
7. Statistics

7.1. Introduction
In the 17th century, English authors John Graunt and William Petty
began writing about a new science called “Political Arithmetic”, which
tried to understand social, economic, and public health problems
through the collection and analysis of numerical data. In the 18th
century, authors such as Germany’s Gottfried Achenwall began writing
about another new field of study called “Statistik” which aimed at dis-
covering the general principles by which a state could be successfully
run.

Figure 7.1: Der Sommer, by Abel
Grimmer (565-1630).
Source: Wikimedia Commons

Figure 7.2: John Graunt’s Observations
on the Bills of Mortality (1662) studied
mortality data in an effort to
understand the spread of Bubonic
Plague.
Source: Wikimedia Commons

Statistik soon began using the techniques of Political Arithmetic. The
success of a state might depend on the amount of wheat or milk it
produces, or the number of skilled craftsman. A spreading plague
might be detected by systematically collecting data about deaths. These
studies were the beginning of what we call “statistics” today.

Figure 7.3: A boa who’s swallowed an
elephant, from Antoine de St.
Exupery’s The Little Prince.

The modern science of statistics attempts to see inaccessible underlying
truths by sampling the superficial things that are visible to us. By
surveying a limited number of households, we arrive at an estimate
of the total number of families living in poverty. By observing a few
thousand particle decays, we estimate the probability that such decays
will happen. In the language of Antoine de St. Exupery’s Little Prince,
statistics tries to see the elephant that lies hidden inside the boa (see
Figure 7.3).

The available data is often incomplete, and shows us only a blurry
outline of what’s underneath, so statistics also tries to measure the
uncertainty in its estimates. These measures of uncertainty help us
judge how much we should trust our statistical conclusions.

https://commons.wikimedia.org/wiki/File:Abel_Grimmer_002.jpg
https://commons.wikimedia.org/wiki/File:Graunt_Observations.jpg
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7.2. Summarizing Data with Histograms
It can be hard to see the patterns in a bunch of raw numbers, but
a graph often makes the data snap into focus. In this section, we’ll
look at a new kind of graph called a “histogram”. The histogram was
introduced in 1891 by Karl Pearson, one of the founders of modern
statistics. It summarizes an arbitrarily large amount of data by reducing
it to a smaller, fixed, number of data points that represent how often
certain values appear in the original data.

Figure 7.4: British mathematician Karl
Pearson (1857-1936).
Source: Wikimedia Commons

Let’s look at an example. Particle physicists often use “scintillation
detectors” to measure the energy of subatomic particles. A “scintillator”
is a material such as Thallium-doped Sodium Iodide which produces a
flash of light when an energetic particle passes through it. By measuring
this flash of light, we can find out how much energy is deposited as a
particle passes through. More light means more energy.
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Figure 7.5: A scintillation detector
produces a flash of light whenever an
energetic particle passes through it. The
amount of light is proportional to the
energy that the particle deposits in the
detector. The flash of light is converted
into an electrical signal by a
“photomultiplier tube”, and the electrical
signal is measured and recorded.

The output of such a detector is just a bunch of numbers, each of which
corresponds to the energy deposited by a detected particle.1 These 1 The size of the electrical signals com-

ing out of the detector is proportional
to the energy. For our example, we’ll
just assume that we can read the energy
values directly.

energies are measured in “electron Volts” (eV), and a million electron
volts is called an MeV. The data we collect might look like Figure 7.6.

15.130490
16.942571
16.627112
10.780935
14.569799
15.192141
6.489004

12.386759
17.793823
4.181682

19.381618
...

Figure 7.6: Some data from our detector,
representing energies measured in MeV.
It’s hard to make sense of a stream of
numbers.

It’s hard to see patterns in a stream of numbers like this, but let’s
imagine that we’ve looked at the data and noticed that all of the
numbers lie between 0 and 20 MeV. It would be interesting to know how
the numbers are distributed in this range. Are they spread uniformly?
Do they bunch up in some places?

If we were rather bad at programming but good with tools, we might
construct a set of bins like those in Figure 7.7 to satisfy our curiosity.
Each bin represents a 4 Mev-wide range of energies. Whenever we see
a particle with an energy in that range, we could drop a marble into
the corresponding bin. After going through all of the data we could
look at our bins and easily see which energies were the most common,
because they’d contain the most marbles.

https://commons.wikimedia.org/wiki/File:Portrait_of_Karl_Pearson.jpg
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Bin 0 Bin 1 Bin 2 Bin 3 Bin 4
0 – 4 MeV 4 - 8 MeV 8 - 12 MeV 12 - 16 MeV 16 - 20 MeV

Bin width = 4 MeVBin width = 4 MeV

Figure 7.7: Binning the detector data
produces a histogram.

The pattern of high and low marble stacks that we’ve produced is
called a histogram. It tells us how frequently a measurement falls
within a given range. For this reason, histograms are sometimes called
“frequency plots”.
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Figure 7.8: A histogram can also
represent a spectrum. The most intense
places on this fluorescent light spectrum
are just those where photons are most
frequent. In the graph, we’ve marked
only the top of each of 700 “columns of
marbles”.
Spectrum taken by Finian Wright, using a DIY spectrometer.

If we wanted to save our histogram (maybe we want to re-use the
lumber for another project?) we could just write down the number of
marbles in each bin. But if a histogram is just equivalent to a list of
numbers, that means we could use an array in a C program to store it.

Program 7.1 reads energies from a file and produces a histogram,
represented by an array of bin counts. The program reads a list of
numbers from the file energy.dat. The numbers represent energies
from a scintillation counter, ranging between approximately 0 and 50

MeV. For each number, the program adds a virtual marble to one of 50

bins. The bins are the elements of the array named bin.

To find out which bin to put the marble into, the program divides
each energy value by the bin width, and rounds the result down to the
nearest integer. The result is the bin number. For example, take a look
at Figure 7.7 again. In this figure, an energy of 9 MeV would go into
bin number 2, since the bin width is 4 MeV, and 9/4 = 2.25.

https://www.youtube.com/watch?v=IA5BTD-aelo
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In Program 7.1, for simplicity, we’ve made the bin width 1 MeV, so
we can just look at the bin number to see the approximate energy it
represents.

Program 7.1: hist.cpp

#include <stdio.h>

int main () {

int i, binno, overunderflow = 0;

double energy, binwidth = 1.0;

int bin[50];

FILE *input;

for ( i=0; i<50; i++ ) {

bin[i] = 0; // Reset all bins to zero.

}

input = fopen( "energy.dat", "r" );

while ( fscanf( input, "%lf", &energy ) == 1 ) {

binno = energy/binwidth; // Find which bin.

// Is it too small or too big?

if ( binno < 0 || binno >= 50 ) {

overunderflow++;

continue; // Skip this value and jump to the next.

}

bin[binno]++; // Add a marble to this bin.

}

fclose(input);

for ( i=0; i<50; i++ ) {

printf ("%d %d\n", i, bin[i]);

}

printf ("# Saw %d over/underflows\n", overunderflow);

}

Read lines
from file.

At the end of the program, it prints out each bin number and the
number of virtual marbles that bin contains.

As we saw in Chapter 6, it’s important to check our array indices to
make sure we’re not going past the end of the array. What if the file
energy.dat contains some unexpected energies that would fall into
bins beyond the last element of our bin array? What if a negative
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number somehow found its way into the file? We’d want to know
about these things, but we wouldn’t want our program to crash.

Underflow Overflow

Figure 7.9: In Program 7.1,
overunderflow counts the number of
overflows and underflows.

To record these unexpected values, Program 7.1 has a variable called
overunderflow that counts the number of overflows (energies that
are too low) and overflows (energies that are too high). The program
checks the energy with an “if” statement like this:

if ( binno < 0 || binno >= 50 )

The condition in the “if” statement checks to see if either of two
conditions are true by using the “or” operator, ||. (We say >= 50

because the highest bin number is 49.)

If an overflow or underflow is found, the program increments the value
of overunderflow and then immediately skips to the next energy
value in energy.dat. It accomplishes this by using a “continue”
statement. In Chapter 4 we saw that it was possible to stop a loop by
using a break statement. The continue statement is similar, except
that instead of stopping the loop, it causes the program to skip the rest
of the current trip through the loop and immediately start the next trip.

Figure 7.10: Legend has it that the
Greek philosopher Archimedes proved
the value of noticing overflows. He’d
been given the task of measuring the
density of a crown to determine
whether it was made of pure gold. This
required measuring the crown’s volume,
but he couldn’t figure out how to do
that. Getting into his bath one day, he
noticed that his body displaced an
equal volume of water, and it was easy
to measure the volume of water. He
jumped from the tub, shouted “Eureka!”,
meaning “I’ve found it!” and ran naked
through the streets of Syracuse.
Source: Wikimedia Commons

When the program finishes, it prints out the number of overflows and
underflows that were seen. Notice that it prints a hash symbol (#) in
front of the message about over/underflows. This is so the message
won’t confuse gnuplot if we want to plot the results. Gnuplot ignores
any lines that begin with #.

https://commons.wikimedia.org/wiki/File:Archimede_bain.jpg
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Exercise 36: Making a Histogram
For this exercise you’ll need a copy of the data file energy.dat.
You can find instructions for obtaining it in Appendix C.2 on
page 622. Take a look inside this file using nano. You should
see a single column of numbers, representing simulated
energy measurements of 100,000 particles.

Try graphing this file by starting gnuplot and typing:

plot "energy.dat"

The result should look something like Figure 7.12.

Exit from gnuplot and then create, compile and run Program
7.1. The program’s output should be two columns of num-
bers (a bin number and the number of “virtual marbles” in
that bin), followed by a message about overflows and under-
flows. By looking at the columns of numbers, you should
already be able to see a pattern emerging.

Now run the program again, redirecting its output into a
file, like this:

./hist > hist.dat

Start gnuplot and plot the data by using the command:

plot "hist.dat" with impulses

“with impulses” causes gnuplot to draw a vertical line for
each point. The result should look something like Figure
7.13. Where do most of the energy values lie?

35.130490
36.942571
36.627112
40.780935
34.569799
35.192141
36.489004
32.386759
...

Figure 7.11: Some of the data in the file
energy.dat.
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Figure 7.12: The data in energy.dat,
plotted with gnuplot.
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Figure 7.13: The output of Program 7.1,
plotted with gnuplot.

