
5. Reading and Writing Files

5.1. Introduction

A part of the CMS detector, at CERN’s
Large Hadron Collider.
Source: Wikimedia Commons

CERN’s Large Hadron Collider produces mountains of data: about

a gigabyte (109 bytes) per second. That’s enough to fill a couple of

hundred laptop-sized disks per day! This data is saved in files, and

these files are distributed around the world for analysis.

A keypunch machine in the basement
of the UNC Physics building. As late as
the 1980s, undergraduates would flock
there nightly to punch cards for
programming projects.
Source: UNC-Chapel Hill Computing History photo collection

Early computers read data from punched cards, or from paper tape with

holes punched into it. The pattern of holes on each card was a code that

represented numbers or letters. “Keypunch operator” was a job much-

advertised in the help-wanted section of the newspaper. A keypunch

machine was similar to a typewriter. As the operator typed, holes

were punched in the appropriate places on the card. Some keypunch

machines also typed the words onto the card, so you could look at it

and easily see what was encoded on it (although many programmers

became quite adept at reading the holes themselves).

A magnetic tape library at the National
Oceanographic Data Center.
Source: Wikimedia Commons

Each punched card could store about eighty bytes of information. If

digital cameras had existed at that time, storing a single photo would

have required tens of thousands of cards. As computers became faster

and capable of dealing with larger data sets, new storage technologies

had to be developed. One of these was magnetic media, first in the form

of tapes and later disks. Early reel-to-reel tapes of the type introduced

by IBM in the 1960s could hold several tens of megabytes: enough

for a few photographs from a modern camera. Removable “diskettes”

(also called “floppy disks”) were developed in the 1970s and 80s. These

couldn’t hold as much data as tapes, but they were were convenient

for storing a few spreadsheets or word-processing documents. “Hard

disks”, of the type still in use today, can hold several terabytes (1012

bytes) of data. That’s enough to hold hundreds of thousands of digital

photos.

https://commons.wikimedia.org/wiki/File:CERN_CMS_endcap_2005_October.jpg
http://www.ibiblio.org/comphist/node/35
https://commons.wikimedia.org/wiki/File:NDOC_magnetic_tape_library.jpg

146 practical computing for science and engineering

As we’ve learned in earlier chapters, computers store data in the form

of ones and zeros. A “file” on a disk is just a collection of ones and

zeros, with a name attached to it so we can find it when we need it. In

this chapter, we’ll learn how to write data to files and read data from

files.

5.2. Writing Files

A very famous broken file cabinet. This
is the cabinet that was broken into in
the Watergate Hotel, at the behest of the
Nixon administration. It now resides in
the Smithsonian’s National Museum of
American History.
Source: Wikimedia Commons

Until now, we’ve used the printf function to send output to the

computer’s screen. If we want to write things into a file instead, we can

use another function named fprintf (for “file printf”). Before we

can do that, though, we have to do a little preliminary work.

Writing to a file isn’t quite as simple as writing to the screen. For one

thing, we can usually assume that there’s a screen to send our output

to, but the file might not exist. If it doesn’t exist, do we want to create

it, or just give the user an error message? If the file exists already, do

we want to replace its contents with something new, or do we want to

add content after the end of whatever’s already there?

We can control all of these options with the fopen function. The fopen

function “opens” a file and makes it ready for reading or writing.

A companion to fopen is the fclose function. This makes sure that

all data has completely been written to a file. Although programs will

usually do this for you automatically when they finish running, it’s

good practice to explicitly use the fclose function to “close” a file

when you’re done with it.

The fopen function returns a value that can be used to identify the file

you’ve opened. This identifier is called a “file handle”, since it’s like a

handle by which you can grab the file when you need it.1 As you’ll see, 1 This identifier is sometimes referred to
as a “file descriptor” or “file pointer”.
These are all the same thing.

there’s a new kind of variable that we use just for storing file handles.

When you use the fprintf function to print something into a file, you

tell fprintf which file to use by giving it a file handle.

Program 5.1 is a very simple example showing how to open a file, write

something into it, and then close it. The program writes the words

“Hello File!” into a file named hello.txt.

https://commons.wikimedia.org/wiki/File:WatergateFC.jpg

chapter 5. reading and writing files 147

Program 5.1: hellofile.cpp

#include <stdio.h>

int main () {

FILE *output;

output = fopen("hello.txt","w");

fprintf(output, "Hello File!\n");

fclose(output);

}

Even though Program 5.1 is short, there’s a lot going on in it. Let’s

look at some of the parts individually. First, let’s look a the fopen

statement:

Figure 5.1: Structure of an fopen

statement.As you can see from Figure 5.1, fopen takes two arguments: the name

of the file to be opened, and a second argument that specifies how

we’re going to use the file. For example, we can say that we want to

read ("r"), write ("w") or append ("a") to the file. There are also other

options. See Figure 5.3 for some of them. Usually, you’ll only need "r"

or "w".

cat.dat
cat.dat

cat.dat

fopen fprintf fclose

Figure 5.2: If you think of a “file” as a
box that can contain some data, then
fopen opens the box, fprintf stuffs
some data into the box, and fclose

closes the box.

148 practical computing for science and engineering

r
Open the file for reading only. Give an error message if
the file doesn't exist.

r+
Open the file for reading or writing. Give an error
message if the file doesn't exist.

w
Open the file for writing only. If a file with this name
already exists, erase it and create a new file.

w+
Open a file for reading or writing. If a file with this name
already exists, erase it and create a new file.

a
Open a file for appending (writing at end of file). Create
the file if it doesn't exist, but don't erase an existing file.

a+
Open the file for appending and reading. Create the file
if it doesn't exist. For existing files, start reading from the
top of the file, but write at the bottom.

