end of each trial.)

6. At the end of each trial, do a couple of things:

• Add ndead to sum, and add ndead*ndead to sum2. We’ll use

these sums later to calculate the mean and standard deviation

after we’ve done all the trials.

• Write the results from this trial into the output file. Use a line like

this:

fprintf (output, "%d %d %d %d %d %d\n",

trial, nsusceptible, nrecovered, nvaccinated, ninfected, ndead);

7. At the very end of the program, instead of printing the “Number

of Recovered”, “Number of dead”, and “Case Fatality Rate” instead

print:

(a) The number of trials

(b) The average number of deaths at the end of each trial

(c) The standard deviation of this number

Compile analyze.cpp and try running it like this:

./analyze 0.0 0.015 analyze-0.0-0.015.dat

It should tell you something similar to Figure A.55, showing that, if

nobody is vaccinated and people have a 1.5% chance of catching the

virus from an infected person, the expected number of deaths after 100

days is about 1117 ±34, so between 1083 and 1151.

Population: 10000

Vaccination Probability: 0.000000

Transmission Probability: 0.015000

Initial Infections: 100

Simulation Period: 100 days

Number of Trials: 1000

Average Number of Dead: 1117.258000

Standard Deviation: 34.126149

Figure A.55: Typical output from
analyze.cpp when vprob=0.0 and
tprob=0.015.If you set vprob=0.6 and tprob=0.007 you should see that the

chapter a. some challenging projects 579

number of deaths after 100 days drops to about 20 ±5.

Program 3: Visualizing the Variation

Lambs, Nantucket (1874), by Eastman
Johnson, National Gallery of Art.
Source: Wikimedia Commons

While analyze.cpp is running it writes the results of each trial into

an output file. Your next job is to write a new program named

visualize.cpp that will read that file and produce a histogram.

Your program will be similar to program 7.1 in Chapter 7. The data it

will histogram is the number of deaths. It should start out like Program

A.19 below. Notice that it defines a 50-element array, bin, to hold the

histogram data.

Program A.19: visualize.cpp

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main (int argc, char *argv[]) {

const int nbins=50;

int bin[nbins];

double dmin, dmax;

double binsize;

int trial;

int nsusceptible, nrecovered, nvaccinated, ninfected, ndead;

int binno;

int overunderflow=0;

int i;

FILE *input;

FILE *output;

// Insert Program Here.
}

How the Program Works

Like the preceding programs, this one will expect parameters on its

command line, and should complain and exit if it doesn’t get the proper

number of parameters. Its usage will be:

./visualize dmin dmax inputfile outputfile

where dmin and dmax are the minimum and maximum number of

deaths that can be recorded in the histogram; inputfile is the name

of a file that was produced by analyze.cpp; and outputfile is the

name of a file into which the new program will write the histogram

data. When plotted, the data should look like Figure A.56 on page 580.

How to Write the Program

To make the histogram, the program should proceed as follows:

1. Check the number of command-line arguments, and use atof to

https://commons.wikimedia.org/wiki/File:Lambs,_Nantucket_C15343.jpg

580 practical computing for science and engineering

set the values of dmin and dmax. The input and output files can be

opened like this48: 48 Notice that we open one file for
reading (with "r") and the other for
writing (with "w").input = fopen(argv[3],"r");

output = fopen(argv[4],"w");

2. Then, determine the binsize, like this:

binsize = (dmax-dmin)/nbins;

3. Next, use a while loop to read data from the input file49. Each line 49 See Chapter 5 for information about
reading data from files.of the file will contain six integer values: trial, nsusceptible,

nrecovered, nvaccinated, ninfected, and ndead.

4. Determine which bin this ndead value belongs in, and increment

that bin. Be sure to keep a count of the number of over/underflows,

as Program 7.1 does. Since the range of our histogram is dmin to

dmax, the bin number will be:

binno = (ndead-dmin)/binsize;

5. After processing all of the input data, write the histogram data into

the output file. For each bin of the histogram, write two numbers

separated by a single space: the ndead value represented by that

bin50, and the value of bin[i]. The ndead value can be calculated 50 Note that this is different from
Program 7.1, where we just printed the
bin number as the first column in the
output file.

from the bin number, like this:

ndead = dmin + binsize*(0.5+i);

where i is the bin number.

6. Finally, at the bottom of the output file, write a line beginning with

a # that tells how many overflows or underflows were seen.

Compile your program and try running it like this, using the output

file you created above51:

51 Note that I’ve chosen values of dmin
and dmax that are separated by a
multiple of 50 (the number of bins).
Doing this will make your graphs look
better.

./visualize 1000 1250 analyze-0.0-0.015.dat visualize-0.0-0.015.dat

You can plot the resulting data file with gnuplot like this:

plot "visualize-0.0-0.015.dat" with impulses lw 5

 0

 10

 20

 30

 40

 50

 60

 70

 1000 1050 1100 1150 1200 1250 1300

N
u
m

b
e
r

o
f
T

ri
a
ls

Number of Deaths

Figure A.56: Histogram of number of
deaths after 100 days, from 1,000 trials
with vprob=0 and tprob=0.015.

The result should look like Figure A.56, which seems to be in agreement

with our previous program’s prediction that the number of deaths with

vprob=0 and tprob=0.015 would typically lie somewhere between

1083 and 1151.

chapter a. some challenging projects 581

Conclusion

An inflatable sea serpent on a
Nantucket beach (1937).
Source: Wikimedia Commons

The first surfboard on Nantucket (1932).
Source: Wikimedia Commons

Congratulations! The programs you’ve written will help you and your

boss know what to expect if this disease reaches Nantucket. It appears

that if you can get 60% of the people vaccinated and use mask-wearing

and social distancing to reduce transmission by half, the number of

deaths can be reduced from over a thousand to only twenty or so. This

is still tragic, but the lives of a thousand people could be saved.

The programs you’ve written are very simple compared to the sophisti-

cated models that organizations like the CDC use for forecasting the

spread of a disease, but they still give you some insight in to how a

pandemic works and a couple of the factors that influence its progress.

You might think about how you could improve on the programs you’ve

written. Here are some things to consider:

• Rather than assuming a perfect vaccine, what if the vaccine only

reduced your probability of getting infected? What if it reduced your

probability of dying?

• What if the simulation allowed you to put a limit on the size of

gatherings by changing how nexposures is calculated?

• What if infected people were quarantined after they showed symp-

toms?

• What if the simulation increased the probability of death after the

number of sick people exceeded the number of available hospital

beds?

• What if conditions change during the course of the outbreak? tprob

might be higher in cold weather, for example, or people might be

getting vaccinated while the disease is spreading.

• What about the effect of social networks? People tend to interact

with a network of friends, relatives, and co-workers rather than

people chosen completely at random.

Because of the increasing global population and the growth of global

travel and commerce, forecasting disease outbreaks is more important

than ever before. Sara Del Valle, a mathematical epidemiologist at

Los Alamos National Laboratory, argues that we need to make disease

forecasting as accurate and reliable as weather forecasting52. As a step 52 Sara Del Valle, “We need to fore-
cast epidemics like we forecast the
weather”.

in this direction, in 2021 the CDC announced the formation of a new

“Center for Forecasting and Outbreak Analytics”53. Efforts like this 53 CDC press release

should provide fertile new ground for young programmers who want

to make the world a better place.

https://commons.wikimedia.org/wiki/File:Tony_Sarg_with_sea_serpent_(3177494920).jpg
https://commons.wikimedia.org/wiki/File:First_Surfboard_on_Nantucket_1932_(cropped).jpg
https://www.statnews.com/2020/07/27/forecast-epidemics-like-we-forecast-weather/
https://www.statnews.com/2020/07/27/forecast-epidemics-like-we-forecast-weather/
https://www.statnews.com/2020/07/27/forecast-epidemics-like-we-forecast-weather/
https://www.cdc.gov/media/releases/2021/p0818-disease-forecasting-center.html

582 practical computing for science and engineering

Header Files
You’ll need the following two header files in order to write your pro-

grams.

The first file, random.h, contains two functions for generating random

numbers. See Figure A.49 on page 573 for an illustration of the output

from the two functions.

Program A.20: random.h

// Random number between zero and one

double rand01 () {

static int needsrand = 1;

if (needsrand) {

srand(time(NULL));

needsrand = 0;

}

return (rand()/(1.0+RAND_MAX));

}

// Normal distribution:

double normal () {

int nroll = 12;

double sum = 0;

int i;

for (i=0; i<nroll; i++) {

sum += rand01();

}

return (sum - 6.0);

}

The second file, virus.h, contains some global variable definitions

and two functions: update_status and initialize_status.