Even though the data file we’re analyzing (energy.dat) contains
100,000 lines, the output of Program 7.1 is just two 50-line columns. We
could give Program 7.1 a million times more data to analyze, and the
program’s output would still be only fifty lines, although the numbers
on those lines would be larger. This is one reason histograms are useful:
they can summarize large data sets very efficiently. In the exercise
above, the program turns 100,000 numbers into a 50-number summary.
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7.3. Resolution and Range of Histograms
We could improve Program 7.1 by making a few changes that allow us
to adjust the resolution of the histogram (the width of its bins) and its
range (the lowest and highest energy values it can display). Let’s also
make the program more general, so it’s clear we can use it for other
kinds of data besides energy values.

Controlling the Resolution of a Histogram:

Figure 7.14: Finer-grained resolution
sometimes shows us features of our
data that are invisible at lower
resolutions. (Photo of Werner
Heisenberg.)
Source: Wikimedia Commons

Figure 7.15: A low-resolution histogram
(top) with 10 bins, and a high-resolution
histogram (bottom) with 50 bins, both
showing the same set of data.

In Program 7.1 we set the bin width to 1 MeV for convenience, so we
could see the energy values by just looking at the bin number. Bin
number 35 corresponded to 35 MeV. What if we wanted a finer- or
coarser-grained histogram, though? We might want a bin width of 0.5
MeV or 2 MeV, for example. In that case, we might want the program
to print the energy value of each bin instead of the bin number.

But do we want to print the energy at the left side of the bin, the right
side, or the middle? These are all different. Let’s just print all of them,
and then we can decide which value we want to use when we graph
the data.

We can make this happen by modifying just a few lines of our program.
Instead of saying this:

printf ("%d %d\n", i, bin[i]);

we can say this:

elow = binwidth*i;

emid = binwidth*(0.5+i);

ehi = binwidth*(i+1);

printf ("%lf %lf %lf %d\n", elow, emid, ehi, bin[i]);

The first three lines calculate the energy value at the left, center, and
right of the bin (to get the center, we add 0.5 to the bin number). Then,
instead of printing the bin number, we print all three energy values.
This will mean that our output has four columns: the three energy
values and the number of “marbles” in the corresponding histogram
bin.

https://commons.wikimedia.org/wiki/File:Bundesarchiv_Bild183-R57262,_Werner_Heisenberg_crop.jpg
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Controlling the Range of a Histogram:

Program 7.1 also assumes that the energy range we’re interested in
starts at zero. Sometimes this won’t be the case. Maybe we want to
focus on the range between 30 and 40 MeV, for example. Or, if we’re
measuring something other than energy, we might even have negative
values. Maybe we’re measuring distance, and we want to look at values
between -10 meters and 10 meters, where zero is the origin of our
coordinate system.

To accommodate that we’ll need to make a few more changes to our
program. First, let’s define the lower bound of our energy range with a
new variable:

double emin = 20.0; //MeV.

Figure 7.16: Two images with the same
resolution (both are 348×348), but the
bottom image zooms in on a small
region near the center of the upper
image. If we have a fixed number of
histogram bins, we should try not to
waste them on regions where there’s no
interesting data. (Image of a “gnat ogre”
– a robber fly of the genus Holcocephala –
taken by the author.)

Figure 7.17: A histogram with a large
range (top), and a small range (bottom).
Both show the same set of data using
the same number of bins.

Here we’ve set it to 20 MeV, but we could set it to whatever we want.
Now we’ll need to use this value when we calculate the bin number
(binno) and when we calculate the energy of each bin at the end of the
program. Our new calculation of binno would look like this:

binno = (energy-emin)/binwidth;

Instead of just energy, we’re using energy-emin to determine which
bin we should use. When energy is equal to emin, the bin number is
zero. At the end of the program, when calculating the left, center, and
right energy values of the bin we can say:

elow = emin + binwidth*i;

emid = emin + binwidth*(0.5+i);

ehi = emin + binwidth*(i+1);

We’ve added emin because the lowest bins correspond to that energy.

Calculating binwidth Instead of Specifying It:

It’s often convenient to specify the limits of a histogram’s range and
the number of bins, and then let the program calculate the value of
binwidth. We might, for example, want 100 bins covering the range
from 20 MeV to 45 MeV. That would tell us that each bin has a width of
(45− 20)/100 = 0.25 MeV.

We’ll need to rearrange a few things to make that happen. Let’s start
by adding a new variable to specify the upper end of our range:

double emax = 45.0; //MeV.
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Now let’s define a variable that specifies the number of bins, to make it
easy to adjust this value later:

const int nbins = 50;

int bin[nbins];

As we mentioned in Chapter 6, the word const tells the C compiler
that this value should never change. (See Page 186.) Next, we need to
add a line to calculate the value of binwidth:

binwidth = (emax-emin)/nbins;

Finally, we need to replace 50 with nbins wherever the program has
previously assumed there were 50 bins.

Putting It All Together:

Okay, now let’s see what the finished program looks like after we’ve
made all of these changes. Notice that Program 7.2 uses x, xmin
and xmax in place of energy, emin and emax, since we can use this
program for any kind of data. There are also some new printf

statements at the bottom of the program that remind the user about the
program’s settings.  0
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Figure 7.18: Output of Program 7.2,
plotted with the gnuplot comand
plot "hist.dat" using 2:4
with impulses.
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Program 7.2: hist.cpp, Improved

#include <stdio.h>

int main () {

int i, binno, overunderflow = 0;

double x, xlow, xmid, xhi, binwidth;

double xmin = 20.0;

double xmax = 45.0;

const int nbins = 100;

int bin[nbins];

FILE *input;

binwidth = (xmax-xmin)/nbins;

for ( i=0; i<nbins; i++ ) {

bin[i] = 0; // Reset all bins to zero.

}

input = fopen( "energy.dat", "r" );

while ( fscanf( input, "%lf", &x ) == 1 ) {

binno = (x-xmin)/binwidth;

if ( binno < 0 || binno >= nbins ) {

overunderflow++;

continue; // Skip this value and jump to the next.

}

bin[binno]++; // Increment the appropriate bin.

}

fclose(input);

for ( i=0; i<nbins; i++ ) {

xlow = xmin + binwidth*i;

xmid = xmin + binwidth*(0.5+i);

xhi = xmin + binwidth*(i+1);

printf ("%lf %lf %lf %d\n", xlow, xmid, xhi, bin[i]);

}

printf ("# Xmin = %lf\n", xmin);

printf ("# Xmax = %lf\n", xmax);

printf ("# Binwidth = %lf\n", binwidth);

printf ("# Nbins = %d\n", nbins);

printf ("# Saw %d over/underflows\n", overunderflow);

}
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7.4. Two-Dimensional Histograms
Imagine that you’re a school principal whose students have just finished
taking reading and math tests. You could make a histogram of all the
reading scores or all the math scores, but you’d like to see how reading
scores and math scores are related to each other. Do students with high
math scores also have high reading scores, or do students excel in only
one area? What can we do? Let’s stroll down the hall and talk to the
Shop teacher. He’s a clever guy. Maybe he’ll have a suggestion.

You begin by telling him about the wooden bin you constructed for
sorting marbles in the preceding section. He thinks about the problem
for a moment, then says, “Well, all you need to do is make a crate that
lets you sort marbles out in two directions: one direction for reading
scores and the other for math. Give me a few minutes and I’ll make one
for you.” Sure enough, after a few minutes of sawing and hammering,
he’s produced a crate like the one shown in Figure 7.19.

“Great!” you say. “Each marble represents a student. I just need to drop
the marble into the bin that corresponds to that student’s reading and
math scores. In the end, the number of marbles in a bin will tell me
how many students had that particular combination of reading and
math scores.”

Bin 0 Bin 1 Bin 2 Bin 3

Reading Score

Math Score

0-30

26-50 51-75 76-100

31-60
61-90

0-25

Figure 7.19: Binning marbles in two
directions produces a two-dimensional
histogram. In this example, math scores
range from zero to 90 and reading scores
range from zero to 100. We’ve divided
the math scores into bins with a width of
30, and the reading scores into bins with
a width of 25.

Our crate full of marbles can be thought of as a two-dimensional his-
togram2. As with the one-dimensional version we saw in the preceding 2 Two-dimensional histograms are some-

times called “bivariate” histograms,
because they show data from two vari-
ables (reading score and math score in
this example).

section, we can save our histogram by just writing down the number of
marbles in each bin. In Program 7.1 we used a one-dimensional array
(bin[50]) to hold the values in our one-dimensional energy histogram.
For a two-dimensional histogram, we’ll need a two-dimensional array.
We might store the number of marbles in each bin of Figure 7.19 in a
3×4 array of integers, defined like this: int bin[3][4];
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Take a look again at Program 7.1 (hist.cpp). If we wanted to modify
this program so that it makes a two-dimensional histogram, we’d need
to change bin into a 2-d array, and we’d need to modify the way we
fill this array.
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Figure 7.20: Two ways we might
represent the data in a two-dimensional
histogram.

For example, assume we have a data file that has two numbers on each
line: a math score and a reading score. Instead of the single bin number
(binno) that we calculate in Program 7.1, we now need to calculate
two bin numbers, one for math and one for reading. We might do that
like this:

mbin = math/mbinwidth;

rbin = reading/rbinwidth;

if ( rbin < 0 || rbin >= nrbins ||

mbin < 0 || mbin >= nmbins ) {

overunderflow++;

continue; // Skip this value and jump to the next.

}

bin[mbin][rbin]++; // Increment the appropriate bin.

where reading and math are the reading and math scores, mbin and
rbin are the calculated bin numbers for math and reading, mbinwidth
and rbinwidth are the widths of the math and reading bins, and
nmbins and nrbins are the number of math and reading bins.

Figure 7.20 shows two ways of representing a 2-dimensional histogram
of reading and math scores. Here the reading and math scores both
range between zero and 100, and we’ve split each range into ten bins.
In the top picture, we use a vertical bar to represent the height of each
bin’s stack of marbles. In the bottom picture we look down on the top
of these stacks, and we’ve color-coded each stack to indicate its height.