Figure 5.3: Various ways that fopen can
open a file.

chapter 5. reading and writing files 149

The Writing Master, by Thomas Eakins.
Source: Wikimedia Commons

The fopen function returns a file handle, which we can capture in a

variable for later use. In Program 5.1 we name this variable “output”,

but it can have any name you want to give it. This is a new kind

of variable, unlike the int and double variables we’ve been using

to store numbers. It’s a special type of variable just for storing file

handles. Just as we might define an integer variable by saying “int

i”, we define this new variable by saying “FILE *output”. Note the

asterisk here is part of the file type. The type of this variable isn’t int

or double, it’s “FILE *”.

Once we’ve stored the file handle in a variable, we can use it to read

from a file or write to a file. The fprintf function is like printf,

except that it takes one extra argument: a file handle. In Program 5.1

we use the fprintf function to write the text “Hello File!” into the

file hello.txt, which we’ve previously opened with fopen. We’ve

specified this file by giving fprintf the file handle “output”. If we

wanted to, we could open several different files and write different

things into each of them. In that case, we’d pick which file we wanted

to use by giving the appropriate file handle to the fprintf function.

fprintf(output, "Hello File!\n");

File Handle
Format

Specification

Could put other things
here, just like printf.

Could put other things
here, just like printf.

Figure 5.4: Structure of an fprintf

statement.Finally, Program 5.1 uses the fclose function to make sure everything

has been written to the file before the program finishes.

Exercise 26: Hello File!

Create, compile and run Program 5.1. When you run the

program, you shouldn’t see any output since it’s being sent

into a file instead of to the screen. How can you tell if the

program did the right thing?

https://commons.wikimedia.org/wiki/File:The_writing_master_thomas_eakins.jpeg

150 practical computing for science and engineering

First of all, look to see if there’s a new file. The ls command

will show you a list of your files. Do you see a file called

hello.txt?

Next, take a look inside the file by typing nano hello.txt.

Does it contain the text “Hello File!” as it should?

The word “hello” wasn’t commonly
used until the invention of the
telephone. There was initially some
disagreement about the proper form of
greeting on the new device. Alexander
Graham Bell favored “Ahoy!”, and
some people advocated the jauntier
variant “Hoy, Hoy!”. Eventually, we
settled on “Hello!”, and it was so much
identified with the device that early
telephone operators were referred to as
“Hello Girls”.
Source: Wikimedia Commons

Be careful when using > to send a
program’s output into a file. If you
type the wrong file name, you could
accidentally write over a file you want
to keep!

But what about. . . ?

In earlier chapters, we’ve seen that we can redirect the output of

our programs into a file by appending > followed by a file name

when we run the program (as we did when plotting the output of

our gutter program in Chapter 2). You can alternatively use » to

append some output at the end of an existing file. For example,

you could do the following:

./gutter > gutter.dat

./gutter >> gutter.dat

./gutter >> gutter.dat

The first command would create a new file called gutter.dat

and write the program’s output into it. The next command would

run the program again, and append the output onto the end of the

existing file. The last command appends even more output onto

the file.

If we can use > or » to redirect a program’s output into a file, why

would we want to make our C programs write files in any other

way? There are at least a couple of reasons:

• Sometimes we want to send some output to the screen and some

to a file. Think about a program that asks the user for some

input, and then writes out some data. Text that says “Please

enter your age” should go to the screen, but we might want the

rest of what the program writes to go into a file.

• Sometimes a program needs to write more than one file. Think

about a program that sorts data into several categories, and

writes each category to a different file. Imagine the program

that Santa uses to sort kids into naughty.dat and nice.dat.

https://commons.wikimedia.org/wiki/File:A_Telephone_Operator.png

chapter 5. reading and writing files 151

5.3. Some Useful Commands for Managing Files
In the exercise above we saw the ls command, and we’ve been using

the commands nano, g++, and gnuplot for a while now. Figure 5.5

summarizes some commands that you might find useful when working

with files.

[~/demo]$ ls
clus.pdf data-for-everybody.1.dat phase2
cluster.pdf ForYourEyesOnly.dat readme.txt
cpuinfo.dat phase1 ReadMe.txt
[~/demo]$ nano hello.cpp
[~/demo]$ cp hello.cpp new.cpp
[~/demo]$ mv new.cpp hello_new.cpp

Results

ls List the contents of a directory.

nano Edit a file.

cp Copy a file.

mv Move (rename, relocate or both) a file.

rm Delete (remove) a file.

g++ Compile a C (or C++) program.

Some useful commands:

The prompt means “Hello human! I'm
ready to receive another command”.

Poof!

Prompt Command

Figure 5.5: Some useful commands for
managing files.
Source: Openclipart.org

As we saw in the exercise above, you can use the ls command to show

us a list of our files.2 The cp (“copy”) command can be very useful

2 “ls” is just an abbreviation for “list”.
As we’ve seen before, programmers are
sometimes lazy typists.

in cases where you want to write a new program that’s similar to one

you’ve written in the past. You can make a copy of the old program,

with a new name, and then modify the copy as needed.

When entering commands at the command line, notice that the com-

puter will usually put a “prompt” at the beginning of each new line.