The initialize_status function takes care of setting up the ini-

tial health status of all 10,000 people. Depending on the values of

initial_infections and nvaccinated, some number of people

are set to the infected or vaccinated states. Everybody else is set to the

susceptible state.

The update_status function takes care of copying information from

newstatus to status and also counts how many people have each

health status.

chapter a. some challenging projects 583

Program A.21: virus.h

// Global variables:

// Counters:
int nsusceptible, ninfected, nrecovered, nvaccinated, ndead;

// Status indicators:
// Any positive value indicates user has been infected for n days.
// Negative values indicate:
const int is_susceptible = 0;
const int is_recovered = -1;
const int is_vaccinated = -2;
const int is_dead = -3;

// Update status of each person and count them
void update_status(int npeople, int status[], int newstatus[]) {

int i;

// Reset counters in preparation for counting:
nsusceptible = 0;
ninfected = 0;
nrecovered = 0;
ndead = 0;

for (i=0; i<npeople; i++) {
status[i] = newstatus[i];
if (status[i] == is_susceptible) {

nsusceptible++;
} else if (status[i] == is_recovered) {

nrecovered++;
} else if (status[i] == is_dead) {

ndead++;
} else if (status[i] > 0) {

ninfected++;
}

}
}
void initialize_status (int npeople,

int initial_infections, int nvaccinated, int status[]) {
int i;
int vmax;

// Initial infections:
for (i=0; i<initial_infections; i++) {

status[i] = 1;
}

// Vaccinations:
// Don't exceed total number of people!
vmax = initial_infections+nvaccinated;
if (vmax > npeople) {

vmax = npeople;
}
for (i=initial_infections; i<vmax; i++) {

status[i] = is_vaccinated;
}

// Everybody else is susceptible:
for (i=vmax; i<npeople; i++) {

status[i] = is_susceptible;
}

}

Project 7: Crowd Control

Introduction
Imagine you’re in charge of security for a stadium. The stadium hosts

large sports events and concerts. It holds 10,000 people. Your job is

to move these people safely into the stadium during the 90 minutes

before an event begins.

The Roman Colosseum (top photo)
could hold 50,000 to 80,000 spectators.
The University of Virginia’s Scott
Stadium (middle photo) accommodates
60,000. Currently, the largest stadium in
the world is Narendra Modi Stadium
(bottom photo) in India, which holds
132,000 people.
Source: Wikimedia Commons (top), University of Virginia (middle),
Gujarat Cricket Association (bottom)

To enter the stadium, attendees need to pass through a security screen-

ing process that includes bag checks and metal detectors. To help get

people into the stadium quickly, there are 20 different security check

stations distributed around the stadium’s perimeter.

In this project we’ll be writing three programs that simulate the process

of passing spectators into such a stadium, and analyze and visualize

the results of our simulation. With our programs we’ll try to answer

questions that would come up in the real world:

• How long does it take to get everybody into the stadium?

• How long do people wait in line?

• How long do the lines get?

Our simulation will have two adjustable parameters: The rate at which

people arrive, and the average time needed to do a security scan on

a person. You’ll be writing three programs, named simulate.cpp,

analyze.cpp, and visualize.cpp.

Program 1: Simulating the Lines
Your first program will be called simulate.cpp. It will simulate the

process of moving 10,000 people into a stadium, using 20 entrance lines.

To answer the questions listed in the introduction we’ll need to keep

track of a few things for each line:

https://commons.wikimedia.org/wiki/File:Colosseum_(Amphitheatrum_Flavium).jpg
https://gujaratcricketassociation.com/

586 practical computing for science and engineering

• When did a person join the line?

• Who’s next in line?

• How many people are currently in line?

In 2005, UVa’s Scott Stadium hosted a
Rolling Stones concert.
Source: Wikimedia Commons

Bono and Adam Clayton during a U2

concert at Scott Stadium on October 1,
2009.
Source: Wikimedia Commons

In 2017, Dave Matthews and many
other musicians played a “Concert for
Charlottesville” in Scott Stadium, in
response to the violent events in August
of that year.
Source: Wikimedia Commons

In programming, we often refer to a line like this as a “queue”, and I’ll

use those words interchangeably in the following descriptions.

Our program will keep track of the necessary information by using

arrays. To start with, imagine that we only had one queue leading to

one scanning station. We could have an array that stored the time at

which each person entered the line, as shown in Figure A.57.

In the top diagram we see that there are six people in line. The first

person (element 0 of the array) entered the line 49 seconds after the

gates opened. The other people entered at successively later times. A

variable named qstart keeps track of who is at the front of the line

(in this case, person 0). The variable qend keeps track of the next free

spot in line (element number 6 of the array, in this case). The number

of people in line at this point is just qend - qstart.

When we want to add a person to the line, we put the person’s arrival

time into element qend, and then add one to the value of qend, as

shown in the middle diagram. There are now 7 people in line, which is

equal to the new value of qend - qstart.

When the person at the front of the line gets passed through the scan-

ning station, we add 1 to qstart, as shown in the bottom diagram.

Now qend - qstart is 6 again, the number of people still in line.

If we have more than one line, we’ll need to keep track of qstart and

qend for each of them. We can do this by making qstart and qend

arrays. If we have 20 lines, numbered 0 through 20, we could have

qstart[0] be the value of qstart for line number 0, qstart[1] for

line number 1, and so forth.

For keeping track of everybody’s arrival time, let’s use a 2-dimensional

array named q. In our program, we’ll define q, qstart, and qend like

this54:

54 Notice that we set all the values of
qstart and qend to zero initially.

int q[nqueue][npeople];

int qstart[nqueue] = {0};

int qend[nqueue] = {0};

where nqueue is the number of queues (“lines”), and npeople is

the number of people in our simulation. npeople is the maximum

possible number of people who can be standing in line, even if we

https://commons.wikimedia.org/wiki/File:The_Rolling_Stones.jpg
https://commons.wikimedia.org/wiki/File:U2_@_Scott_Stadium_2.jpg
https://commons.wikimedia.org/wiki/File:Dave_Matthews_in_Concert_(43501212971).jpg

chapter a. some challenging projects 587

100 91 84 80 71 67 64 60 57 49

100 91 84 80 71 67 64 60 57 49

100 91 84 80 71 67 64 60 57 49

qstart=0

9 8 7 6 5 4 3 2 1 0Person

qend=6

Initial

Add a Person

Process a Person

qstart=0qend=7

9 8 7 6 5 4 3 2 1 0Person

9 8 7 6 5 4 3 2 1 0Person

80

qstart=1qend=7

Figure A.57: This diagram shows how
our program will add and remove
people from a queue.

only had one line. Figure A.58 shows what the situation will now look

like with multiple queues55. Here we show a situation in which the

55 For clarity, this only shows five of the
twenty queues.

first three people in queue 4 have been processed through the scanning

station. The number of people left in queue 4 is qend[4]-qstart[4]

= 6. If we wanted to know when person number 5 entered this queue,

we could look at q[4][5] and see that he arrived at 569 seconds after

the gates opened.

How to Write the Program

Writing the simulation program will take a little work, but fortunately

you have an assistant who’s already done some of it for you. Program

A.22 shows what he’s written so far. You’ll just need to fill in the

missing pieces (marked with “ADD”).

Notice that the program has a variable named t that keeps track of the

elapsed time. It starts out with t = 0. At the bottom of the program’s

do-while loop, 1 second is added to t every time the program goes

around the loop. Each trip around the loop represents the passage

of 1 second of time. During that time, newly-arrived people can join

the queues, and people at the front of the queues can be scanned and

passed into the stadium.

588 practical computing for science and engineering

106 64 74 343 378

142 109 151 360 403

154 178 241 435 473

169 253 301 518 475

247 314 346 522 497

337 360 379 598 569

426 423 414 623 603

448 460 455 697 649

493 492 506 745 691

525 585 588 763 714

ENTRANCE

Queue 0 1 2 3 4

P
e
rs

o
n

0

1

2

3

4

5

6

7

8

9

qstart[4] = 3

qend[4] = 9

Processed

..
.

..
.

..
.

..
.