Two-dimensional histograms are useful when we want to see how
two measured quantities interact with each other. In Figure 7.20, we
can easily see that students with high math scores also tend to have
high reading scores. This wouldn’t be obvious if we just looked at the
numbers, or graphed math or reading scores by themselves.
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7.5. Finding the Mean
Looking at the one-dimensional histogram in Figure 7.13 we can see
that the energies tend to cluster around approximately 35 MeV, but they
trail off to the left and right in a bell-shaped curve. If all of the particles
actually had the same energy, and all of their energy was deposited in
the detector, we might expect all of the numbers in energy.dat to be
exactly the same. In practice, though, our measurements will always
have some random variation no matter how careful we are. This is
partly because of imperfections in our instruments, but there may also
be physical limits to the precision of our measurements

Truth(?)Truth(?)

Distribution of all 
possible 

measurements.

Distribution of all 
possible 

measurements.

Data we observe.Data we observe.

Parent Population

Sample Population

Reality

Figure 7.21: We are always at two
removes from the “underlying truths”
that we’re trying to measure.
Statisticians call the right-hand graph the
“sample population”, and the middle
graph the “parent population”, from
which the sample is drawn at random.

If we made an infinite number of measurements, we might see that
they’re spread out like the middle graph in Figure 7.21. In reality, we
make a finite number of measurements that are just a small sample of
all of the possible measurements, like the right-hand graph. If we only
take a few measurements, it’s not too unlikely that all of them may
happen to lie on the left or right side of the true value. As we make
more measurements, our data will begin to look more and more like
the middle graph.3 3 In statistics, this is called “The Law of

Large Numbers”.

Once we’ve taken enough measurements to approximate the middle
graph, what’s our best guess for the true value in the left-hand graph?
Some of our measurements are higher than the true value and some
are lower, but we expect that the true value lies somewhere between
the extremes, at some “average” value.



230 practical computing for science and engineering

In everyday speech, we use the word “average” to mean “typical”. The
“average guy” is a typical person. How do we measure this, though?
How can we objectively decide what’s “typical”?

Figure 7.22: The Tempting Cake, by
Albert Rosenboom
Source: Wikimedia Commons

In science, we often use a quantity called the “arithmetic mean” (often
just called the “mean”) to represent what’s “average” or “typical”.
You’ve probably used this before. The mean of a set of values is the
sum of all the values, divided by the number of values. Mathematically,
we could write it like this:

X =
1
N

N

∑
i=1

Xi (7.1)

where N is the number of values, Xi are the values themselves, and X
is the mean.

If we slice a cake into several pieces, the mean size of a piece is the sum
of the size of all the pieces (which is just the total size of the cake),
divided by the number of pieces. The mean is the size that each piece
would have if the cake were sliced up into perfectly equal parts.

Figure 7.23: On the left, an unfairly
sliced cake. On the right, a cake sliced
into equal pieces. The size of each
right-hand slice is equal to the mean size
of the left-hand slices.

We often assume that the mean value of our measurements is the best
guess at the true, underlying value that we’re trying to measure. If
we make enough measurements, we expect that the mean value will
approximate the mean value of all possible measurements, and we
expect that the mean of all possible measurements will approximate
the true, underlying value, which may never be directly accessible to
us.

Program 7.3 reads the energy values from energy.dat and finds their
arithmetic mean. In the program, the variable named sum is intially
set equal to zero. Each time a new number is read, it’s added to sum.
After reading all of the numbers, the program calculates the mean by
dividing the sum by the number of energy values.

https://commons.wikimedia.org/wiki/File:Albert_Roosenboom_The_tempting_cake.jpg
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Program 7.3: mean.cpp

#include <stdio.h>

int main () {

double energy;

double sum = 0.0;

int nvalues = 0;

double mean;

FILE *input;

input = fopen("energy.dat","r");

while ( fscanf( input, "%lf", &energy ) == 1 ) {

sum += energy;

nvalues++;

}

mean = sum/nvalues;

printf ("Number of values is: %d\n", nvalues );

printf ("Mean value is: %lf\n", mean );

fclose (input);

}

We could also modify our histogram program (Program 7.1) so that it
tells us the mean energy. Program 7.4 is a new version of hist.cpp
that adds up the energy values as they’re read, and prints out the mean
when it’s done. Again, we put a # on the front, so gnuplot will ignore
this line.

Notice that we want to include all of the energy values, even the
underflows and overflows. We want the arithmetic mean of all values.

Exercise 37: You Big Meanie!
Modify your earlier hist.cpp program so that it looks like
Program 7.4. Compile and run it. Does the value given by
the program look consistent with what you saw when you
plotted a histogram of the data (Figure 7.13)?

Figure 7.24: In the 1968 Beatles movie
The Yellow Submarine, the Blue Meanies
hated music.
Source: unigami, at Deviant Art

http://unigami.deviantart.com/art/Chief-Blue-Meanie-from-Yellow-Submarine-280821413
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This version of the program prints the
average energy value. Changes from
Program 7.1 are shown in bold.

Program 7.4: hist.cpp, Version 2

#include <stdio.h>
int main () {

int i, binno, overunderflow = 0;
double x, xlow, xmid, xhi, binwidth;
double xmin = 0.0;
double xmax = 50.0;
double sum = 0.0;
int nvalues = 0;
const int nbins = 50;
int bin[nbins];
FILE *input;

binwidth = (xmax-xmin)/nbins;

for ( i=0; i<nbins; i++ ) {
bin[i] = 0; // Reset all bins to zero.

}

input = fopen( "energy.dat", "r" );
while ( fscanf( input, "%lf", &x ) == 1 ) {

sum += x;
nvalues++;

binno = (x-xmin)/binwidth;
if ( binno < 0 || binno >= nbins ) {

overunderflow++;
continue; // Skip this value and jump to the next.

}
bin[binno]++; // Increment the appropriate bin.

}
fclose(input);

for ( i=0; i<nbins; i++ ) {
xlow = xmin + binwidth*i;
xmid = xmin + binwidth*(0.5+i);
xhi = xmin + binwidth*(i+1);
printf ("%lf %lf %lf %d\n", xlow, xmid, xhi, bin[i]);

}
printf ("# Xmin = %lf\n", xmin);
printf ("# Xmax = %lf\n", xmax);
printf ("# Binwidth = %lf\n", binwidth);
printf ("# Nbins = %d\n", nbins);
printf ("# Saw %d over/underflows\n", overunderflow);
printf ("# Mean value is %lf\n", sum/nvalues );
printf ("# Nvalues = %d\n", nvalues );

}

Add each value to the sum.

Count the number of values.
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7.6. Standard Deviation
Figure 7.13 shows that the energy values in energy.dat tend to bunch
up in one spot, forming a peak. If you were describing this shape to
someone, you could start by telling them that “the mean energy value is
35 MeV”. This says where the peak is, but it doesn’t tell them anything
about how wide it is. How can we measure the width of a peak like
this?

Figure 7.25: A comparison of
histograms made from two samples,
one with a small standard deviation
and one with a large standard deviation.
Both samples have the same mean value
and contain the same number of data
points.
Source: Wikimedia Commons

If the peak is wide, we might expect that a lot of data points would
be far from the mean value. In the terms used in Equation 7.1, we
might think about going through all of the points and adding up the
values of Xi − X. Unfortunately, we’d find that this sum is always zero,
since some points are to the left of the mean and some to the right. It’s
possible to prove mathematically that the sum of all of these positive
and negative distances will always add up to zero.

What we really want is just the distance from the mean, without worry-
ing about whether it’s positive or negative. Since the square of a real
number is always positive, we might think about adding up the squares
of the Xi − X values. Statisticians define a quantity called the “sample
variance” that does just this. It’s defined this way4: 4 Why do we divide by N − 1 instead

of N? A simple explanation is that the
variance is undefined if you have only
one data point.

s2 =
1

N − 1

N

∑
i=1

(Xi − X)2 (7.2)

where s2 is the variance. For the example we’ve been working on, the
units of the variance would be MeV2 (energy squared). The square root
of the variance is called the “standard deviation”.5 In our example, this 5 This is another term that was intro-

duced in the 1890s by Karl Pearson.has units of MeV, and it can be used to describe the width of the peak
in Figure 7.13. The standard deviation tells us the “typical” distance
between a data point and the mean value.

Figure 7.26 shows some data along with its arithmetic mean (X) and
standard deviation (s). The data we observe is just a sample of all
the possible values we might see if we did an infinite number of
measurements. Our data is called the “sample” and the collection of
all possible values is called the “parent”. Underneath it all, like the
elephant inside the boa, is the true value that we’re trying to estimate.

There’s a practical problem with using Equation 7.2 in a computer
program, though. Since it uses X (the mean value of the energy), we’d
have to first loop through all of the energy values to calculate their
mean, and then loop through them all again to calculate the variance.

https://commons.wikimedia.org/wiki/File:Comparison_standard_deviations.svg
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X

s

Truth

Parent
Distribution

Sample
Distribution

Figure 7.26: Sample distribution, parent
distribution (the set of all possible
measurements), and true value. X is the
mean of the sample, and s is its standard
deviation.

Fortunately, clever mathematicians have provided us with a shortcut to
make things easier. It turns out that Equation 7.2 can be rewritten like
this:

s2 =
1

N − 1

[ N

∑
i=1

X2
i −

1
N
(

N

∑
i=1

Xi)
2
]

(7.3)

The right-hand sum in Equation 7.3 is the same one we’re already using
in Program 7.4. To find the variance we also need the left-hand sum,
which is the sum of the squares of the values. Our program just needs
to do one loop, and keep two sums: the sum of the values and the sum
of their squares.

That’s what Program 7.5 does with our energy.dat data. The pro-
gram includes math.h at the top, since it uses the sqrt and pow

functions. We’ve also added a new variable sum2 to store the sum of
the squares, from Equation 7.3. At the end of the program, we calculate
the standard deviation and print it out.
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This program is an improved version
of mean.cpp (Program 7.3) that prints
out the standard deviation of the energy
values. Changes from Program 7.3 are
shown in bold.