This is some text that might tell you what folder you’re working in, or

what the computer’s name is. The text will vary depending on the type

of computer and its configuration. In any case, think of the prompt as

the computer’s way of saying “OK, I’m ready for you to give me a new

https://openclipart.org/detail/177846/old-wizard

152 practical computing for science and engineering

command now.”

Although the commands in Figure 5.5 have strange names, you might

think of them as wizardly incantations like Harry Potter’s “lumos!”. By

invoking these arcane spells you can cause the computer to do useful

things for you.

5.4. Infinite Loops
Sometimes a program doesn’t know how much data you’re going to

give it. Consider Program 5.2 for example.

Program 5.2: input.cpp

#include <stdio.h>

int main () {

int nsiblings;

int nperson = 0;

FILE *output;

output = fopen("siblings.txt","w");

printf ("Enter the number of siblings, or -1 to quit.\n");

while (1) {

printf ("Number of siblings for person %d: ", nperson);

scanf ("%d", &nsiblings);

if (nsiblings < 0) {

break;

}

fprintf(output, "%d %d\n", nperson, nsiblings);

nperson++;

};

printf ("Thank you!\n");

fclose(output);

}

Imagine you’re collecting data about how many siblings your classmates

have. Program 5.2 prompts you to enter the number of siblings each

chapter 5. reading and writing files 153

individual has, and saves the data into a file called siblings.txt.

Notice how the program uses the “while” loop. As we saw in Chapter

4, a “while” loop keeps going for as long as the condition in paren-

theses is true. Here, the value in parenthesis is just “1”. Is that true or

false?

The address of Apple’s corporate
headquarters is “1 Infinite Loop”.
Source: Wikimedia Commons

When a C program comes to a condition statement after an “if” or

“while”, the computer converts the condition into a number. If the

condition statement is false, the number is zero. Any other number

means the statement is true. The “if” or “while” then uses this

number to decide what to do. If we use the number 1 as the condition,

it will always be true, so the “while” statement in Program 5.2 will

keep looping forever unless we somehow tell it to stop. This is called

an “infinite loop”.

Program 5.2 uses an infinite loop because it doesn’t know beforehand

how many people you’re going to survey. It just keeps asking for more

data until you explicitly tell it you’re done. When you’ve collected all of

your data, you signify this by giving -1 as the number of siblings. This

causes the break statement to be acted upon, and the loop terminates.

Infinite loops like this are often used when a program needs to keep

doing something until the user tells it to stop. For example, there’s an

infinite loop underneath the operating system on your computer. It

waits for mouse clicks, keystrokes, and other interesting events, and

examines them to find out what you’re asking it to do. At some point,

you may tell the computer to shut down, causing the operating system

to clean things up and break the loop.

Our program assumes that nobody
really has a negative number of siblings.
How could that even happen?
Antimatter??
Source: Wikimedia Commons

Exercise 27: Collecting Data

Create, compile and run Program 5.2. Enter some data from

your friends and neighbors, or just make something up.

Enter at least ten numbers. When you’re done, enter “-1” to

stop the program.

Now use nano to look at the program’s output file: Type

“nano siblings.txt”. Does it look like what you ex-

pected?

Exit from nano, then start up gnuplot. Plot the data you’ve

collected by giving gnuplot the command:

https://commons.wikimedia.org/wiki/File:Infiniteloop.jpg
https://commons.wikimedia.org/wiki/File:Attribué_à_Pierre_Gobert,_Louise-Élisabeth_de_France_et_sa_soeur_jumelle_Henriette_de_France_(vers_1737).jpg

154 practical computing for science and engineering

plot "siblings.txt" with boxes

The result should look something like Figure 5.6. The phrase

“with boxes” tells gnuplot to draw boxes instead of just

plotting points.

Depending on how many points you entered, you may find

that gnuplot chops off part of the first box. You can fix this

by explicitly telling gnuplot where you want the x axis to

start. To do this, type:

set xrange [-1:]

and then type “replot”.

 0

 5

 10

 15

 20

 25

-1 0 1 2 3 4 5 6 7

N
u

m
b

e
r

o
f

S
ib

lin
g

s

Person Number

Figure 5.6: Example sibling data,
plotted with gnuplot.

5.5. Producing Data Files
Sometimes programs write data, and sometimes they read data. It’s

often the case that data written by one program will be read by a

different program. Think about the experiments at CERN. During an

experiment, programs collect the data from particle detectors and write

the data into files. Later, perhaps at a university elsewhere, someone

uses a different program to read the data files and analyze them.

Let’s create a pair of programs that produce and consume data. The

first one will write some data into a file, and the second will read the

data and do something useful with it. The data will involve a simple

physics problem, but don’t worry if you don’t understand the physics.

Figure 5.7: The scenario behind
Program 5.3

Imagine that you fire a gun straight up into the air. The bullet leaves

the gun’s muzzle at approximately 700 meters per second. As it rises,

gravity slows it until eventually it stops rising and begins to fall. As-

suming a constant deceleration due to gravity, the velocity of the bullet

at any time after it’s fired would be:

V = V0 − gt

where t is the elapsed time in seconds, V0 is the bullet’s initial velocity,

in meters per second, and g is the acceleration due to gravity near the

earth’s surface, which is about 9.8 m/s2. Because of the minus sign,

the bullet’s velocity gets smaller and smaller as time passes, until it

chapter 5. reading and writing files 155

eventually reaches zero, and then it becomes negative (meaning that

the bullet has started falling back to earth).