..
.

q[4][5] = 569

Figure A.58: A diagram illustrating our
program’s strategy for simulating the
queues.

chapter a. some challenging projects 589

Program A.22: simulate.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main (int argc, char *argv[]) {

const int npeople = 10000;

const int nqueue = 20;

int q[nqueue][npeople];

int qstart[nqueue] = {0};

int qend[nqueue] = {0};

int currentq = 0;

int i;

int t = 0;

int nscanned = 0;

int nqueued = 0;

int max_arrivals_per_second;

int arrivals;

double scan_delay;

double flip;

FILE *output;

// ADD: Check number of command-line arguments.
// ADD: Set max_arrivals_per_second and scan_delay.
// ADD: Open output file

srand(time(NULL));

do {

// ADD: Find number of new arrivals:
// ADD: Add new arrivals to the back of the lines:

// Process people at the front of the lines:

for (i=0; i<nqueue; i++) {

if (qend[i] - qstart[i] > 0) { // Is there anyone in the queue?

flip = rand()/(1.0+RAND_MAX);

if (flip < 1.0/scan_delay) { // Is the scanner ready for a new person?

// ADD: Write data to output file.
// ADD: Update qstart.
// ADD: Count number of people scanned so far.

}

}

}

t++;

} while (nscanned != npeople);

printf("Elapsed time %d seconds (%lf hours)\n", t, t/3600.0);

fclose(output);

}

590 practical computing for science and engineering

The program uses the variable nqueued to keep track of how many

people have arrived so far, and it uses nscanned to keep track of how

many people have been passed into the stadium. The variable npeople

is set to 10,000, the total number of attendees.

The program should be written so that you can run it with command-

line arguments like this:

./simulate 5 10 simulate-5-10.dat

where the first number sets the value of the variable max_arrivals_per_second.

This will control the rate at which people arrive. The second number

sets scan_delay56. This controls the average time (in seconds) re- 56 Notice that
max_arrivals_per_second and
scan_delay are defined as an int and
a double, respectively, near the top of
Program A.22.

quired to do a security scan on a person. The last thing on the command

line is the name of a file into which the program will write its output.

Here’s a list of the things you’ll need to add to the program:

1. Check to make sure the user has supplied enough command-line

arguments. If there aren’t enough command-line arguments, the pro-

gram should print a friendly usage message and then stop without

trying to do anything else57. 57 See Section 9.16 of Chapter 9 for an
example of how to do this.

2. Convert the command-line arguments into the variables

max_arrivals_per_second and scan_delay by using the atoi

and atof functions58. The last command-line argument (the output 58 Notice that
max_arrivals_per_second is an
int and scan_delay is a double.

file name) doesn’t need to be converted. You can just use it directly,

like this:

output = fopen(argv[3], "w");

3. Inside the do-while loop you’ll first need to determine how many

new arrivals there are during this second. We’ll add these people

to the total number of people who have arrived (nqueued) and put

their arrival time into slots in the queues.

When you run the program you’ll specify max_arrivals_per_second

on the command line. We’ll assume that the number of new arrivals

during each trip around the loop will be some random number less

than this. We can start by saying:

arrivals = max_arrivals_per_second*(rand()/(1.0+RAND_MAX));

but we need to make sure that nqueued never gets bigger than

npeople (the total number of attendees). To prevent that, we need

https://tinyurl.com/practical-c/09.pdf

chapter a. some challenging projects 591

to add something like this next:

if (nqueued + arrivals > npeople) {

arrivals = npeople - nqueued;

}

Now arrivals will be zero when nqueued gets as big as npeople.

A happy crowd at a football game in
Scott Stadium.

A game in progress (UVa versus Wake
Forest, 2007).
Source: Wikimedia Commons

Scott Stadium covered in snow.

4. Now that we know how many people arrived, we need to add these

people, one by one, to the queues. To do that we’ll need a “for”

loop that starts like “for (i=0;i<arrivals;i++)”. Inside the

loop we’ll need to do a few things.

We’ll need to decide which queue we’ll put this person into. There

are several different reasonable ways to do this, but let’s use some-

thing called “round-robin” queueing. In that way of doing it, we

add the first person to queue 0, the second person to queue 1, and

so on until we get to the last queue, and then we start back at queue

0 again. To keep track of which queue is the current one, we’ll use

the variable currentq which initially has the value 0.

We’ll also need to know where to put this person into the current

queue. The first open slot of this queue is given by qend[currentq].

With all that in mind, here’s what we need to do for each person

who’s just arrived:

(a) Add each of the new arrivals to the current queue by putting the

current time (t) into q[currentq][qend[currentq]].

(b) Then we need to add 1 to qend[currentq], so that it points to

the next unfilled slot (See Figure A.57.)

(c) Next we need to figure out which queue we’ll be putting the next

person into. We can do that like this:

currentq = (currentq+1)%nqueue;

What we’re doing here is adding 1 to currentq, but making sure

that we go back to zero after the last queue. The % is the modulo

operator, which gives the remainder after division. It makes our

calculation work like the numbers on a clock face: When we’ve

gone through all of the numbers, we start back at zero.

(d) Finally, we need to add 1 to nqueued to indicate that one more

person has successfully arrived.

5. Now that we’ve added any new arrivals, we need to take care

of the people at the front of the lines. The number of queues

https://commons.wikimedia.org/wiki/File:Scott_Stadium_UVA_vs_WF.jpg

592 practical computing for science and engineering

is given by nqueue (this is set to 20 at the top of the program).

We need to process the people standing at the front of each of

these queues, so we’ll need a “for” loop that starts out like this:

“for (i=0;i<nqueue;i++)”. Inside this loop we’ll need to do

the following for each queue59: 59 Steps a through c have already been
written by your assistant. You’ll need to
add the things in step d.

(a) First, let’s see if anyone is waiting in this line. (Maybe the line is

empty right now!) The number of people waiting in one of the

queues is qend[i] - qstart[i]. If this is greater than zero,

then someone is waiting to get into the stadium, and we should

go on to the next steps.

(b) Next, we’ll need to see if the gate attendant has finished scanning

this person. We’ll decide by “flipping a coin”. We do this by gen-

erating a random number between zero and one60. The program 60 See Section 2.6 of Chapter 2 for an
example of this.should put this number into the variable named “flip”, for use

in the next step.

(c) The average number of seconds it takes for a security scan is given

by scan_delay, so we’re going to assume that the probability

of finishing a scan during one of our 1-second-long trips through

the do-while loop is 1.0/scan_delay. To decide whether this

person is ready to pass into the stadium, check to see if flip

is less than 1.0/scan_delay. If it is, then proceed to the next

step.

(d) At this point, we know that someone is waiting in line and that

the gate attendant is ready to pass them into the stadium. We just

have three small things to do in order to finish processing this

person:

i. Print the information about this person into the output file.

For each person processed we want to print the following 4

things61:

61 See Program 5.3 in Chapter 5 for an
example of writing numbers into a file.

• The queue number, i,

• The current time, t,

• The amount of time the person has been waiting, t-q[i][qstart[i]],

• The number of people currently in this line, qend[i]-qstart[i]

Each of those things is an integer. They should be printed into

the output file in the order above, with spaces between them

and with a “\n” at the end of the line.

ii. We need to add 1 to qstart[i] (See the bottom of Figure

A.57).

iii. The variable nscanned will keep track of how many peo-

ple have passed into the stadium. It’s initially set to zero at

the top of the program. Now we need to add 1 to it, to in-

dicate that we’ve finished processing another person. Our

program’s do-while loop will stop when nscanned is equal

to npeople.

https://tinyurl.com/practical-c/02.pdf
https://tinyurl.com/practical-c/05.pdf

chapter a. some challenging projects 593

Running the Program

After you’ve finished writing and compiling the program try running

it a few times, like this:

./simulate 5 5 simulate-5-5.dat

./simulate 5 10 simulate-5-10.dat

./simulate 5 30 simulate-5-30.dat

Those commands tell the program to simulate 5 people/sec arriving,

with a scan delay of 5, 10, and 30 seconds. Notice the total elapsed

time that the program prints in each case. Figure A.59 shows the time

required to move everybody into the stadium for a few different choices

of max_arrivals_per_second and scan_delay.

Arrivals/sec Delay (sec) Time (hours)

5 5 1.36

5 10 1.49

5 30 4.43

30 5 0.76

30 10 1.51

30 30 4.54

Figure A.59: This table shows the total
amount of time it would take to get all
10,000 people into the stadium, given a
few different values of
max_arrivals_per_second and
scan_delay.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 0 5 10 15 20 25 30

T
im

e
 t

o
 P

ro
c
e

s
s
 A

ll
P

e
o

p
le

 (
h

o
u

rs
)

Scan Delay (Seconds)

3 Arrivals/sec
5 Arrivals/sec

10 Arrivals/sec
20 Arrivals/sec

Figure A.60: The graph at left shows the
time required to get all the people into
the stadium as a function of
scan_delay, for several different
values of
max_arrivals_per_second.