Program 7.5: stddev.cpp

#include <stdio.h>

#include <math.h>
int main () {

double energy;

double mean;

double stddev;
double sum = 0.0;

double sum2 = 0.0;
int nvalues = 0;

FILE *input;

input = fopen("energy.dat","r");

while ( fscanf( input, "%lf", &energy ) == 1 ) {

sum += energy;

sum2 += pow( energy, 2 );
nvalues++;

}

mean = sum/nvalues;

stddev = sqrt( (sum2 - sum*sum/nvalues)/(nvalues-1) );

printf ("Number of values is: %d\n", nvalues );

printf ("Mean value is: %lf\n", mean );

printf ("Std. Dev is: %lf\n", stddev );

fclose (input);

}

We can apply the same technique to our ever-improving hist.cpp

program, giving it the ability to print out the standard deviation as well
as the mean value. That’s what we do in Program 7.6.

Exercise 38: Finding the Standard Devi-
ation
Create, compile, and run Program 7.6, a new version of
hist.cpp that now prints the standard deviation. How
large is this value in comparison with the width of the peak
in Figure 7.13?
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This is an updated version Program 7.4.
Changes from Program 7.4 are shown
in bold.

Program 7.6: hist.cpp, Version 3

#include <stdio.h>
#include <math.h>
int main () {

int i, binno, overunderflow = 0;
double x, xlow, xmid, xhi, binwidth;
double xmin = 0.0;
double xmax = 50.0;
double sum = 0.0;
double sum2 = 0.0;
int nvalues = 0;
const int nbins = 50;
int bin[nbins];
FILE *input;

binwidth = (xmax-xmin)/nbins;

for ( i=0; i<nbins; i++ ) {
bin[i] = 0; // Reset all bins to zero.

}

input = fopen( "energy.dat", "r" );
while ( fscanf( input, "%lf", &x ) == 1 ) {

sum += x;
sum2 += pow( x, 2 );
nvalues++;

binno = (x-xmin)/binwidth;
if ( binno < 0 || binno >= nbins ) {

overunderflow++;
continue; // Skip this value and jump to the next.

}
bin[binno]++; // Increment the appropriate bin.

}
fclose(input);

for ( i=0; i<nbins; i++ ) {
xlow = xmin + binwidth*i;
xmid = xmin + binwidth*(0.5+i);
xhi = xmin + binwidth*(i+1);
printf ("%lf %lf %lf %d\n", xlow, xmid, xhi, bin[i]);

}
printf ("# Xmin = %lf\n", xmin);
printf ("# Xmax = %lf\n", xmax);
printf ("# Binwidth = %lf\n", binwidth);
printf ("# Nbins = %d\n", nbins);
printf ("# Saw %d over/underflows\n", overunderflow);
printf ("# Mean value is %lf\n", sum/nvalues );
printf ("# Std. dev. is %lf\n",

sqrt( (sum2 - sum*sum/nvalues)/(nvalues-1) ) );
printf ("# Nvalues = %d\n", nvalues );

}

Needed for sqrt and pow.

Add square of each value to sum2.



chapter 7. statistics 237

7.7. The “Normal” or “Gaussian” Distribution
The peak in Figure 7.13 is a bell-shaped curve. Curves like this occur
very frequently in data. In fact, they occur so frequently that this
shape is called the “Normal Curve”. The German mathematician Carl
Friedrich Gauss (1777-1855) was perhaps the first to appreciate the
significance of it, so it’s sometimes called a “Gaussian Curve”.

Figure 7.27: Gauss is pictured on this
German banknote. If you look closely
you’ll see a small picture of the Normal
curve at the left.
Source: Wikimedia Commons

The ubiquity of this curve was a source of amazement to early statisti-
cians, who saw it popping up everywhere: astronomical data, actuarial
tables, agricultural data.

Why does this curve appear so often? Because of the “Central Limit
Theorem”, which says that any linear sum of random variables tends
toward a Normal distribution, no matter what the distribution of the
individual variables looks like.6 6 Note that this means you can construct

a pretty good Normal distribution just
by adding together sufficiently many
numbers pulled from any random
distribution. For example, roll six dice
and add their numbers together. Keep
doing this and recording the sum each
time. A histogram of the sums will look
very similar to the Normal distribution.

The Central Limit Theorem is so important that it’s called the “second
fundamental theorem of probability”. (The first is the Law of Large
Numbers.)

The Normal curve can be expressed mathematically by the following
equation:

P(x) = Ae−
(x−x)2

2s2
(7.4)

The curve reaches its maximum at x, the mean value of x. The curve’s
width is controlled by s, the standard deviation. The height of the curve
at its maximum is A.
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Figure 7.28: Three Normal curves with
standard deviations of 3 (the widest), 2

and 1.

If we look at data that’s bunched together in a Normal distribution, the
standard deviation of the data gives us some quantitative information
about the way the data is distributed. We know, for example, that about
68% of Normally-distributed data lies within one standard deviation
away from the mean value. (See Figure 7.30.)

Standard Deviation

Figure 7.29: The standard deviation of a
Normal curve is the horizontal distance
from the midline to one of the points
where the curvature changes from
positive to negative.

If Program 7.6 tells us that the standard deviation of our energy data
is 2.5 MeV and the mean is 35 MeV, that implies that 68% of our
energy values fall between 32.5 MeV and 37.5 MeV. If we were telling
someone about our measurements, we might say that the energy value
we observed was 35± 2.5 MeV.

https://commons.wikimedia.org/wiki/File:10_DM_Serie4_Vorderseite.jpg
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We also know that about 95% of the data lie within 2 standard deviations
from the mean, and about 99.7% of the data are within 3 standard
deviations.

X X+sX-s

68% of Data
are within ± s 

from the mean

95% of Data
are within ± 2s 
from the mean

99.7% of Data
are within ± 3s 
from the mean

Figure 7.30: If data are distributed
Normally, 68% of the values fall within
one standard deviation from the mean.
95% of values are within two standard
deviations, and 99.7% are within three
standard deviations.

If you look at a Normal curve, you can find its standard deviation by
locating the places where the curvature changes from positive (concave
up) to negative (concave down). Mathematically, these points (called
“points of inflection”) are where the 2

nd derivative of the function is
zero. The standard deviation is the horizontal distance from the mean
to either of these two points. (See Figure 7.29.)

Exercise 39: It’s Only Fitting
We’ve seen that gnuplot can plot data, but it can also plot
functions. Several functions, like sin(x), cos(x), and exp(x)
are built into gnuplot, but you can also define your own
functions. Try starting up gnuplot and typing the following:

p(x) = a*exp(-0.5*(x-m)**2/s**2)

s=2.5

m=35

a=10000

plot "hist.dat" with impulses, p(x)

The first line defines a new function p(x) that’s just the
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Normal curve given in Equation 7.4 above. The next three
lines set the parameters: s is the standard deviation, m is the
mean (X), and a is the height of the peak.

The last line plots your histogram data from the file hist.dat
and overlays a Normal curve on top of it. You can see that
the shapes are similar, but the curve doesn’t exactly match
the data.

We could try adjusting the values of s, m, and a by hand
to make the curve fit better, but gnuplot can do this for us
automatically.

Type the following gnuplot commands:

fit p(x) "hist.dat" via s,m,a

replot

The first command tells gnuplot to adjust the parameters s,
m, and a to make p(x) match the data in hist.dat. When
it’s done, it prints out a lot of information including the
new values of the parameters. The second command tells
gnuplot to re-do our last graph, which will now draw p(x)

using the new parameters. Does it fit better now?
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Figure 7.31: A Normal curve
superimposed on our hist.dat data.
The top graph shows a curve that
doesn’t quite match. The bottom graph
shows the curve after we’ve asked
gnuplot to adjust the parameters for the
best fit.

But what about. . . ?

In the data we’ve been looking at, each data point is some distance,
d (positive or negative) from the mean value. The sample standard
deviation, s, tells us how far a “typical” data point strays from
the mean, but there are other ways we could choose to quantify
a “typical” deviation. For example, we could look at the average
absolute value of d.

The standard deviation has some nice properties, though. In par-
ticular, it has a natural relationship to the Normal distribution. As
we saw above, 2s is the distance between the “points of inflection”
(the places where the curvature goes from positive to negative) of
the Normal distribution.

More importantly, statisticians tell us that the sample standard
deviation is usually the best estimate of the standard deviation
of the infinitely many data points we could possibly collect (the
“parent population”).
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7.8. Exploring The Central Limit Theorem
In Chapter 2 we learned how to simulate rolling dice. For example,
Program 2.4 generates a random number between 1 and 6, just like
rolling a 6-sided die. Program 7.7, below, is an updated version that
rolls a 6-sided die 1,000 times. If we used gnuplot to plot this program’s
output, we would see something like Figure 7.32.
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Figure 7.32: The output of
singledie.cpp plotted using the
gnuplot command plot
"singledie.dat"

Notice that we see about the same number of rolls landing on each
number, which is what we’d expect from a fair die (or a good random-
number generator!). If we made a histogram of the values obtained
from rolling a single 6-sided die, it might look like Figure 7.33. As you
can see, each value has an equal probability of turning up.
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Figure 7.33: A histogram of the values
obtained by rolling a single 6-sided die
1,000 times.

Program 7.7: singledie.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int roll;

int min = 1;

int max = 6;

int nvals;

int i;

double x;

nvals = max - min + 1;

srand(time(NULL));

for ( roll=0; roll<1000; roll++ ) {**
x = rand()/(1.0 + RAND_MAX);

i = min + (int)(nvals*x );

printf( "%d\n", i );

}

}

Some dice games require you to roll two or more dice at once, and add
up their numbers. Let’s modify Program 7.7 so that it rolls twelve dice
at once, instead of just rolling one die. We’ll need to add an extra loop
and a couple of variables to do that. The result is Program 7.8.
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Figure 7.34: The upper figure shows the
output of Program 7.8 plotted using
gnuplot. The bottom figure shows what
it would look like if we increased the
number of rolls from 1,000 to 10,000.