We assume that the acceleration of
gravity is a constant, which is
approximately true if we don’t get too
far from the surface of the earth. In
Georges Melies’ 1902 film Le Voyage
dans la Lune six men are fired to the
moon inside a large artillery shell.
Needless to say, our approximation
would not hold true in this situation.
Source: Wikimedia Commons

The height of the bullet at any time will be:

h = V0t −
1

2
gt2

if we assume that the bullet starts from a height of zero.

Program 5.3 calculates the bullet’s velocity and height once per second

during the first one hundred seconds of its flight, and writes those

values into a file for later analysis.

Program 5.3: bullet.cpp

#include <stdio.h>

#include <math.h>

int main () {

int i;

double t = 0.0;

double v;

double h;

double v0; // meters per second.

double delta_t = 1.0; // seconds.

double g = 9.8; // meters/second.

FILE *output;

printf ("Enter initial velocity (m/s): ");

scanf ("%lf", &v0);

output = fopen("bullet.txt","w");

for (i=0; i<100; i++) {

v = v0 - g*t;

h = v0*t - 0.5*g*pow(t,2);

fprintf(output, "%lf %lf %lf\n", t, v, h);

t += delta_t;

};

fclose(output);

}

 0

 5000

 10000

 15000

 20000

 25000

 0 10 20 30 40 50 60 70 80 90 100

H
e

ig
h

t
(m

e
te

rs
)

Time (seconds)

-300

-200

-100

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

V
e

lo
c
it
y
 (

m
/s

)

Time (seconds)

Figure 5.8: A bullet’s height and
velocity as a function of time, for a
starting velocity of 700 m/s.

Notice that we’ve added some comments beside the definitions of our

variables to remind us what units we’re using. Comments like this can

be very helpful if someone else needs to understand your program.

https://commons.wikimedia.org/wiki/File:Le_Voyage_dans_la_lune.jpg

156 practical computing for science and engineering

Exercise 28: Fire At Will!

Create, compile and run Program 5.3. It should ask you

for an initial velocity. Use 700 m/s. After the program

finishes, use the “ls” command to check that the output file,

bullet.txt, has been created. Take a look inside the file

with nano by typing “nano bullet.txt”. There should

be three columns of data, for time, velocity, and height.

Now exit from nano and use gnuplot to plot the bullet’s

height versus elapsed time, by giving gnuplot this command:

plot "bullet.txt" using 1:3

You should see a graph that looks like top graph in Figure

5.8. Try to identify the bullet’s maximum height, and the

time at which it reaches this height.

If you have time, you can also graph the bullet’s velocity as

a function of time by giving gnuplot this command:

plot "bullet.txt" using 1:2

But what about. . . ?

Notice that Program 5.3 only tracks the bullet for one hundred

seconds. The bullet may not reach the ground during that time.

What if we wanted the program to track the bullet for as long as

it’s in the air, and stop when it hits the ground? We could modify

the program by replacing the “for” loop with a “do-while” loop,

like this:

do {

v = v0 - g*t;

h = v0*t - 0.5*g*pow(t,2);

fprintf(output, "%lf %lf %lf\n", t, v, h);

t += delta_t;

} while (h >= 0.0);

5.6. Analyzing a Data File
In the exercise above, you might have found that it was hard to tell

exactly where the bullet reached its maximum height by looking at the

graph of our data. Analyzing data by hand is tedious and imprecise.

chapter 5. reading and writing files 157

Imagine how much harder it is to analyze the data from a huge experi-

ment like the ones at CERN, where billions of data points are recorded

per second!

Even for small experiments, it’s often necessary to write computer

programs to help us analyze data. Let’s write a program that can read

the bullet program’s output file and find the maximum height for us.

Take a look at Program 5.4 on Page 159. This program does several new

things. First of all, it opens the file for reading, instead of writing, by

giving an "r" to the fopen function.

Next, notice that Program 5.4 uses an infinite loop (see the “while

(1)”) to read data from the file. This allows the program to read a file

of any length. If we modified our bullet program so that it produced

more or fewer lines of data, Program 5.4 would still be able to read the

output file.3 3 This would be very important if we
changed the loop in our bullet program
to a “do-while” loop, as in shown
in the box above. In that case, we’d
never know how many lines of data the
program would generate.

Each time Program 5.4 goes around its loop, it reads a line from the

bullet.txt data file. To do the reading, we use a new function:

fscanf. The fscanf function is like scanf, except that it reads data

from a file instead of from the keyboard. The first argument we give

fscanf is a file handle. This tells fscanf which file we want to read

from. In principle, we could open up several different files and choose

which one we want to read by giving the appropriate file handle to

fscanf. Figure 5.9 shows the structure of a typical fscanf statement.

Figure 5.9: Structure of an fscanf

statement.Just like scanf, you should always put an ampersand (&) in front of

the variable names whenever you read numbers with fscanf, and you

should avoid “\n” in the format specification you give fscanf.4 4 See Chapter 3.

Since the program uses an infinite loop, we have to do some sort of test

inside the loop to see if we’re done yet. In this case, we check to see

if fscanf successfully read the number of things we asked it to read.

Each time we call fscanf it returns an integer value that indicates

how many things it read. If things go well, this number should be

equal to the number of variables we ask fscanf to read. For example,

158 practical computing for science and engineering

if we have a fscanf statement like the one shown in Figure 5.9, the

value returned should be 1, since there’s only one variable in the list.