0

5

10

15

20

25

30

35

40

45

0 1,000 2,000 3,000 4,000 5,000 6,000

W
a
it
 (

s
e
c
o
n
d
s
)

Entrance Time (seconds)

0

50

100

150

200

250

300

350

0 1,000 2,000 3,000 4,000 5,000 6,000

W
a
it
 (

s
e
c
o
n
d
s
)

Entrance Time (seconds)

0

2,000

4,000

6,000

8,000

10,000

12,000

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000

W
a
it
 (

s
e
c
o
n
d
s
)

Entrance Time (seconds)

Figure A.61: These figures show how
long people waited in line, versus when
they finally entered the stadium.
Different colors represent different
queues (six queues are shown here). In
all figures, the
max_arrivals_per_second was set
to 5. For the top figure, the
scan_delay was 5 seconds. For the
middle figure, it was 10 seconds. For
the bottom figure, it was 30 seconds.

If you did this for many different values of these two parameters you

could make a graph like Figure A.60. The vertical axis shows how long

it takes to get all the people into the stadium, and the horizontal axis

shows scan_delay. Different kinds of lines show different values of

max_arrivals_per_second.

Clearly, changing the scan_delay can make a big difference in the way

the queues behave. For any given value of max_arrivals_per_second

there seems to be a critical value of scan_delay, beyond which it

starts taking longer and longer to get everybody into the stadium. For

5 arrivals/second, this critical delay is about 10 seconds.

We could use graphs like Figure A.60 or those shown in Figure A.61 to

examine our data, but it’s useful to have a quantitative summary of our

results. That’s what we’ll do in our second program.

594 practical computing for science and engineering

Program 2: Analyzing the Simulation Data
Your second program will be named analyze.cpp. It will read a data

file produced by your first program, and give you a statistical summary

of the data it contains.

Like the first program, analyze.cpp should accept all of its param-

eters on the command line, and give users a helpful message if they

don’t give it the right number of arguments. The usage should be:

./analyze filename

where filename is the name of a data file produced by your simulate.cpp

program.

Once again, your assistant has already started writing the program for

you. You can see his work in Program A.23.

Program A.23: analyze.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

int main (int argc, char *argv[]) {

FILE *input;

int queue, t, wait, length;

int maxwait, maxlength, maxtime;

double waitsum=0, waitsum2=0, mean, stddev;

int npeople=0;

int initialized=0;

// ADD: Write the rest of the program here.

printf ("Analyzed %d people.\n", npeople);

printf ("Maximum wait was %d seconds (%lf minutes)\n", maxwait, maxwait/60.0);

printf ("Average wait was %lf seconds (%lf minutes)\n", mean, mean/60.0);

printf ("Standard deviation was %lf seconds (%lf minutes)\n", stddev, stddev/60.0);

printf ("Maximum queue length was %d people\n", maxlength);

printf ("Time to fill stadium was %d seconds (%lf hours)\n",

maxtime, maxtime/60.0/60.0);

}

How to Write the Program

Here’s a list of things you’ll need to add to the program:

1. As you did in the first program, check to make sure the user has

supplied the correct number of command-line arguments, and exit

with a friendly message if the number isn’t right.

chapter a. some challenging projects 595

2. The only command-line argument for this program is the file name,

which doesn’t need to be converted in any way. It can just be used

directly like this:

input = fopen(argv[1], "r");

3. Now you’ll need a “while” loop to read the file you’ve opened62. 62 See Program 7.4 in Chapter 7 for
an example of this. Refer to that
program to see how to read the data
and calculate the average and standard
deviation as you read data from the
input file.)

Our program will read four values from each line of the data file:

• queue, The queue from which this person entered the stadium.

• t, The time at which the person entered the stadium.

• wait, How long the person waited in line.

• length, How many people were in line at that time.

All of these values are integers, and variables to hold them are

already in Program A.23.

4. Inside the loop, you’ll need to do a few things:

(a) Add up the wait values you read from the file. Program A.23

already has a variable named waitsum for this. You’ll need this

sum later to calculate the mean value of wait.

(b) You’ll also need to find the sum of the squares of the wait values.

Program A.23 already has a variable named waitsum2 for this.

This sum will be used later for finding standard deviation of

wait.

(c) You’ll also need to count the number of lines you’ve read from

the file. You’ll need this later, along with the sum and sum of

squares, to calculate means and standard deviations.

An early picture of UVa’s marching
band, taken by Rufus W. Holsinger
(1866-1930).
Source: Wikimedia Commons

A 1919 football game, photographed by
Holsinger.

(d) Lastly, you’ll need to keep track of the maximum values of wait,

length, and t. Refer to Program 5.4 in Chapter 5 for an exam-

ple of how to do this. In our analyze.cpp program, we’ll need

something like this for each thing we want to find the maximum

of:

if (initialized == 0 || wait > maxwait) {

maxwait = wait;

}

so there should be three “if” statements like this (one for wait,

one for length, and one for t). After all three “if” statements

are done, we’ll need to tell the program that we now have initial

guesses at the maximum values, so we should put in a line that

says:

initialized = 1;

5. After the “while” loop is done, we just need to calculate the mean

and standard deviation of wait. The printf statements that are

already in Program A.23 will then print out the results.

https://tinyurl.com/practical-c/07.pdf
https://commons.wikimedia.org/wiki/File:An_early_marching_band_at_Scott_Stadium,_University_of_Virginia.jpg
https://tinyurl.com/practical-c/05.pdf

596 practical computing for science and engineering

If you use the program to analyze the file simulate-5-10.dat that

you created earlier, you should see output like this:

Analyzed 10000 people.
Maximum wait was 376 seconds (6.266667 minutes)
Average wait was 104.385000 seconds (1.739750 minutes)
Standard deviation was 80.031982 seconds (1.333866 minutes)
Maximum queue length was 40 people
Time to fill stadium was 5330 seconds (1.480556 hours)

Program 3: Visualizing the Wait Times

0

500

1,000

1,500

2,000

2,500

3,000

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
P

e
o
p
le

Wait (Seconds)

0

200

400

600

800

1,000

1,200

1,400

1,600

0 100 200 300 400 500 600 700 800 900 1,000
N

u
m

b
e

r
o

f
P

e
o

p
le

Wait (Seconds)

0

50

100

150

200

250

300

0 2,000 4,000 6,000 8,000 10,000 12,000

N
u
m

b
e
r

o
f
P

e
o
p
le

Wait (Seconds)

Figure A.62: Histograms of wait times
for 5 arrivals/sec, and delays of 5 (top),
10 (middle), and 30 (bottom) seconds.

Your next job is to write a new program named visualize.cpp

that will read the files produced by simulate.cpp and produce a

histogram of the wait times. Your program will be similar to program

7.1 in Chapter 7. Your assistant has started writing it for you, as you

can see in Program A.24 below. Notice that it defines a 50-element

array, bin, to hold the histogram data.

Program A.24: visualize.cpp

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[]) {

const int nbins=50;

int bin[nbins] = {0};

double min, max;

double binsize;

int binno;

int overunderflow=0;

int i;

int t, queue, wait, length;

FILE *input;

FILE *output;

// ADD: Write the rest of the program here.

}

How to Write the Program

Like the preceding programs, this one will expect parameters on its

command line, and should complain and exit if it doesn’t get the proper

number of parameters. Its usage will be:

./visualize min max inputfile outputfile

https://tinyurl.com/practical-c/07.pdf

chapter a. some challenging projects 597

where min and max are the minimum and maximum wait times that

can be recorded in the histogram; inputfile is the name of a file that

was produced by analyze.cpp; and outputfile is the name of a

file into which the new program will write the histogram data. When

plotted, the data should look like Figure A.62 on page 596.

To make the histogram, the program should proceed as follows:

1. Check the number of command-line arguments, and use atof to

set the values of min and max. The input and output files can be

opened like this63: 63 Notice that we open one file for
reading (with "r") and the other for
writing (with "w").input = fopen(argv[3],"r");

output = fopen(argv[4],"w");

2. Then, determine the binsize, like this:

binsize = (max-min)/nbins;

3. Next, use a “while” loop to read data from the input file64. Your 64 See Chapter 5 for information about
reading data from files.“while” loop should start out exactly like the loop in your analyze.cpp

program, since it will be reading the same files.