Program 7.8: multidice.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int roll, die;

int min = 1;

int max = 6;

int nvals;

int i, sum;

double x;

nvals = max - min + 1;

srand(time(NULL));

for ( roll=0; roll<1000; roll++ ) {

sum = 0;

for ( die=0; die<12; die++ ) {

x = rand()/(1.0 + RAND_MAX);

i = min + (int)(nvals*x );

sum += i;

}

printf ( "%d\n", sum );

}

}

If we plotted the output of Program 7.8 we’d see something like the
upper graph in Figure 7.34. Notice that now the values aren’t spread
evenly any more. When we roll twelve dice and add them up, their sum
is most likely to be somewhere around 42. This is even more apparent
in the bottom graph of Figure 7.34, where we’ve increased the number
of rolls to 10,000.
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Figure 7.35: A histogram of our dice
roll sums, created by Program 7.9, using
the following gnuplot command:
plot "dicehist.dat" using 1:4
with impulses

To get a better sense of the distrubution of the values, let’s make a
histogram of them. We can do that by combining Program 7.8 with
Program 7.2. The result is Program 7.9 below. (Notice that we’ve set
the number of dice rolls to 10,000 now.) If we ran this program and
plotted its output using the gnuplot command

plot "dicehist.dat" using 1:4 with impulses"

we’d see something like Figure 7.35.
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Program 7.9: dicehist.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main () {

int roll, die;
int min = 1;
int max = 6;
int nvals;
int i, sum;
double x;
const int nbins = 100;
int bin[nbins];
int binno, overunderflow = 0;
double xlow, xmid, xhi, binwidth;
double xmin = 0.0;
double xmax = 100.0;

binwidth = (xmax-xmin)/nbins;

for ( i=0; i<nbins; i++ ) {
bin[i] = 0; // Reset all bins to zero.

}

nvals = max - min + 1;
srand(time(NULL));

for ( roll=0; roll<10000; roll++ ) {
sum = 0;
for ( die=0; die<12; die++ ) {

x = rand()/(1.0 + RAND_MAX);
i = min + (int)(nvals*x );
sum += i;

}
binno = (sum-xmin)/binwidth;
if ( binno < 0 || binno >= nbins ) {

overunderflow++;
continue; // Skip this value and jump to the next.

}
bin[binno]++; // Increment the appropriate bin.

}

for ( i=0; i<nbins; i++ ) {
xlow = xmin + binwidth*i;
xmid = xmin + binwidth*(0.5+i);
xhi = xmin + binwidth*(i+1);
printf ("%lf %lf %lf %d\n", xlow, xmid, xhi, bin[i]);

}
printf ("# Xmin = %lf\n", xmin);
printf ("# Xmax = %lf\n", xmax);
printf ("# Binwidth = %lf\n", binwidth);
printf ("# Nbins = %d\n", nbins);
printf ("# Saw %d over/underflows\n", overunderflow);

}
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Figure 7.35 shows that a value of 42 appears almost 700 times when
we sum up our twelve dice. The farther away from 42 we get, the less
likely we are to see a given sum. The distribution of values looks like
a Gaussian or Normal distribution, as described in Section 7.7. As
we noted in that section, this effect is known as the “Central Limit
Theorem”. It tells us that the sum of several random variables tends to
take on a Normal distribution.

Even though the distribution of numbers we get from each die is flat, as
shown in Figures 7.32 and 7.33, the sum of these numbers approaches
a Normal distribution (see Figures 7.34 and 7.35).

The fact that our observed values are centered around 42 makes sense
too. Each 6-sided die gives a value between 1 and 6, so the average
value we should get from a single roll of a die is (1 + 6)/2 = 3.5. That
means that the average value for the sum of twelve dice should be
12×3.5 = 42.

Figure 7.36: Beans bounce off of pegs as
they roll down a “Galton Board”. At the
bottom they fall into bins, like histogram
bins. The sum of all the random left and
right bounces experienced by the beans
results in an approximately Normal
distribution.
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Galton_board.png
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7.9. Analyzing Multi-Column Data
Statistics began as a study of demographic data (numerical data about
populations), so let’s take a look at some “people data” before we finish.
The US constitution mandates that a census be taken every ten years,
and the task of collecting and analyzing data falls on the US Census
Bureau.

Figure 7.37: The US Census Bureau is
charged with conducting a decennial
census.
Source: Wikimedia Commons

Census takers collect a lot of data for each household they visit. They
might record the number of children, the number of bedrooms in the
house, the amount paid monthly in rent, and so forth. We might store
the data for each household in a row, with a column for each quantity
that was recorded. The result would look something like this:

Figure 7.38: Taking the census could be
a dangerous job. Consider the plight of
a census taker asked to survey these
denizen’s of an 1890 New York
“Bandit’s Roost”. This picture was taken
by Jacob Riis, who prowled New York’s
tenements accompanied by
then-Police-Commissioner Theodore
Roosevelt, documenting “How the
Other Half Lives” (the title of Riis’s
best-known book).
Source: Wikimedia Commons

0 1 3 10700 2 2 0
0 1 4 7800 2 40 0
0 1 3 64200 2 130 0
0 1 3 -1 2400 210 0
0 0 1 -1 2 10 780
0 1 3 44600 2 90 1905
...

In the following sections, we’ll be constructing a program that can read
a data file from the US Census Bureau that contains information about
1,285,588 households. The file has seven columns of integers for each
household. Each column represents a different measurement:

Column Description
0 Number of related children in household
1 Lot size
2 Number of bedrooms
3 Family income
4 Annual fuel cost
5 Monthly gas cost
6 Monthly rent

The file we’ve been analyzing, energy.dat, contains only one column
of data. Only one measurement (the amount of energy deposited) was
recorded for each particle that passed through the detector. The census
taker, on the other hand, takes several measurements for each family.
Let’s look at how we might modify our earlier programs to allow them
to read such multi-column data.

One way to do it would be to replace our single variable (energy, in
the earlier programs) with an array. The number of elements in the
array will need to match the number of columns in the data file.

https://commons.wikimedia.org/wiki/File:Seal_of_the_United_States_Census_Bureau.svg
https://commons.wikimedia.org/wiki/File:Bandit's_Roost_by_Jacob_Riis.jpeg
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Program 7.10 uses this strategy to analyze data from a seven-column
data file. In order to read each row, it loops through the seven elements
of the array data. The new variable field specifies which column of
the data we want to analyze, and the new program gives the variable
x the value of data[field]. (Program 7.10 sets field to 0, but it
could be set to any value from 0 to 6.) The new program also changes
the name of the data file from energy.dat to census.dat.

Because Program 7.10 uses a “for” loop to read multiple items from
each line, we can no longer use a simple break when we reach the
end of the file, as we did when reading energy.dat. Remember from
Chapter 4 that the break statement only stops the loop it’s in. If we
used a break inside the “for” loop of Program 7.10 when we get to the
end of the file, the break would only stop the “for” loop. It wouldn’t
stop the outer, enclosing “while” loop, so the program would keep
trying (and failing) to read lines forever.

There are several ways we could handle this. One of them is to use C’s
“goto” statement. A goto statement jumps immediately to another
location in your program. You might think that this could be a highly
dangerous thing to do, and you’d be right. There’s a superstition
among programmers that says goto should never be used, but experts
agree7 that goto is sometimes the best solution in one specific case: 7 See the “exception” under

ES.76 in the CPP Core Guidelines:
https://github.com/isocpp/CppCoreGuidelines.

when your program needs to break out of nested loops like the ones
we have in Program 7.10.

Notice the line in Program 7.10 that just says “done:;”. This is called
a “label”. A label can be any word, followed by a colon8, on a line by 8 Notice that this is a colon, not a

semicolon. In the examples in this
book we’ll also put a semicolon after
the label, just as we do with other C
statements.

itself. Labels don’t do anything. They just mark a spot in your program.
Think of them as bookmarks. When we say goto done; we’re telling
the program to jump to the label named “done”. When Program 7.10

gets to the end of the file it’s reading, the goto statement jumps out of
the nested loops and continues below the done:; label.

Used in this way, goto statements can be a safe and efficient way to
break out of nested loops. If you think of goto as a kind of “super-
break” it’s quite unlikely that you’ll be eaten by a velociraptor9... but 9 See https://xkcd.com/292.

remain vigilant.

Figure 7.39: Skull of Velociraptor
mongoliensis.
Source: Wikimedia Commons

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-goto
https://xkcd.com/292/
https://commons.wikimedia.org/wiki/File:Velociraptor_mongoliensis_type_skull_and_jaws.jpg
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Program 7.10: census.cpp

#include <stdio.h>
#include <math.h>
int main () {

int i, binno, overunderflow = 0;
double x, xlow, xmid, xhi, binwidth;
double xmin = 0.0;
double xmax = 50.0;
const int nbins = 50;
int bin[nbins];
double sum = 0.0;
double sum2 = 0.0;
int nvalues = 0;
FILE *input;
int field=0; // Select column 0 from data.
double data[7]; // Add "data" array.

binwidth = (xmax-xmin)/nbins;

for ( i=0; i<nbins; i++ ) {
bin[i] = 0; // Reset all bins to zero.

}

input = fopen( "census.dat", "r" );
while ( 1 ) {

for ( i=0; i<7; i++ ) {
if ( fscanf( input, "%lf", &data[i] ) != 1 ) {

goto done;
}
}

x = data[field]; // Choose which column.

sum += x;
sum2 += pow( x, 2 );
nvalues++;

binno = (x-xmin)/binwidth;
if ( binno < 0 || binno >= nbins ) {

overunderflow++;
continue;

}
bin[binno]++;

}
done:;
fclose(input);

for ( i=0; i<nbins; i++ ) {
xlow = xmin + binwidth*i;
xmid = xmin + binwidth*(0.5+i);
xhi = xmin + binwidth*(i+1);
printf ("%lf %lf %lf %d\n", xlow, xmid, xhi, bin[i]);

}
printf ("# Field number %d\n", field);
printf ("# Xmin = %lf\n", xmin);
printf ("# Xmax = %lf\n", xmax);
printf ("# Binwidth = %lf\n", binwidth);
printf ("# Nbins = %d\n", nbins);
printf ("# Saw %d over/underflows\n", overunderflow);
printf ("# Mean value is %lf\n", sum/nvalues );
printf ("# Std. dev. is %lf\n",

sqrt( (sum2 - sum*sum/nvalues)/(nvalues-1) ) );
printf ("# Nvalues = %d\n", nvalues );

}

Read
lines

from file

Jump out of nested
for and while

loops when we reach
the end of the file

Get 7

items
from

each line
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7.10. Filtering Data
Census takers can’t always collect all measurements from every house-
hold. Sometimes a measurement just doesn’t apply. What’s the monthly
rent on a house that’s not being rented? What’s the annual household
income for an unoccupied house? Our data sets will sometimes contain
special values that indicate “Not Applicable”. We might not want to
include these values in our averages, or show them on our histograms.
We could think of this a “filtering” our data.