If we get a different number, that means fscanf couldn’t do what we

asked it to do. When we’re reading data from a file, we’ll use this as an

indication that we’ve read all of the data, and it’s time to stop reading.

Now that we understand the mechanics of reading a file, how do we

find the maximum height in our bullet data? First, we create variable

called hmax, in which we’ll store the maximum height. After opening

our data file, we read it, one line at a time. Each line of the file contains

three numbers: the elapsed time since the bullet was shot, the current

velocity, and the current height. We initially set hmax equal to the first

height value in the file, then each time we read another line from the

data file, we look to see if its height is greater than hmax. If it is, we

make this height the new value of hmax. When we’re done looking at

all of the data, hmax should contain the maximum height value.

Another group of intrepid adventurers
who journeyed to the Moon inside an
artillery shell. These are from Jules
Verne’s From the Earth to the Moon, as
illustrated by Henri de Montaut.
Source: Wikimedia Commons

The program also finds the time at which the maximum height is

reached. Whenever the program sets a new hmax value, it also sets the

variable tmax equal to the time value that appears on the same line of

the data file. When the program finishes, tmax should contain the time

at which the maximum height was reached.

Exercise 29: Finding the Maximum

Create, compile and run Program 5.4. Does it give you

results that match your expectations?

Now try running your earlier bullet program again, this

time giving it a different initial velocity, say 600 m/s instead

of the 700 m/s you used earlier. Run your readbullet

program again to find the new maximum height.

If you pick an initial velocity much higher than 700 m/s,

you’ll find that your readbullet program will always tell

you that the time at maximum height is 100 seconds. This is

because our bullet program only tracks the bullet for 100

seconds, and if its initial velocity is too large the bullet will

still be rising at the end of this time.

If you have time, look at the new bullet.txt file with

gnuplot, as you did before, to see if the maximum height

looks like it matches the output of readbullet.

https://commons.wikimedia.org/wiki/File:'From_the_Earth_to_the_Moon'_by_Henri_de_Montaut_38.jpg

chapter 5. reading and writing files 159

Program 5.4: readbullet.cpp

#include <stdio.h>

int main () {

double t;

double v;

double h;

double hmax;

double tmax;

int initialized = 0;

FILE *input;

input = fopen("bullet.txt","r");

while (fscanf(input, "%lf %lf %lf", &t, &v, &h) == 3) {

if (initialized == 0 || h > hmax) {

hmax = h;

tmax = t;

}

initialized = 1;

}

printf ("Maximum altitude of %lf after %lf seconds\n", hmax, tmax);

fclose(input);

}

Open the file for

reading, using "r"

Read

lines

from

the file

Did we get 3 numbers?

Have we found a greater

height? (Or do we need

to initialize hmax?)

Have we initialized hmax?

hmax has now been initialized.

160 practical computing for science and engineering

5.7. The Perils of Excessive open/close
We saw in Chapter 4 that modern computers are very fast. Adding up

the square roots of a billion numbers takes only seconds. But some

things take longer than others. In particular, it takes a computer a

relatively long time to open or close a file.

Eeek!
Source: Wikimedia Commons

We can test this with a program like Program 5.5. Here we have a

loop that opens and closes a file a million times. Each time around the

loop, the program opens the file, writes some text into it, and closes

the file. Before the loop starts, the program saves the current time in

the variable tstart. After the loop finishes, we calculate how much

time has passed since tstart. The program prints the total time, in

seconds, and also prints the time per open/close.

If your computer has an old-fashioned spinning disk this program

might take a few minutes to run, with each open/close taking about a

millisecond. On a modern solid-state disk each open/close might only

take a tenth of a millisecond, but the program will still take several

seconds to run. If we increased ntimes to a billion, the program would

take a thousand times longer (several hours at least). Compare that

with the few seconds it took our earlier test program (Program 4.1) to

add up the square roots of a billion numbers. You can see that opening

and closing files is much slower than just doing math.

Program 5.5: openclose.cpp

#include <stdio.h>

#include <time.h>

int main () {

int i;

int ntimes = 100000;

int tstart;

double delay;

FILE * output;

tstart = time(NULL);

for (i=0; i<ntimes; i++) {

output = fopen("openclose.dat", "w");

fprintf(output, "Testing...\n");

fclose(output);

}

delay = time(NULL) - tstart;

printf ("Time to open/close %d times: %lf seconds\n", ntimes, delay);

printf ("Time per open/close: %lf seconds\n", delay/ntimes);

}

https://commons.wikimedia.org/wiki/File:Perilsofpauline.jpg

chapter 5. reading and writing files 161

Exercise 30: Open for Business?

Create, compile and run Program 5.5. How fast is your

computer’s disk? Remember that on slower disks it can take

several minutes for the program to run. If you get tired of

waiting, you can stop the program by pressing Ctrl-C.

The lesson we should learn from this is that it’s a good idea to avoid

unnecessarily opening or closing files. If you write a simulation pro-

gram like gutter.cpp in Chapter 2 and make the program write its

output into a file, it’s best to open the output file once, before starting

any loops, and then close the file after all the loops are finished. Even

though, in principle, you could open the file each time you want to

write a new number, that would make your program much, much

slower.

Notice that in Program 5.5 we opened the file for writing by giving

a "w" as the second argument to fopen. Remember that this wipes

out any already-existing file that has the same name. That’s why only

one small file, containing just the text “Testing”, is created when the

program is run. The program actually creates and overwrites this file a

million times.

Accidentally overwiting an output file is a common programming error.

Consider Program 5.6.