4. Inside the loop, determine which bin each wait value belongs in,

and increment that bin. Be sure to keep a count of the number

of over/underflows, as Program 7.1 does. Since the range of our

histogram is min to max, the bin number will be:

binno = (wait-min)/binsize;

5. After processing all of the input data, write the histogram data into

the output file. For each bin of the histogram, write two numbers

separated by a single space: the wait value represented by that

bin65, and the value of bin[i]. The wait value can be calculated 65 Note that this is different from
Program 7.1, where we just printed the
bin number as the first column in the
output file.

from the bin number, like this:

wait = min + binsize*(0.5+i);

where i is the bin number.

6. Finally, at the bottom of the output file, write a line beginning with

a # that tells how many overflows or underflows were seen.

Compile your program and try running it like this, using one of the

data files created by your simulate.cpp program:

https://tinyurl.com/practical-c/05.pdf

598 practical computing for science and engineering

./visualize 0 1000 simulate-5-10.dat visualize-5-10.dat

You can plot the resulting data file with gnuplot like this:

plot "visualize-5-10.dat" with impulses lw 5

Your results should look like the graphs in Figure A.62.

Final Thoughts
Congratulations! The simulation, analysis, and visualization programs

you’ve written are powerful tools that will help you keep the spectators

happy. Apparently, by controlling the amount of time it takes to do a

security scan, and the rate at which people arrive, we can assure that

everybody gets into the stadium quickly, nobody has to wait in line too

long, and the lengths of the lines aren’t too great.

Source: Wikimedia Commons (top), Wikimedia Commons (bottom)

For example, by running

./analyze simulate-5-10.dat

we can see that, if we limit the arrival rate to 5 people per second, and

if our security scan takes 10 seconds on average, we can get everybody

into the stadium in 1.5 hours, with people only standing in line for a

couple of minutes, and never having more than about 40 people in line

at a time.

It’s interesting that our results show a remarkable change in the behav-

ior of the queues when we change from a small scan delay to a large

one. Take a look again at Figure A.60 and Figure A.61 on page 593.

For small delays, people flow quickly into the stadium. Sometimes

there’s nobody in line at all. The wait times vary up and down ran-

domly. For long delays, the wait times are long and predictable, falling

on a straight line. What we’re seeing here is a transition between what

we’d call “turbulent flow” and “laminar flow” in fluid dynamics. In the

small-delay case there’s not much “friction”. The crowd behaves like a

low-viscosity fluid, such as water. In the long-delay case, the flow is

dominated by the “friction” due to the scanning process, and becomes

slow and steady, like pouring syrup.66

66 If we did a little math, we could show
that the transition from turbulence to
laminar flow happens when:

scan_delay =
2 ∗ nqueue

max_arrivals_per_second− 1

This is the point where people start
piling up in the queues because they
aren’t being scanned fast enough.

https://commons.wikimedia.org/wiki/File:Pouring_Water_Into_Glass_(55963794).jpeg
https://commons.wikimedia.org/wiki/File:Foodiesfeed.com_pouring-honey-on-pancakes-with-walnuts.jpg

Project 8: Auto-Compose

Introduction
Imagine you have a friend who’s a songwriter. Your friend has run out

of ideas for new melodies, so she asks if you can use your programming

skills to give her some inspiration. Let’s use a little musical mathematics

to generate some random tunes.

The human mind is wired for finding patterns. We often think of visual

patterns, but our ears can also find patterns in sound. For example, as

shown in Figure A.63, when a sound has a frequency that’s twice that

of another sound, the two sounds seem harmonious to us. Our mind

knows that they’re somehow related.

Sound 2

Sound 1

Sum

Figure A.63: If we pick two sound
frequencies at random, they’ll probably
combine into something jangly and
unpleasant, as shown on the left. If one
frequency is twice the other, though, as
shown on the right, the two sounds
form a nice repeating pattern that’s
noticed by our ears.

For millenia, musicians have used this principle to organize sound into

octaves, where an octave is a range that starts at some base frequency

and goes up to twice that starting frequency. In Western music, an

octave is typically divided into twelve sections, each starting with a

different frequency, or “tone”. This twelve-tone system is what we’ll be

working with in this project.

Twelve Tones

Figure A.64 shows a set of twelve tones that starts with a base frequency

of 440 Hz67. Each of the tones is obtained by multiplying the preceding 67 This is the frequency of the A above
middle C on a piano.term by a constant factor, which we’ll call by the Greek letter ρ. If

we want to get to twice the original frequency after twelve steps, that

means that ρ has to be equal to 12
√

2 (the twelfth root of two)68. If we 68 This is called the 12-tone even-
tempered system of tuning.number the tones starting with zero, then tone number itone will

have a frequency of base × ρitone, where base is the frequency of tone

number zero.

600 practical computing for science and engineering

Notice in Figure A.64 that some of the tones are approximately nice

fractions times the base frequency. Tone number 7, for example, is

about 3
2 times the base, and tone 5 is about 4

3 times the base. Just like

pairs of frequencies where one is twice the other, our ears also like to

hear sounds that are in small-integer ratios like 3
2 and 4

3 . This system

for picking twelve tones is appealing to musicians because it produces

many tones that are approximately small-integer multiples of the base

frequency.

itone Frequency Ratio (ρitone) Fraction

0 440.00 1.00 ∼ 1/1

1 466.16 1.06

2 493.88 1.12 ∼ 9/8

3 523.25 1.19

4 554.37 1.26 ∼ 5/4

5 587.33 1.33 ∼ 4/3

6 622.25 1.41

7 659.26 1.50 ∼ 3/2

8 698.46 1.59

9 739.99 1.68 ∼ 5/3

10 783.99 1.78

11 830.61 1.89 ∼ 15/8

0 880.00 2.00 ∼ 2/1

Figure A.64: Twelve tones, starting with
a base frequency of 440 Hz. The table
also shows a thirteenth tone, which is
just twice the base frequency and is the
beginning of the next octave. We’ll say
that this is tone number 0 again, but in
a higher octave.

The twelve tones in Figure A.64 cover just one octave (plus the first

note of the next octave), but we can keep multiplying by ρ to get higher

frequencies, or we could start dividing the base frequency by ρ to get

lower frequencies, as shown in Figure A.65. Each time we get to a

factor of two we’ve covered another octave, and we’re back to a tone

that sounds similar to the base frequency. We’ll say that the octave that

begins with the base frequency is octave number 0. In this project,

we’ll say that frequencies that differ by exactly an octave (or multiple

octaves) have the same tone number (itone), but different octave

numbers.

octave -1

octave 0

octave 1

itone

Figure A.65: A spiral of frequencies,
starting with a base frequency of 440 Hz
and going up and down from there. The
frequencies double each time we go
around the spiral.

chapter a. some challenging projects 601

If we choose 440 Hz as our base frequency, the tones in octave 0

correspond to the piano keys shown in Figure A.65, where itone 0 in

octave 0 is A above middle C. Figure A.66 shows how these would

look on a piano keyboard. The gray letters in Figure A.65 show the

standard names for all the tones on a piano. We could choose any base

frequency we want, and that would generate a different set of twelve

tones with the same ratios between them.

0 2 5 7 8 103

1 4 6 9 11

0 2 5 7 83

1 4 6

0 2 5 7 8 103

1 4 6 9 11

5 7 8 103

4 6 9 11

C AA A
440 Hz 880 Hz220 Hz

Figure A.66: The center of a piano
keyboard, showing middle C and several
A keys in different octaves. If we use 440

Hz as the base frequency for our tones,
then the A above middle C is itone 0 in
octave 0. The numbers on the keys
show the value of itone for that key.
Based on a figure from Wikimedia Commons.

Scales and Intervals

Composers don’t necessarily use all twelve tones when writing music.

They choose a set of tones to make a scale. If they do use all twelve of

the tones, we call that a chromatic scale. We can start with any tone we

want. If we started with itone 0 on Figure A.65 and went clockwise

around the circle picking every tone until we got back to 0, we’d have

a “chromatic scale in A”. The ratio, or interval, between each pair of

neighboring notes would be ρ, which we’ll call one step. Our starting

point (itone 0 in this case) is called the tonic of the scale.

But often composers don’t use all of the tones. Look at Figure A.68.