Figure 7.40: The planck spacecraft
examined the microwave radition
leftover from the Big Bang. The figure
above shows analyses of planck’s data
with several different filters applied.
Source: Planck Mission, European Space Agency

In the census data we’re going to look at, these special values are
indicated by zeros or negative numbers. By making a couple of changes,
we can cause our program to ignore such values. First, we want to look
for special values whenever we read a line from our data file. When we
find one, we want to skip that line and just go on to the next. We can
accomplish this by adding the following section before the “sum +=”
in Program 7.10:

if ( x <= 0 ) {

continue; // Ignore zeros and negatives.

}

We’ll probably want to know how many values were ignored (or, equiv-
alently, how many weren’t). It would be a good idea to add a line like
the following at the end of the program, along with the other numbers
we print out:

printf ("# Saw %d data values\n", nvalues);

The variable nvalues tells us how many data points we really ana-
lyzed, not counting those we filtered out.

We can modify our data analysis program to filter our data any way
we like. We might even look at the other columns on each line when
deciding whether or not to use the data on that line. For example,
maybe we’re interested in the number of children per household, but
only want to look at families paying more than $500 per month in rent.

7.11. Setting Analysis Parameters
Program 7.10 explicitly chooses a particular column to analyze by
setting the field variable. It would be nice if the program asked
us which column we wanted to use. We can easily add a section
somewhere before our while loop to do this:

printf ( "Pick a column [0-6]: " );

scanf ( "%d", &field );

http://www.cosmos.esa.int/web/planck/picture-gallery
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If we pick a different column, we might also want to use a different bin
width. (This is the width of the bins into which we drop our “virtual
marbles” while making a histogram.) A bin width of 1 is fine if we’re
looking at the number of children per household, but we might want
a width of 10,000 if we’re looking at annual household income. An
income difference of $1 isn’t very interesting, but $10,000 would be. We
could add another section to our program for setting the bin width:

printf ( "Enter bin width: " );

scanf ( "%lf", &binwidth );

If we specify binwidth, we can calculate the value of xmax (the maxi-
mum value we’re interested in) like this:

xmax = binwidth*nbins + xmin;

Let’s leave the lower end of our range (xmin) at zero, since the data in
each colum of our data set includes some small values.

We could add any number of similar sections to the beginning of a data
analysis program, to allow us to set any parameters we need. Maybe
we want to analyze only data for households with annual incomes
in a given range (say, between $20,000 and $30,000). In that case, the
program could ask for minincome and maxincome, and use those
variables when filtering the data.

Figure 7.41: Some members of the
author’s family, circa 1939.
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7.12. Using stderr
If our program asks the user for parameters, we introduce another
complication: some of the program’s output (the request to “Enter
bin width”, for example) needs to go to the computer’s display, so
the user can see it, but other output (the histogram data) needs to
be written into a file so we can plot it with gnuplot. If we just type
./census > output.dat then the user won’t see the requests for
entering parameters, and the program will just sit forever waiting for
them.

There are several ways to solve this problem. For one, we could use
fprintf to write the histogram into a file instead of sending it to the
display, as we saw in Chapter 5.

Let’s look at another way of doing it, though. As we saw in Chapter 5,
we can open a file with fopen like this:

FILE *output;

output = fopen("output.dat","w");

The variable output is a “file handle” that we can use later with
fprintf. We can open as many files as we want, and choose which
file handle to use when we want to print something into one of them.

It turns out that three file handles are automatically created whenever
you run your program. These are named stdout, stderr, and stdin.
The stdout file handle doesn’t point to a real file. Instead, it points to
your display. The printf statement uses this file handle whenever it
prints something. The statement printf("Hi!"); is just equivalent
to fprintf(stdout,"Hi!");.

When you type a command like “./census > output.dat” the
computer disconnects stdout from your display and connects it to
the file output.dat instead. This makes the output of any printf

statements go into the file instead of to your screen.

The stdin file handle points to your keyboard. The statement scanf("%d",
&i); is the same as fscanf(stdin,"%d", &i);.

The third predefined file handle, stderr, also points to your display,
but it’s intended to be used for errors and warnings. Imagine, for
example, that you’ve typed “./census > output.dat” but your
program crashes with a Segmentation Fault error. The error message
should be sent to your display, not to the file. Error messages like this
are sent to stderr, which is still connected to your display.
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./census > output.dat

stderr

stdout

output.dat

        0100101         
1110010         
1100110         
1101101         
1100001      “Connect stdout to 

the file output.dat”
“Connect stdout to 
the file output.dat”

stderr connected 
to screen.
stderr connected 
to screen.

Figure 7.42: The predefined file handles
stdout and stderr both start out
pointing at your display, but they can be
redirected elsewhere.

We can use stderr for our own purposes, too. We want our “Enter
bin width” message to go to the display even if we’ve redirected the
program’s output into a file. All we need to do is send those messages
to stderr instead of stdout. We can do that by modifying a couple
of printf statements:

fprintf ( stderr, "Pick a column [0-6]: " );

scanf ( "%d", &field );

fprintf ( stderr, "Enter bin width: " );

scanf ( "%lf", &binwidth );

Instead of printf, we use fprintf to send these messages to stderr.

But what about. . . ?

Are there other ways we could split the program’s output between
display and file? Why yes, I’m glad you asked!

One way involves the third predefined file handle, stdin. This nor-
mally points to your keyboard, and it’s used by scanf whenever it
reads some input. However, just like stdout, you can disconnect
stdin from the keyboard and connect it to a file instead. If you
did that, you could cause your program to read stored answers
from a file, rather than having to type them in at the keyboard.
Figure 7.43 shows how to do this, using the “<” symbol on the
command line. If we did it this way, the program would expect to
find two numbers in the file input.dat: the column number we
want to analyze, and the bin width.
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./census < input.dat > output.dat
stdout

output.dat

        0100101         
1110010         
1100110         
1101101         
1100001      

“Connect stdin to 
the file input.dat.”
“Connect stdin to 
the file input.dat.”

        0100101         
1110010         
1100110         
1101101         
1100001      

stdin

input.dat

“Connect stdout to 
the file output.dat.”
“Connect stdout to 
the file output.dat.”

Figure 7.43: We could redirect both
stdout and stdin if we wanted to. The
“<” on the command line means “Read
input from this file”, just as the “>”
means “Write output to this file”. If the
program asks us some questions, we can
save our answers in the file input.dat.
The program will read them from there,
instead of waiting for us to type them.

7.13. Improved Analysis Program
Program 7.11 is an improved analysis program that incorporates all of
the improvements we’ve talked about in the preceding sections. When
we run the program it asks us which column (0 through 6) we want to
analyze, then it asks us what bin width we want to use. The histogram
data is sent to the display, unless we redirect it to a file.

Figure 7.44 shows some results from the program. To plot the income
graph, for example, we did this:

./census > income.dat

and then answered the questions:

Pick a column [0-6]: 3

Enter bin width: 10000

The output file was graphed with gnuplot as with our earlier histograms.

Notice that the data here aren’t bunched into Normal distributions like
the energy data. In the energy case, we were making many measure-
ments of the same value (the energy of some kind of particle striking
our detector). The only variations in these measurements were due to
random factors.

The census data, on the other hand, is inherently different from one
household to another. The distribution of values could give us some real
information about people’s lives. Nonetheless, we can still calculate the
mean values of things like income, and calculate the standard deviation
of our data sample. The standard deviation still tells us something
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Figure 7.44: Some results from Program
7.11, plotted with gnuplot. Bin width was
set to 10,000 for the income graph, 100

for the rent graph, and 1 for the
bedrooms and children graphs.

about the width of the distribution, as it did with the energy data, even
though the income distribution is far from Normally-distributed.
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Figure 7.45: The output of the gnuplot
command
plot "census.dat" using 4.

Exercise 40: Little Pink Houses
For this exercise you’ll need a copy of the file census.dat.
You’ll find instructions for obtaining it in Appendix C.3 on
page 624.

First, examine census.dat with gnuplot. Start gnuplot and
type the command:

plot "census.dat" using 4

gnuplot numbers columns starting with 1, so this should
display a graph of household income similar to Figure 7.45.
Note the bar of negative values representing special cases
that our analysis program will ignore.

Now exit from gnuplot and compile Program 7.11 (the new
census.cpp, on Page 254). Run the program like this:
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./census > income.dat

Select the income by choosing column number 3 (the pro-
gram starts numbering the columns with 0). Use a bin width
of ten thousand.

Now start up gnuplot again and ask it to plot the results of
your analysis:

plot "income.dat" using 1:4 with boxes

By saying “using 1:4” we tell gnuplot to use column 1

(the smallest value in each bin) as the value on the x axis,
and column 4 (the number of “virtual marbles” in each bin)
as the y value. The graph shows us how many households
are in each income range.

If you have time, try plotting other columns from the census.dat
file and analyzing them.
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Figure 7.46: The income histogram
produced by our analysis program.
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Program 7.11: census.cpp, Version 2

#include <stdio.h>

#include <math.h>

int main () {

int i, binno, overunderflow = 0;

double x, xlow, xmid, xhi, binwidth;

double xmin = 0;

double xmax;

const int nbins = 50;

int bin[nbins];

double sum = 0.0;

double sum2 = 0.0;

int nvalues = 0;

FILE *input;

int field=0;

double data[7]; // Add "data" array.

fprintf ( stderr, "Pick a column [0-6]: " );
scanf ( "%d", &field );

fprintf ( stderr, "Enter binwidth: " );
scanf ( "%lf", &binwidth );

xmax = binwidth*nbins + xmin; // Calculate xmax from xmin and binwidth.

for ( i=0; i<nbins; i++ ) {

bin[i] = 0; // Reset all bins to zero.

}

input = fopen( "census.dat", "r" );

while ( 1 ) {

for ( i=0; i<7; i++ ) {

if ( fscanf( input, "%lf", &data[i] ) != 1 ) {

goto done;

}

}

x = data[field]; // Choose which column.

if ( x <= 0 ) {

continue; // Ignore zeros and negatives, since they're special.