Program 5.6: overwrite-test.cpp

#include <stdio.h>

int main () {

FILE *output;

int i;

for (i=0; i<10; i++) {

output = fopen("overwrite-test.dat","w");

fprintf(output, "%d\n", i);

fclose(output);

}

}

This program has a loop that sets i to each value from 0 to 9 and writes

that value into the output file. If the programmer ran this program

he or she might be surprised to find that the output file ends up with

162 practical computing for science and engineering

only a single number in it: “9”. That happened because the fopen and

fclose statements are inside the loop, and because we gave fopen

"w" (for “write”) as its second argument instead of "a" (for “append”).

We could fix the program by just moving fopen and fclose outside

the loop, like this:

Come in, we’re open!
Source: Wikimedia Commons

Program 5.7: overwrite-test.cpp, Fixed!

#include <stdio.h>

int main () {

FILE *output;

int i;

output = fopen("overwrite-test.dat","w");

for (i=0; i<10; i++) {

fprintf(output, "%d\n", i);

}

fclose(output);

}

Now the program’s output file will look like this:

0

1

2

3

4

5

6

7

8

9

which is probably what the programmer intended.

Closing a file before the program is done with it is another common

programming error. If the program above had left fclose inside the

loop, then the output file would be closed after the first number was

written to it. The next time the program tried writing into the file we’d

get lots of ugly errors like this:

Error in `./overwrite-test': double free or corruption

This isn’t very informative, but the computer is trying to tell us that

we’re attempting to write into a file that is no longer open.

https://commons.wikimedia.org/wiki/File:Neon_Internet_Cafe_open_24_hours.jpg

chapter 5. reading and writing files 163

5.8. Analyzing Other People’s Data
Imagine that you’re an astronomer, and you’ve been given the task of

analyzing some data about the stars in our local neighborhood. In 1957

astronomer Wilhelm Gliese published the first edition of his list (or

“catalog”) of nearby stars. It contained entries for about 900 stars. By

“nearby”, he meant stars within about 65 light-years of Earth. Several

editions later, the Gliese catalog now contains about 3,800 stars. The

catalog contains information about each star’s position, brightness, and

color, among other things.

These stars might seem special because they’re our closest neighbors. If

we were ever to venture into interstellar space, these are the first places

we’d visit. You’ve probably heard of some of them. Sirius, the “Dog

Star”, is the brightest star in our sky. Tau Ceti and Epsilon Eridani are

two nearby Sun-like stars that figure prominently in Science Fiction.

But how close is the nearest star (other than the Sun) to us? Let’s write

a program to analyze some data about nearby stars and find out.

Program 5.8 reads a file containing x, y, and z coordinates (measured

in parsecs5) for the position in space of each star. In our readbullet 5 One parsec equals approximately 3.26

light years.program, we analyzed some data to find the maximum value. Here we

want to find the minumum value: the star that’s closest to earth.

In this data’s coordinate system, our Sun is at the origin. If we’re given

the coordinates of another star, we can find its distance from the Sun

like this:

x

y

z

(x, y, z)

Sun

Star

r

Figure 5.10: Calculating the distance
from the sun to another star.
Source: Wikimedia Commons

r =
√

x2 + y2 + z2

where r is the distance.

Program 5.8 reads a star’s coordinates from the data file stars.dat,

then calculates the distance to that star. If that distance is less than the

smallest distance we’ve encountered so far, the program uses it as the

new value for the variable rmin. Compare this program with Program

5.4, which found a maximum.

https://commons.wikimedia.org/wiki/File:3D_Cartesian.svg

164 practical computing for science and engineering

0h6h

12h 18h

10

5

Sol

Proxima Centauri
α Centauri

Barnard's Star

Wolf 359

Lalande 21185

Sirius
Luyten 726-8

Ross 154

Ross 248

ε Eridani

Lacaille 9352

Ross 128
EZ Aquarii

Procyon

61 Cygni

Struve 2398

Groombridge 34

ε Indi

DX Cancri

τ Ceti

GJ 1061

YZ Ceti

Luyten's Star

Teegarden's Star

Kapteyn's Star

Lacaille 8760

Kruger 60

Ross 614

GI 628

DEN 1048-3956

SCR 1845-6357

Figure 5.11: The stars in our immediate
neighborhood.
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Nearby_Stars_(14ly_Radius).svg

chapter 5. reading and writing files 165

Program 5.8: stars.cpp

#include <stdio.h>

#include <math.h>

int main () {

double x;

double y;

double z;

double r;

double rmin;

int initialized = 0;

FILE *input;

input = fopen("stars.dat","r");

// Read coordinates for the stars:

while (fscanf(input, "%lf %lf %lf", &x, &y, &z) == 3) {

r = sqrt(x*x + y*y + z*z);
if (initialized == 0 || r < rmin) {

rmin = r;

}

initialized = 1;

}

printf ("Minimum distance is %lf parsecs\n", rmin);

fclose(input);

}

-15 -10 -5 0 5 10 15-15
-10

-5
 0

 5
 10

 15

-100

-50

 0

 50

 100

 150

 200

Figure 5.12: Some local stars, plotted
with gnuplot.

Exercise 31: Seeing Stars

For this exercise you’ll need a copy of the data file named

stars.dat. You can find instructions for obtaining it in

Appendix C.1 on page 621. After you have the data file,

create, compile and run Program 5.8. What’s the distance

to the closest star in this data set? Its name is Proxima

Centauri.