In this case, there’s an interval of 2 steps between some notes, and an

interval of 1 step between others. If we start with itone 2 (a B on a

piano keyboard) and go from one circled tone to another until we get

all the way back to 2, we’ll have a “B-major scale” with 7 notes. A major

scale is any one that has intervals between notes in this pattern.

The type of a scale (chromatic, major, pentatonic, harmonic minor,

. . . there are a lot!) is determined by the list of intervals between its

notes. Figure A.67 shows intervals for several common scales.

Intervals for a Few Scales

chromatic: 1 1 1 1 1 1 1 1 1 1 1 1

major: 2 2 1 2 2 2 1

pentatonic: 2 2 3 2 3

harmonic minor: 2 1 2 2 1 3 1

major blues: 2 1 1 3 2 3

minor blues: 3 2 1 1 3 2

jazz minor: 2 1 2 2 2 2 1

minor pentatonic: 3 2 2 3 2

ambassel: 1 4 2 1 4

anchihoye: 1 4 1 4 2

bati: 4 2 1 4 1

tezita: 2 1 4 1 4

wenz: 4 1 4 2 1

Figure A.67: List of intervals for several
different scales. Notice that for each of
these the intervals add up to 12, since
that’s the total number of steps all the
way around the circle of tones. The last
five scales are Ethiopian 5-note scales
called kignits.

Let’s use these musical principles to write some programs.

Program 1: Simulating a Composer
The first program you’ll write is called simulate.cpp. It will generate

12 tones starting with a base frequency of 440 Hz. Then it will pick a

set of those tones to make a scale, based on a starting tone and a given

set of intervals. It will then do a random walk up and down this scale

https://commons.wikimedia.org/wiki/File:Piano_Frequencies.svg

602 practical computing for science and engineering

octave 0

octave 1

octave 2

itone

Starting Note
(“tonic”)

2

2

2

2

2 1

1

note[6]

note[0]

note[1]

note[2]

note[3]

note[4]

note[5]

intervals

Figure A.68: A B-major scale. It starts
with itone 2, and steps around the
circle in intervals of 2, 2, 1, 2, 2, 2, and 1

steps.

chapter a. some challenging projects 603

to generate a melody, with some notes skipped at random. Finally, it

will write the notes into an output file that can be converted into a

playable music file.

Dave Brubeck at the piano.
Source: Wikimedia Commons.

0

1

2

3

4

0

1

2

in
o

te

Time

Figure A.69: If we used a 5-note scale,
this is what wandering up and down
the scale might look like. Here we start
at note number 3, then repeatedly move
by one or two notes up or down from
the note we’re currently on.

Program A.25 shows part of what this program should look like. Your

job is to fill in the missing part, where it says “Insert the rest of the

program here!”. The program will make use of three functions in the

header file named music.h, which you can find in the appendix to

this project.

The program should be written so that you can run it with command-

line arguments like this:

./simulate 3 280 0.1 60 major-interval.dat simulate-major-60.dat

where the list of command line arguments is:

1. tonic: The itone number that should be used to start the scale.

2. npm: The number of notes per minute that should be played.

3. restprob: The probability that the melody will skip a note.

4. tmax: How long the melody will last, in seconds.

5. intervalfile: A file containing a list of intervals between notes

of the scale.

6. outputfile: The file that the program’s output will be written

into.

How to Write the Program

1. Check to make sure the user has supplied enough command-line

arguments. If there aren’t enough command-line arguments, the pro-

gram should print a friendly usage message and then stop without

trying to do anything else69. 69 See Section 9.16 of Chapter 9 for an
example of how to do this.

2. Convert the command-line arguments into the variables tonic, npm,

restprob, and tmax by using the atoi and atof functions70. The 70 Notice that tonic and npm are int
and restprob and tmax are double.last two command-line arguments (the interval file and output file)

don’t need to be converted. You can just use them directly, like

this71: 71 Notice that we open one file for
reading (with "r") and the other for
writing (with "w").intervalfile = fopen(argv[5], "r");

outputfile = fopen(argv[6], "w");

3. All of our notes will be of the same length. Calculate the length, in

seconds, of a note by dividing 60 seconds by npm (notes per minute).

Put the result into the variable named duration.

4. Next, use a for loop to calculate the frequencies of the 12 tones

and store those in the array named tone. For each value of itone,

tone[itone] should be equal to base*pow(rho,itone), where

https://commons.wikimedia.org/wiki/File:Concert_van_Dave_Brubeck,_Bestanddeelnr_910-6791.jpg
https://tinyurl.com/practical-c/09.pdf

604 practical computing for science and engineering

Program A.25: simulate.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include "music.h"

int main (int argc, char *argv[]) {

const int ntones = 12;

double base = 440;

double tone[ntones];

double rho = pow(2, 1.0/ntones);

int tonic;

double note[ntones];

int nnotes=0;

int steps;

int octave = 0;

double npm;

double duration;

double restprob;

double frequency;

double minfreq = 200;

double maxfreq = 1300;

double t = 0;

double tmax;

int position, itone, inote, imove;

FILE *intervalfile;

FILE *outputfile;

// Insert the rest of the program here!

}

chapter a. some challenging projects 605

base and rho are already defined for you in Program A.25.

5. We’re going to pick the notes of our scale by starting with the tone

we chose as the tonic and then walking clockwise around the

spiral path, as shown in Figure A.68. We’ll use the variable named

position to keep track of where we are on the spiral. At this point

in the program, set position = tonic to indicate that this is our

starting position..

6. Now use a while loop to read intervals from the interval file you

opened earlier72. Each line of the file contains one number, the

72 See Program 5.4 in Chapter 5 for an
example of reading numbers from a file.

number of tone steps between two notes on our scale73. We’ll store 73 See Figure A.68.

the frequencies of the tones of our scale in the array named note.

The variable ntones tells us how many tones are available74 and 74 This is set to 12 at the top of our
program. If we wanted to use a musical
system with a different number of
tones, we could change this number to
something else.

we’ll use the variable nnotes (which is initialized to zero) to count

how many notes are in our scale.

The while loop should read numbers from the interval file into

the variable named steps. Inside the loop we’ll need to do several

things:

(a) First, find the current values of itone and octave by looking at

position:

itone = position % ntones;

octave = position / ntones;

As we saw in Chapter 4, the % operator gives the remainder

after division. Also, since both position and ntones are int,

doing position/ntones tells us how many whole multiples of

ntones are in position.

(b) Next, use these to find the frequency of this note:

note[nnotes] = tone[itone]*pow(2,octave);

(c) Finally, add steps to the value of position, and add one to the

value of nnotes.

Keep doing this until you’ve read all of the numbers from the interval

file.

7. Next, we need to pick a random note from our scale to start our

melody. The header file music.h contains a function named randminmax

that will help us do that. It generates a random number between

given minimum and maximum values. We’ll use the variable position

again. Start by setting position to a random note on our scale:

position = randminmax(0, nnotes-1);

https://tinyurl.com/practical-c/05.pdf
https://tinyurl.com/practical-c/04.pdf

606 practical computing for science and engineering

8. Now we’re ready to generate our melody. We’ll use the variable t

to keep track of the elapsed time in our melody, and the variable

frequency to keep track of the frequency of the current note.

To prevent damaging our ears or generating notes too low-pitched to

hear, the program has two variables named maxfreq and minfreq.

If our notes wander above maxfreq we’ll reduce it by one octave,

cutting the frequency in half. If they wander below minfreq we’ll

increase it by one octave, doubling the frequency.

With all that in mind, create a while loop that keeps repeating for

as long as t is less than tmax.

Here are the things that need to be done inside the loop:

(a) First, find the values of inote and octave based on position.

We did something similar in the previous while loop, but this

time it’s trickier because we’ll sometimes be dealing with negative

numbers. Our path can wander up or down from our starting

point, so sometimes position will be negative (see Figure A.70).

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

octave -1 octave 0 octave 1

inote

position

Figure A.70: Here are three octaves of
an nnotes = 5 scale. Notice that if
position is 6, then inote is 1 and
octave is 1. This is the same thing we
would have gotten by saying inote =

position % nnotes and octave =

position/nnotes. But if position
is -2, inote is 3 and octave is -1.
Because of the negative position, the
% and / operators by themselves won’t
give us the right values for inote and
octave in this case.

The emod function is defined in music.h. Unlike the mathemat-

ical modulo operator, most computer languages use a modulo

operator that gives a negative answer for n%m when n is negative.