}

sum += x;

sum2 += pow( x, 2 );
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nvalues++;

binno = (x-xmin)/binwidth;

if ( binno < 0 || binno >= nbins ) {

overunderflow++;

continue; // Skip this value and jump to the next.

}

bin[binno]++; // Increment the appropriate bin.

}

done:;

fclose(input);

for ( i=0; i<nbins; i++ ) {

xlow = xmin + binwidth*i;

xmid = xmin + binwidth*(0.5+i);

xhi = xmin + binwidth*(i+1);

printf ("%lf %lf %lf %d\n", xlow, xmid, xhi, bin[i]);

}

printf ("# Field number %d\n", field);

printf ("# Xmin = %lf\n", xmin);

printf ("# Xmax = %lf\n", xmax);

printf ("# Binwidth = %lf\n", binwidth);

printf ("# Nbins = %d\n", nbins);

printf ("# Saw %d over/underflows\n", overunderflow);

printf ("# Mean value is %lf\n", sum/nvalues );

printf ("# Std. dev. is %lf\n",

sqrt( (sum2 - sum*sum/nvalues)/(nvalues-1) ) );

printf ("# Nvalues = %d\n", nvalues );

}
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7.14. Conclusion
In this chapter we’ve looked at some basic techniques for doing sta-
tistical analysis of data with computer programs. Histograms and
calculations of the mean and standard deviation are primary tools for
data analysis in the sciences.

The details can vary greatly, but the outline of most data analysis
programs will look much like Figure 7.47. We’ve discussed each of
these steps as we developed and improved our census analysis program.

Get Parameters

Read Data

Filter Data

Analyze

Write Results
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ep
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l  
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Figure 7.47: The figure above shows an
outline of a typical data analysis
program.
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Practice Problems
1. Write a small program named listmean.cpp that finds the mean

value of a list of numbers. Start out with an array of numbers, like
this:

double x[10] = {0,1,2,3,4,5,6,7,8,9};

Use a “for” loop to go through the elements of the array, adding
them up. At the end of the program, print out the mean value of
these numbers.

2. The “mean” that we’ve talked about in this chapter is the “arithmetic
mean”. There are other kinds of mean value that we could calculate.
One of them is called the “geometric mean”. To find the geometric
mean of a set of numbers, multiply them together and take the n-th
root of their product, where n is how many numbers are in the set.
For example, if we have the numbers 4, 5, and 6, their geometric
mean would be:

3
√

4×5×6 or, alternatively (4×5×6)1/3

Write a program named geomean.cpp that calculates the geometric
mean of these nine numbers:

double x[9] = {1,2,3,4,5,6,7,8,9};

Hints:

• You can use the pow function to find the n-th root. For example,
the 4

th root of 38 would be pow( 38, 1.0/4 ). Note that it’s
important to say 1.0/4 instead of 1/4, because the latter would
tell the computer that you wanted to trim the decimal places off
of the result.

• When summing up a bunch of numbers we start with sum = 0.0

and add each number by saying sum += x. When multiplying a
bunch of numbers, you might start by saying product = 1.0,
then multiply by each number by saying product *= x.

3. When you roll two six-sided dice the sum of their values can be any
number between 2 and 12. We know that some combinations are
more unlikely than others. For example, you’re less likely to roll a
12 than a 7. Let’s see if we can quantify how likely each possible
combination is.
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Figure 7.48: How often do you roll a
particular sum? It looks like 7 comes up
most often – about 17% of the time, and
2 and 12 are least common – about 3%
each.

Write a program named 2dice.cpp that rolls two dice 1,000,000

times and counts how many times each possible sum occurs. Each
time we roll, we’ll get two random numbers between 1 and 6. If you
have an int variable named die1 for the first die, you can generate
a random value for it like this:
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die1 = 1 + 6.0*rand()/(1.0+RAND_MAX);

To record the results of the rolls, make a histogram using a 13-
element integer array like this:

int bin[13];

Make sure you set all of the elements of this array to zero at the
beginning of the program. Use the elements of the array to record
how many times you saw a particular sum. For example, bin[7]
will hold the number of times you rolled a 7. (Notice that we won’t
use bin[0] or bin[1] since we can never get a sum of zero or one,
but that’s OK. We’ll just ignore those bins.)

After you’ve done all the rolls, your program should have a loop
that prints the contents of elements 2 through 12 of bin. The format
should be:

printf( "%d %d %lf\n", i, bin[i], bin[i]/1000000.0 );

That will print the bin index, the contents of that bin, and the fraction
of our 1,000,000 rolls that ended up with that sum. If you run the
program like “./2dice > 2dice.dat” and then plot the output
using gnuplot you should see something like Figure 7.48.

4. Using Program 7.5 as a starting point, create a program called
calcstats.cpp that prompts the user to enter numbers, one at a
time, and then prints out the mean value and standard deviation of
the numbers entered.Make sure the program can accept numbers
that have decimal places.

My first calculator was one of these. It
was a present from my Dad in the early
1970s. It was also the first calculator
Texas Instruments made. Being a kid
who struggled with long division, I
loved this device!
Source: Wikimedia Commons

You’ll need to think about how the user can let the program know
that he/she is finished entering numbers. If you only allow positive
numbers, you could ask the user to enter “-1” to stop the program,
but then you’d be unable to enter -1 as a number! There’s a better
way to do it. Remember that scanf and fscanf return a value that
tells you how many numbers were successfully read. That means
that if you use scanf in a “while” loop just like we used fscanf

in Program 7.1, the loop will stop if the user enters anything that’s
not a number10. Use this trick in your program. Hint: You won’t

10 The usual convention is to ask the
user to press Ctrl-D when they’re done
entering data. That’s a special character
that represents the “End Of File” (EOF).

need to open or close any files. Just use scanf in the way we’ve
been using fscanf in programs like Program 7.1.

5. Imagine an inebriated person standing beside a lamppost. He wants
to get home, so he starts walking, but each time he takes a step it’s
in a different, random, direction. How far away from the lamppost
will he be, on average, after 100 steps?

This is a well-known problem in mathematics called “the drunkard’s

https://commons.wikimedia.org/wiki/File:TI-2500B_Datamath_Hand-held_Calculator.jpg
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walk”. As you can see from Figure 7.49, the distance travelled by the
drunkard can vary a lot from one trial to the next. If he walked in
a straight line, he’d end up 100 steps away from the lamppost, but
most of these random paths leave him much closer.
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Figure 7.49: The paths of 20 drunken
people, each shown in a different color.
The lamppost is at the origin. The
distance units are “steps”, which we
assume to be of equal length. Each
person has taken 100 steps.

Write a program named randomwalk.cpp that simulates 1,000 of
these 100-step paths and prints out the average final distance from
the lamppost. (Measure all distances in “steps”, which we assume
to be of equal length.) Make sure you use srand(time(NULL)) to
choose a different “seed” for the random number generator each
time you run your program.

Here are a few hints to help you:

• You’ll need a pair of nested loops: An outer loop for each path,
and an inner one for each step.

• Keep track of the person’s position with a couple of variables, x
and y. Remember to set them both back to zero at the beginning
of each path.

• Every time the person takes a step, generate a random angle like
this:

angle = 2.0*M_PI*rand()/(1.0+RAND_MAX);

then add cos(angle) to x and sin(angle) to y to get the
person’s new position.

• At the end of each path, calculate the final distance from the origin
like this:

distance = sqrt( x*x + y*y );

and add that to a sum of all of the distances, for use later when
you compute the mean distance.

• To check your work: your program should find that the average
final distance is about 8.86 steps. This is 0.886 × the square root
of the number of steps.

This kind of random motion is common in nature, making the
drunkard’s walk an important problem in science. In physics, for
example, it describes the random motions of molecules in a gas, or
the motion of impurities jumping across a surface. In chemistry it
describes the shapes of polymers. In economics, random walks can
even explain some of the variation in stock prices.

Photons generated in the center of the
sun follow a “drunkard’s walk” path as
they make their way to the sun’s
surface. This twisty path can include
trillions of steps and take as much as a
million years to complete.
Source: Wikimedia Commons

6. Modify Program 7.11 so that it asks the user for two new parameters:

https://commons.wikimedia.org/wiki/File:Sun920607.jpg
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maxincome and minincome (maximum and minimum income) as
described on Page 248. Use these in the filter section of the program
(the section where we currently check to see if x is less than or equal
to zero). Skip the current row of data if the following is true:

data[3] < minincome || data[3] > maxincome

7. Write a program named liststats.cpp that reads a list of num-
bers, one number per line, from a file named liststats.dat and
prints how many numbers were read, their mean, and their standard
deviation.

You can test your program with data generated by the three small
programs at the end of this chapter: urand, nrand, and prand. For
example, to use nrand to create a liststats.dat file, you could
type:

./nrand > liststats.dat

You should find that the numbers generated by nrand have a mean
of about zero, and a standard deviation of around 1. The numbers
generated by prand should have a mean of about 3 and a standard
deviation of about

√
3.

8. Write a program named arraystats.cpp that defines an array of
numbers like this:

const int nvalues = 10;

double x[nvalues] = {0,1,2,3,4,5,6,7,8,9};

Have the program calculate and print the mean and the standard
deviation of these numbers.

9. Write a program named bufferstats.cpp that defines an array
of numbers like this:

const int n = 1000;

double x[n];

Have the program open a file named bufferstats.dat that will
contain one number per line. Use a “for” loop to read the first 1,000

numbers from the file, and put them into the 1,000 elements of the
array x. Close the file, then have a second “for” loop that calculates
the mean and standard deviation of the numbers. Print these values
at the end of the program, in a friendly easy-to-read format.
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You can test your program with data generated by the three small
programs at the end of this chapter: urand, nrand, and prand.
For example, to use nrand to create a bufferstats.dat file, you
could type:

./nrand > bufferstats.dat

You should find that the numbers generated by nrand have a mean
of about zero, and a standard deviation of around 1. The numbers
generated by prand should have a mean of about 3 and a standard
deviation of about

√
3.