If you have time, start up gnuplot and give it the following

commands (note that the last command is splot, not plot):

set xrange [-5:5]

set yrange [-5:5]

set zrange [-5:5]

splot "stars.dat"

This should show you a 3-dimensional view of the stars

within about 15 light years from earth. Depending on the

version of gnuplot you’re using, you may be able to grab this

plot with the mouse and drag it around to rotate it.

166 practical computing for science and engineering

5.9. Combining Files
Sometimes it’s useful to be able to combine data from two or more files

into one. Here are a few techniques for doing that.

Appending:

Imagine you’re a teacher. You begin the semester by creating a file

named grades.dat that will hold your students’ grades. The format

of the file will be one line per student, with the student’s ID number

at the beginning of the line, followed by a list of homework grades

separated by spaces. The file might look like Figure 5.13.

After you’ve created this file, you find that your class is very popular

but the classroom is small. You’ll have to teach two groups of students

at different times. To accommodate the second group of students, you

create a new file grades2.dat with the same format as the first file.

571 95.0 89.5 100.0

292 79.5 88.0 90.0

963 82.5 87.5 95.5

894 99.0 100.0 97.5

935 88.0 89.0 91.5

616 92.0 93.5 96.0

907 100.0 99.0 95.5

288 90.0 92.0 95.0

729 88.5 92.5 95.0

710 100.0 96.5 90.0

Figure 5.13: Your grades.dat file
might look like this. Each line begins
with the student’s ID number. After
that comes a list of that student’s
homework grades.

As the semester goes along, you realize that you’d really like to have one

file that contains all the grades for both sets of students. No problem!

This is a programming class, so you know how to write a program for

combining the two files.

You decide that you just want to append the data from grades2.dat

onto the bottom of grades.dat, and then ignore grades2.dat from

now on. To accomplish this, you write Program 5.9.

Program 5.9: append.cpp

#include <stdio.h>

int main () {

FILE *file1;

FILE *file2;

int id;

double h1,h2,h3;

file1 = fopen("grades.dat","a");

file2 = fopen("grades2.dat", "r");

while (fscanf(file2 , "%d %lf %lf %lf", &id, &h1, &h2, &h3) == 4) {

fprintf (file1 , "%d %lf %lf %lf\n", id, h1, h2, h3);

}

fclose (file1);

fclose (file2);

}

Open grades.dat

for appending by

specifying "a".

Read from file2

(grades2.dat).

Write to file1

(grades.dat).

chapter 5. reading and writing files 167

Program 5.9 reads each line of grades2.dat and writes it at the end

of grades.dat. It’s written at the end because we told fopen to open

the file for appending, by specifying "a". After running this program,

all of the grades would be in grades.dat.

This program shows that you can have more than one file open at a

time. When we read or write, we specify which file to use by giving

the appropriate file handle to fscanf or fprintf.

Concatenating:

Thinking about your class a little more, it might occur to you that it

would be better to leave both grades.dat and grades2.dat as they

are (since these are important student records!) and create a third,

new file named homework.dat that combines the data from both the

original files. You could write another program (Program 5.10) to do

that.

Program 5.10: concat.cpp

#include <stdio.h>

int main () {

FILE *file1;

FILE *file2;

FILE *homework;

int id;

double h1,h2,h3;

homework = fopen("homework.dat", "w");

file1 = fopen("grades.dat","r");

while (fscanf(file1, "%d %lf %lf %lf", &id, &h1, &h2, &h3) == 4) {

fprintf (homework, "%d %lf %lf %lf\n", id, h1, h2, h3);

}

fclose (file1);

file2 = fopen("grades2.dat", "r");

while (fscanf(file2, "%d %lf %lf %lf", &id, &h1, &h2, &h3) == 4) {

fprintf (homework, "%d %lf %lf %lf\n", id, h1, h2, h3);

}

fclose (file2);

fclose(homework);

}

Open the new file

homework.dat for

writing by specifying "w".

Read data from grades.dat

and write it to homework.dat.

Now read data from grades2.dat

and write it to homework.dat.

grades.dat

grades2.dat

168 practical computing for science and engineering

As you can see, Program 5.10 creates a new file named homework.dat

by giving fopen a "w". The program then has two sections: first it

reads data from grades.dat and writes that data into homework.dat.

Then it does the same for grades2.dat.

Merging:

All is well until the end of the semester. You’ve graded all of the home-

work assignments and put the grades into homework.dat. You’ve

also graded some quizzes and put those grades into quizzes.dat.

There were three homework assignments and two quizzes (it was a

short course). Each student has one line in each file. Figure 5.14 shows

what the quizzes.dat file might look like.

1 100.0 96.5

2 88.5 92.5

3 90.0 92.0

4 100.0 99.0

5 92.0 93.5

6 88.0 89.0

7 99.0 100.0

8 82.5 87.5

9 79.5 88.0

10 95.0 89.5

Figure 5.14: The quizzes.dat file
might look like this, with each line
containing a student’s ID number and
two quiz grades.

Hmmm. It would be really nice if we could combine homework.dat

and quizzes.dat and create a new file that had all of each student’s

grades, homework and quizzes, on a single line. To do that, you could

write something like Program 5.11.

Program 5.11 creates a new file named allgrades.dat that will con-

tain one line per student, with all of that student’s grades (homework

and quizzes). Each line begins with the student’ ID number. The new

file might look like Figure 5.15.