The emod function does a modulo operation that always gives a

positive answer75, which is what we want because inote should

75 This is called a Euclidean modulo,
which is the modulo operator usually
used in mathematics.

always be positive.

To find octave we want to divide position by nnotes and

round down. If position were always positive, we could just

say position/nnotes, since both variables are int. But for

negative values of position this would round up, making -1/7

equal to zero, for example. To always round down, we can use

the floor function, which is one of C’s standard math functions.

Ahmad Jamal at the piano.
Source: Wikimedia Commons.

So, with all that in mind here’s how we’ll find the values for

inote and octave:

inote = emod(position,nnotes);

octave = floor((double)position/nnotes);

(b) Next, check to see if we’re supposed to skip this note. We do that

by generating a random number between zero and one, using the

rand01 function from music.h, and checking whether it’s less

than restprob. If it is, we set frequency to 0.

https://commons.wikimedia.org/wiki/File:Ahmad_Jamal_KK.jpg

chapter a. some challenging projects 607

Otherwise, we set frequency to

note[inote] * pow(2, octave)

Shirley Horn at the piano.
Source: Wikimedia Commons.

and check to make sure the frequency isn’t too low or too high. If

freqeuency is above maxfreq, reduce position by nnotes

and divide frequency by 2. If it’s below minfreq, increase

position by nnotes and double frequency.

(c) Now we’re ready to write this note into the output file. We’ll

write two numbers for each note: The duration of the note, in

seconds (given by the variable duration) and the frequency of

the note (given by frequency). They should be written as two

numbers separated by a space, and followed by a line break76.

76 See Program 5.3 in Chapter 5 for an
example of writing numbers into a file.

(d) Next we need to decide how far and in which direction we’ll

walk to get to the next note. We’ll move up or down the scale at

random by one or two notes. To decide how many notes to move,

we can use the randminmax function again, like this:

imove = randminmax(-2, 2);

(e) Then add imove to position.

(f) The last thing in the while loop should be a line that adds this

note’s duration to the total elapsed time:

t += duration;

Running the Program

After you’ve finished writing and compiling the program you’ll need

some interval files to try it out with. If you have a nice instructor, they

might give you these files. Otherwise, you can copy them from the

appendix to this project.

When you have the interval files, try running your program a few times

with different ones, like this:

./simulate 0 280 0.1 60 major-interval.dat simulate-major-60.dat

./simulate 0 280 0.1 60 harmonic-minor-interval.dat simulate-harmonic-minor-60.dat

./simulate 0 280 0.1 60 pentatonic-interval.dat simulate-pentatonic-60.dat

./simulate 0 280 0.1 60 chromatic-interval.dat simulate-chromatic-60.dat

You can get a sense of what the melodies in the output files are like by

plotting them with gnuplot. For example:

plot "simulate-major-60.dat" using 2 with lines

https://en.wikipedia.org/wiki/File:Shirley_Horn_ppmsca.08325.jpg
https://tinyurl.com/practical-c/05.pdf

608 practical computing for science and engineering

Figure A.71 shows what you might see.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

F
re

q
u

e
n

c
y
 (

H
z
)

Figure A.71: An output file from the
simulate program, graphed with
gnuplot.

But of course what we’d really like to do is hear the melody. For that,

you can use the makewav program in the appendix. You can run it like

this:

./makewav simulate-major-60.dat major-60.wav

This will make a .wav file that your computer should be able to play

as sound. Try listening to melodies generated with different scales and

different starting tones.

Program 2: Analyzing a Melody

Fats Waller at the piano.
Source: Wikimedia Commons.

Now that you’ve made some melodies, it would be nice to check your

first program’s output to make sure it’s doing what you expect. One

way to do this would be to look at the ratios between successive notes.

These should always be multiples of ρ, the ratio between the twelve

tones we started with.

The second program you’ll write is called analyze.cpp. It will read

the files created by your first program and make a list of the number of

steps between each pair of successive notes. Program A.26 shows how

the program should start. You’ll just need to fill in the missing part.

If frequency f2 is higher than f1 by n steps, then the following should

be true:
f2

f1
= ρ

n (A.3)

To find n we can take the log of both sides:

log(
f2

f1
) = n × log(ρ) (A.4)

and we can rearrange this to find n:

n =
log(f2

f1
)

log(ρ)
(A.5)

You’ll find that if f2 is smaller than f1 by n steps, it will just change the

sign of n. So, if we look at the absolute value of n it will tell us how

many steps up or down we need to go to get from one note to the other.

If our simulate program is working correctly, all the values of n

should be whole numbers.

Program A.26: analyze.cpp

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

https://commons.wikimedia.org/wiki/File:Fats_Waller_edit.jpg

chapter a. some challenging projects 609

int main (int argc, char *argv[]) {

const int ntones = 12;

double duration, frequency;

double oldfreq = 0;

double ratio;

double rho = pow(2, 1.0/ntones);

double steps;

FILE *input;

FILE *output;

// Insert the rest of the program here!

}
Thelonious Monk at the piano.
Source: Wikimedia Commons.

The program should be written so that you can run it with command-

line arguments like this:

./analyze input output

where input is the name of one of the files produced by your simulate

program, and output is the name of the file that this new program

will create.

How to Write the Program

1. Check to make sure the user has supplied enough command-line

arguments. If there aren’t enough command-line arguments, the pro-

gram should print a friendly usage message and then stop without

trying to do anything else77. 77 See Section 9.16 of Chapter 9 for an
example of how to do this.

2. For this program, the two command-line arguments don’t need to

be converted in any way. You can just use them directly, like this:

input = fopen(argv[1], "r");

output = fopen(argv[2], "w");

3. Now use a while loop to read lines from the input file you opened

earlier78. Each line of the file contains two numbers with decimal 78 See Program 5.4 in Chapter 5 for an
example of reading numbers from a file.places: the duration of a note, and the frequency of the note. Put

those numbers into the variables named duration and frequency.

4. Inside the while loop you’ll need to do several things:

(a) Some of the notes in the data file will have a frequency of zero.

These are the notes we skipped. We want to also skip them in this

second program, so you’ll need to check to see if frequency ==

https://commons.wikimedia.org/wiki/File:Thelonious_Monk,_Minton%27s_Playhouse,_New_York,_N.Y.,_ca._Sept._1947_(William_P._Gottlieb_06191).jpg
https://tinyurl.com/practical-c/09.pdf
https://tinyurl.com/practical-c/05.pdf

610 practical computing for science and engineering

0. If it is, then use a continue statement to go back to the top of

the loop and get the next line from the file.

Count Basie at the piano.
Source: Wikimedia Commons.

(b) Our goal is to find ratios of pairs of notes, so we need to have

two notes to compare. To do that, we’ll store the frequency of the

note we previously read in the variable named oldfreq. Then

we can look at the ratio of frequency to oldfreq. You’ll notice

that oldfreq has an initial value of zero, so we’ll use this as an

indicator that we haven’t yet read two frequencies. We’re also

uninterested in cases where the frequency hasn’t changed. With

all of that in mind, we’ll now need an if statement that starts like

this:

if (frequency != oldfreq && oldfreq != 0) {

and inside this if statement we’ll need to do the following:

i. Find the ratio of frequency to oldfreq and put it into the

variable named ratio.

ii. Calculate the absolute value of n (the number of steps) from

Equation A.5 above, like this:

steps = fabs(log(ratio)/log(rho));

iii. Print the number of steps into the output file, followed by a

line break.

(c) At the bottom of the while loop, save the current frequency in

the variable oldfreq by saying:

oldfreq = frequency;

After you’ve written and compiled the program, try running it with

some of the output files from your first program. For example:

./analyze simulate-chromatic-60.dat analyze-chromatic-60.dat

./analyze simulate-major-60.dat analyze-major-60.dat

./analyze simulate-pentatonic-60.dat analyze-pentatonic-60.dat

If you graph the output files with gnuplot you should see graphs like

Figure A.72. As you can see, there are only whole numbers of steps

between the notes.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

N
u
m

b
e
r

o
f
S

te
p
s

Figure A.72: Output from the analyze
program, plotted with gnuplot.

Program 3: Counting Notes
The output from the analyze program tells us that there are integer

numbers of steps between notes, but it doesn’t tell us how often we

take 1 step, 2 steps, 3 steps, and so forth. To find that out, we can make

a histogram. That’s what your third program will do.

https://commons.wikimedia.org/wiki/File:Count_Basie_(1955_Kriegsmann_portrait_-_square_crop).jpg

chapter a. some challenging projects 611

Bill Evans at the piano.
Source: Wikimedia Commons.