10. The following program tests how fast your computer can create files.
The program repeatedly opens a file ("jittertest.dat"), writes into it,
then closes it. As it’s doing this it keeps track of how long each
open/write/close cycle takes (in microseconds).
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Figure 7.50: If you graphed the
numbers from the jitter program,
they might look like this. As you can
see, sometimes an open/close takes a
lot longer than usual.
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Figure 7.51: If you made a histogram
from the numbers, it might look like
this. Note that most of the data are
clustered around 300 microseconds
here, but there are some measurements
that go all the way up to thousands of
microseconds. (This graph throws away
anything bigger than 2,000 µs.)

Program 7.12: jitter.cpp

#include <stdio.h>
#include <sys/time.h>
#include <math.h>
long epoch;
void startclock(){

struct timeval t;
gettimeofday(&t, NULL);
epoch = t.tv_sec * (int)1e6 + t.tv_usec;

}
int microtime(){

struct timeval t;
gettimeofday(&t, NULL);
return( (int)(t.tv_sec * (int)1e6 +

t.tv_usec - epoch) );
}

int main () {
int i;
int tstart, delay;
FILE * output;

startclock();

for ( i=0; i<1000; i++ ) {
tstart = microtime();
output = fopen( "jittertest.dat", "w" );
fprintf( output, "Testing...\n" );
fclose( output );
delay = microtime() - tstart;
printf ( "%d\n", delay );

}
}

The top part of the program (everything above int main()) is just
some magic that lets us measure time to microsecond accuracy. Some
of this will become clear in Chapters 9 and 12, but for now, don’t
worry about how it works.
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The program’s “for” loop opens, writes, and closes a file 1,000

times. Before opening the file, the program saves the current time (in
microseconds) in the variable tstart. After the file is closed, the
program looks at the new time and calculates how long it took to
open, write, and close the file. This time (again in microseconds) is
stored in the variable named delay and printed with printf.

Copy this program, compile it and run it. You should see a string
of mostly 3-digit numbers. Now modify the program so that it
calculates the mean and standard deviation of delay and prints
those values at the end of the program.

The mean value will tell you how long, on average, it takes your
computer to open a file, write a little text into it, and close the file.

11. Imagine that you’re a scientist doing an experiment. You measure
the velocity of a dropped ball at several times during its fall. Being a
good scientist, you’ll probably repeat the experiment several times.
Your measurements will be a little different every time because of
random things like jiggling your experimental equipment or air
currents in the room. By looking at these differences you can get an
idea of the uncertainty in your measurements.

t v s
0.00 0.00 0.5
1.00 14.88 3.1
2.00 23.08 4.4
3.00 18.04 5.4
4.00 32.78 6.2
5.00 54.27 7.0
6.00 59.86 7.6
7.00 58.04 8.2
8.00 79.84 8.8
9.00 110.69 9.3

Figure 7.52: This table shows the ball’s
average velocity (v) at several different
times during its fall, along with the
standard deviation (s) of the velocity at
that time.
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Figure 7.53: A graph of velocity versus
time measurements, with error bars.

The data you collect might look like Figure 7.52. If you graph your
data, it might look like Figure 7.53. The bars above and below
each point represent the uncertainties in the measurements of the
velocity. Their length is the standard deviation of all the velocity
measurements made at that point.

It looks like the data points might approximately lie on a straight
line, like the one drawn in Figure 7.53, but we’d like to have some
kind of numerical value that tells us how well these points match
the line.

One way to measure the goodness of such a match is a quantity
called chi-squared (χ2). Chi-squared measures how well a set of data
matches a model (in this case, a particular straight line). For our
velocity data, we could calculate chi-squared like this:

χ2 =
N

∑
i=1

(vi − vline)
2

s2
i

(7.5)

where N is the number of data points, vi and si are the measured
velocity and standard deviation values, and vline is the velocity
predicted by the straight line. The χ2 value compares the differences
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between measured and predicted values with our experimental
uncertainties.

Since the sum in Equation 7.5 adds up the squares of a bunch of
numbers, it gets bigger as we add more and more data points. To
make it easier to judge whether a chi-squared value represents a
good match between data and model, we often use a related quantity
called the reduced chi-squared. It’s defined like this11: 11 If we plan on searching for the model

that best matches some data, we’ll
usually want to divide by a number
slightly smaller than N (we’d use N-2
for finding the best straight line, for
example), but that’s beyond the scope
of what we can describe here.

χ2
red =

χ2

N
(7.6)

If a model is a good match to a set of data, the reduced chi-squared
should be close to 1.

Copy the three columns of numbers from Figure 7.52 into a file
named velocity.dat, then write a program name chi.cpp that
reads data from this file and compares it to a straight line by calcu-
lating χ2. The program should start proceed like this:

• Use a variable named chisq to hold the value of X2. Set this to
zero initially.

• Use a variable named n to count the number of data points. Set
this to zero initially.

• Start by asking the user for the slope and y-intercept of the line
they want to test.

• Open velicity.dat for reading.

• Use a while loop to read values for t, v, and s from each line of
the file.

• Each time you read a line, use the t value and the slope and
y-intercept to calculate the velocity value predicted by the straight
line:

vline = yint + slope*t;

• Add (vi − vline)
2/s2

i to the value of χ2.

• Add one to the value of n.

• Keep doing this until you’ve read all of the data from the file.

• After reading all of the data, calculate the reduced chi-squared
(χ2

red).

• Print the values of χ2 and χ2
red.

Test your program by entering a slope of 9.8 and a y-intercept of
zero. The reduced chi-squared should be on the order of 1, showing
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that this is a reasonable fit to the data. If you try a slope of 5 or 15,
for example, you should get a much larger value for χ2

red.

12. The mean tells us where the center of our data lies, and the standard
deviation tells us how spread out the data are, but these aren’t the
only quantitative measurements we can derive from a list of numbers.
Another thing we can measure is the skew of the numbers. This tells
us how symmetrical they are about the mean. Data like those shown
in Figures 7.54 and 7.55 have a small skew, because the numbers are
symmetrically distributed on either side of the mean. Data like those
shown in Figure 7.56 have a large skew, because the distribution is
asymmetric: it’s skewed to one side.

The skew of a set of N numbers Xi is defined as:

g =
1
N

N

∑
i=1

(
Xi − X

s

)3

(7.7)

where X is the mean value and s is the standard deviation. Notice
that we first need to calculate X and s before we can start calculating
the skew. This means that any program we write to calculate the
skew will need to look at all of the numbers twice: once to calculate
the mean and standard deviation, and then again to calculate the
skew.

Skew is a little more slippery than mean and standard deviation.
Small random variations in the data can cause it to appear to be
skewed, even though it isn’t really. One way to gauge the significance
of a skew value is to compare it to the expected random variation of
the skew of a normal distribution, which is

σns =
√

15/N (7.8)

If the skew value you calculate is several times larger than this, then
it’s probably significant. If it’s smaller, then it’s probably just random
wiggling.

Write a program named skew.cpp that does the following:

• Open, for reading, a file named skew-data.dat containing a
single column of numbers with decimal places.

• Read the data from the file and calculate the mean and standard
deviation of the numbers.

• Now close the file.
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• Re-open the data file for reading. This will cause your program
to start back at the beginning of the file.

• Read the data from the file and use Equation 7.7 to calculate
the skew of the numbers. Hint: Use a variable named sum3 to
accumulate the sum of the cubes shown in this equation, then
after adding up all of these, divide sum3 by N to find the skew.

• At the end, print the number of values that were in the file, the
mean, the standard deviation, and the skew (g in Equation 7.7
above). Also print σns, defined in Equation 7.8 above, and print
the ratio g/σns.

In order to test your program you’ll need a data file for it to read.
At the end of this chapter you’ll find three small programs that can
be used to generate different kinds of data sets. They’re named
urand, nrand, and prand. You can use one of them to make a
skew-data.dat file for your program to read. For example:

./prand > skew-data.dat

If you run your skew.cpp program using this data set, it should
print something like this:

N is 100000

Mean is 2.998120

Stddev is 1.731314

Skew is 0.580567

Compare to 0.012247

Ratio is 47.403123

The ratio at the end is g/σns, which is much larger than 1, showing
that this set of data has a significant skew.
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Some Programs for Generating Lists of Ran-
dom Numbers
On the following page you’ll see three programs that will generate
output that you can use to test the programs you write in response
to this chapter’s practice problems. The three programs are:

• urand.cpp (Program 7.13), which generates 100,000 random
numbers uniformly distributed between zero and one. This is
just a flat distribution, where any number in that range is equally
likely.
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Figure 7.54: A histogram of the random
numbers created by urand.cpp.

• nrand.cpp (Program 7.14), which generates 100,000 random
numbers in a normal or gaussian distribution centered at zero.
These are numbers that are most likely to be near zero, but some-
times have higher or lower values, with decreasing probability as
the number gets farther from zero.
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Figure 7.55: A histogram of the random
numbers created by nrand.cpp.

• prand.cpp (Program 7.15), which generates 100,000 random
numbers in a Poisson distribution. In this case, the numbers are
all greater than or equal to zero, and are most likely to be equal to
3, but might be smaller or larger than 3. Smaller numbers are less
likely as they approach zero, and larger numbers are less likely as
they get farther from 3. This distribution isn’t symmetric about
the mean.
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Figure 7.56: A histogram of the random
numbers created by prand.cpp.
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Program 7.13: urand.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main () {

int i;
srand(time(NULL));
for ( i=0; i<100000; i++ ) {

printf( "%lf\n", rand()/(1.0+RAND_MAX) );
}

}

Program 7.14: nrand.cpp

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
int main () {

int i;
int iroll;
int nroll = 12;
double sum;
srand(time(NULL));
for ( i=0; i<100000; i++ ) {

sum = 0;
for ( iroll=0; iroll<nroll; iroll++ ) {

sum += rand()/(1.0+RAND_MAX);
}
printf ( "%lf\n", sum-6.0 );

}
}

Program 7.15: prand.cpp

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
int main () {

int i;
int x;
double u, p, s;
double mu = 3;
srand(time(NULL));
for ( i=0; i<100000; i++ ) {

x = 0;
p = exp( -mu );
s = p;
u = rand()/(1.0+RAND_MAX);
while ( u > s ) {

x++;
p = p*mu/x;
s += p;

}
printf ( "%d\n", x );

}
}