This third program will be called visualize.cpp and it will read

output files created by the analyze program and make histograms

from the data in them. Program A.27 shows how the program should

start. You just need to fill in the missing part.

Program A.27: visualize.cpp

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[]) {

const int nbins=100;

int bin[nbins] = {0};

double min, max;

double binsize;

double steps;

int binno;

int overunderflow=0;

int i;

FILE *input;

FILE *output;

// Insert the rest of the program here!

}

How to Write the Program

Like the preceding programs, this one will expect parameters on its

command line, and should complain and exit if it doesn’t get the proper

number of parameters. Its usage will be:

./visualize min max input output

where min and max are the minimum and maximum number of steps

that can be recorded in the histogram; input is the name of a file that

was produced by analyze.cpp; and output is the name of a file into

which the new program will write the histogram data. When plotted,

the data should look like those shown Figure A.73 on page 613.

To make the histogram, the program should proceed as follows:

1. Check the number of command-line arguments, and use atof to

set the values of min and max. The input and output files can be

opened like this:

https://commons.wikimedia.org/wiki/File:Bill_Evans.jpg

612 practical computing for science and engineering

input = fopen(argv[3],"r");

output = fopen(argv[4],"w");

Abdullah Ibrahim at the piano.
Source: Wikimedia Commons.

2. Then, determine the binsize, like this:

binsize = (max-min)/nbins;

3. Next, use a while loop to read data from the input file79. Your

79 See Chapter 5 for information about
reading data from files.

while loop should read one number from the input file each time

it goes around. It should stick the number into the variable named

steps.

4. Inside the loop, determine which bin each steps value belongs in,

and increment that bin. Be sure to keep a count of the number of

over/underflows, as Program 7.1 does80. Since the range of our 80 See Section 7.1 of Chapter 7 for
information about making histograms.histogram is min to max, the bin number will be:

binno = (steps-min)/binsize;

5. After processing all of the input data, write the histogram data into

the output file. For each bin of the histogram, write two numbers

separated by a single space: the steps value represented by that

bin81, and the value of bin[i]. The steps value can be calculated 81 Note that this is different from
Program 7.1, where we just printed the
bin number as the first column in the
output file.

from the bin number, like this:

steps = min + binsize*(0.5+i);

where i is the bin number.

6. Finally, at the bottom of the output file, write a line beginning with

a # that tells how many overflows or underflows were seen.

Compile the program and run it like this, using some data files created

by your analyze program:

./visualize 0 13 analyze-chromatic-60.dat visualize-chromatic-60.dat

./visualize 0 13 analyze-major-60.dat visualize-major-60.dat

./visualize 0 13 analyze-pentatonic-60.dat visualize-pentatonic-60.dat

The output files can be graphed with gnuplot commands like this:

plot "visualize-chromatic-60.dat" with impulses

This should produce graphs like those shown in Figure A.73.

It’s possible to identify the scale a melody uses by looking at these

histograms. For example, the pentatonic scale has no intervals of 1

step82, so there are no step values of 1 in the pentatonic histogram. 82 see Figure A.67 on page 601

https://commons.wikimedia.org/wiki/File:Abdullah_Ibrahim_06N4688.jpg
https://tinyurl.com/practical-c/05.pdf
https://tinyurl.com/practical-c/07.pdf

chapter a. some challenging projects 613

On the other hand, all of the intervals of the chromatic scale are 1

step, so if our melody goes up or down the scale by 1 or 2 notes,

we’d expect to only see intervals of 1 or 2 steps in the chromatic

histogram. This is mostly the case, but there are also a few values in

the histogram’s 3 column. This is because our simulation program

sometimes intentionally skipped a note, which could leave a larger than

expected gap between the notes we hear. Also, if you look closely you

might see some data in the 10 or 11 column. These happened when the

simulation program was at note 0 or 1 and stepped down from there,

going to a high note in a lower octave. 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure A.73: Histograms made with the
visualize program. The top graph
shows the result for a melody produced
using a chromatic scale. The middle
graph is a major scale. The bottom
graph is a pentatonic scale.

Conclusion
Hopefully you’ve created some melodies to inspire your songwriter

friend.

There are many enhancements you could add to your simulate pro-

gram. For example, you could take a short series of notes and repeat it,

maybe with modifications like raising or lowering the last note every

other time it’s repeated, or raising or lowering all the notes by an octave.

Also, instead of only going up or down by one or two notes, you could

sometimes, at random, leap to a really high or low note.

You might think about how simulate.cpp could be modified so to

create melodies that have more than one note playing at the same time.

You’d need to think about which notes sound good together, and maybe

do some more research into the mathematics of chords. You’d also

need to modify makewav.cpp, if you wanted to hear the melodies.

For more information about the mathematics of music, I highly rec-

ommend the series of videos that Norman Wildberger has been doing

recently on his Insights into Mathematics Youtube channel.

Hank Jones at the piano.
Source: Wikimedia Commons.

https://www.youtube.com/@njwildberger
https://commons.wikimedia.org/wiki/File:Hank_Jones.jpg

614 practical computing for science and engineering

Appendix

• The music.h header file

Here’s the music.h header file that you’ll need for writing simulate.cpp:

Program A.28: music.h

// Random number between 0 and 1:

double rand01 () {

static int needsrand = 1;

if (needsrand) {

srand(time(NULL));

needsrand = 0;

}

return (rand()/(1.0+RAND_MAX));

}

// Random number between min and max:

double randminmax(int min, int max) {

return (min + (int)((max-min+1)*rand01()));

}

// Euclidean modulus (always positive):

int emod (int n, int modulus) {

return ((n%modulus + modulus)%modulus);

}

• Some Interval Files

Here are the contents of three files that give the interval sequence

for a major scale, a harmonic minor scale, and a pentatonic scale. As

you can see, they’re just lists of the numbers of steps between notes

on each scale. You can create other files using the intervals listed in

Figure A.67.

major-interval.dat

2

2

1

2

2

2

1

harmonic-minor-interval.dat

2

1

2

2

1

3

1

pentatonic-interval.dat

2

2

3

2

3

You can also create a new scale by taking the top interval from the

major scale and moving it to the bottom. This is called the Dorian

mode. By continuing to move the top interval to the bottom, you

can produce other scales. The next one is Phrygian, then Lydian,

Mixolydian, Aeolian, and Locrian. If you do it one more time, you’re

back to where you started, which is called the Ionian mode.

chapter a. some challenging projects 615

• The makewav program

Here’s the makewav program that you can use to convert the output

from your simulate program into playable .wav files. In order to

compile it, you’ll also need to fetch two other files:

https://www3.nd.edu/~dthain/courses/cse20211/fall2013/wavfile/wavfile.c

https://www3.nd.edu/~dthain/courses/cse20211/fall2013/wavfile/wavfile.h

You can use wget or curl to download these. After you have them

and the makewav.cpp file below, you can compile the makewav

program by typing:

g++ -Wall -O -o makewav makewav.cpp wavfile.c

Program A.29: makewav.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include "wavfile.h"

double safefreq (double frequency) {

double minfreq = 200;

double maxfreq = 1300;

if (frequency > maxfreq || frequency < minfreq) {

return(0);

} else {

return(frequency);

}

}

int main(int argc, char *argv[]) {

double duration, frequency;

double t = 0;

double tsample = 1.0/WAVFILE_SAMPLES_PER_SECOND;

int nsamples;

short amplitude;

int volume = 8000;

int i;

double oldphase = 0, phase;

FILE *input;

FILE *output;

input = fopen(argv[1], "r");

if(!input) {

616 practical computing for science and engineering

printf("couldn't open %s for writing: %s",argv[1],strerror(errno));

exit(1);

}

output = wavfile_open(argv[2]);

if(!output) {

printf("couldn't open %s for writing: %s",argv[2],strerror(errno));

exit(1);

}

while (fscanf(input, "%lf %lf", &duration, &frequency) != EOF) {

frequency = safefreq(frequency);

nsamples = duration/tsample;

phase = oldphase - frequency*t*2*M_PI;

for (i=0; i<nsamples; i++) {

amplitude = volume*sin(frequency*t*2*M_PI + phase);

oldphase = frequency*t*2*M_PI + phase;

wavfile_write(output,&litude,1);

t += tsample;

}

}

wavfile_close(output);

fclose(input);

}