1 95.0 89.5 100.0 100.0 96.5

2 79.5 88.0 90.0 88.5 92.5

3 82.5 87.5 95.5 90.0 92.0

4 99.0 100.0 97.5 100.0 99.0

5 88.0 89.0 91.5 92.0 93.5

6 92.0 93.5 96.0 88.0 89.0

7 100.0 99.0 95.5 99.0 100.0

8 90.0 92.0 95.0 82.5 87.5

9 88.5 92.5 95.0 79.5 88.0

10 100.0 96.5 90.0 95.0 89.5

Figure 5.15: The file allgrades.dat,
produced by Program 5.11, might look
like this. Each line has the students ID
number, followed by three homework
grades and two quiz grades.

Notice that the program reads one line from each input file each time

it goes around the while loop. The fscanf statements for reading

homework.dat and quizzes.dat are different, because the files have

different formats. Both begin with the student ID number, but there are

three homework grades and only two quizzes.

The loop stops (by using the break statement) when it reaches the end

of either input file. It’s important to check both files, to help us deal

with mistakes we might have made when we entered the grades. What

if we’ve left a student out of one of the files? In that case the input files

wouldn’t both be the same length.

Similarly, we put the student ID number into id1 when we read it

from homework.dat and we put the number into id2 when we read

it from quizzes.dat. If we haven’t made any mistakes in creating the

input files, these two ID numbers should always match. If they don’t,

the program gives us an error message telling us so.

Finally, once the program has successfully read a line of homework

chapter 5. reading and writing files 169

data and a line of quiz data, it writes all of the data out on a single

line of the output file. Notice that the first fprintf statement doesn’t

end with a “\n”. Instead, it ends with a space. The next fprintf

statement picks up where the first one left off, adding more stuff to the

end of the same line, and then finishing with a “\n”.

Program 5.11: merge.cpp

#include <stdio.h>

int main () {

FILE *file1;

FILE *file2;

FILE *combined;

int id1, id2;

double h1,h2,h3;

double q1,q2;

combined = fopen("allgrades.dat", "w");

file1 = fopen("homework.dat","r");

file2 = fopen("quizzes.dat", "r");

while (1) {

if (fscanf(file1, "%d %lf %lf %lf", &id1, &h1, &h2, &h3) != 4) {

break;

}

if (fscanf(file2, "%d %lf %lf", &id2, &q1, &q2) != 3) {

break;

}

if (id1 == id2) {

fprintf (combined, "%d %lf %lf %lf ", id1, h1, h2, h3);

fprintf (combined, "%lf %lf\n", q1, q2);

} else {

printf ("Error! IDs don't match: %d and %d\n", id1, id2);

}

}

fclose (file1);

fclose (file2);

fclose(combined);

}

Stop when we reach the

end of either input file.

Input files

Read

home-

work

Read

quizzes
Check to make sure the student

IDs from both files match.

Output file

Write homework and

quiz data on one line.

170 practical computing for science and engineering

5.10. Conclusion
In this chapter we’ve covered the basics of reading from files and writing

to files. These same techniques can be used for any numerical data

that’s stored in the form of multi-column, readable numbers. Programs

like gnuplot read data files in a way very similar to this. Multi-column

numerical data is very commonly used for small-to-moderate sized

data sets, although sometimes the columns are separated by commas,

colons or other characters besides spaces.6

6 Large data sets are generally stored
differently, in formats not readable by
humans but which allow the files to
be smaller, faster to read, and easier to
search. We’ll take a look at reading and
writing this kind of files later on.

Figure 5.16: In the days before files were
stored on disks, students delivered
stacks of punched cards to counters like
this one in the the basement of the UNC
Physics building. Computer operators
loaded the stacks into readers, and the
program’s output was printed
(sometimes hours later) and dropped by
the operator into a bin, until the student
came by to pick it up.
Source: UNC-Chapel Hill Computing History photo collection

http://www.ibiblio.org/comphist/node/60

chapter 5. reading and writing files 171

Practice Problems
1. Use nano to create a file named numberlist.dat that contains a

list of numbers, one number per line, like this:

1.25

20.7

-4.3

123.4

It doesn’t matter what numbers you put into the file, but put at least

ten of them, some positive and some negative, and make sure they’re

not all integers.

Now write a program named sumit.cpp that reads numberlist.dat

and tells you the sum of all the numbers in that file.

 0

 0.5

 1

 1.5

 2

 0 2000 4000 6000 8000 10000

 0

 0.5

 1

 1.5

 2

 0 2000 4000 6000 8000 10000

Figure 5.17: The result of plot
"randsum.dat" (top) and plot

"randsum.dat" using 1:3

(bottom).

2. Create a program named randsum.cpp that writes 10,000 lines of

output into a file named randsum.dat. Each line should contain

three numbers separated by spaces: the line number (from zero to

9999); a random number between zero and one; and the sum of two

random numbers each between zero and one.

Hint: As we saw in Chapter 2, you can make a random number

between zero and one like this: rand()/(1.0+RAND_MAX).

If you use gnuplot to look at the file your program makes, you

should see something like Figure 5.17. Notice that the sum of two

random numbers (the bottom graph) looks very different from a

single random number (the top graph). The sum is still random, but

it’s no longer a “flat” distribution: not all numbers are equally likely.

The sum is more likely to be near 1.0 than it is to be near 0.0 or 2.0.

Figure 5.18: Eastern Comma butterfly
(Polygonia comma).
Source: Wikimedia Commons

3. Write the following two programs:

(a) Modify Program 5.3 (the bullet.cpp program) so that it writes

comma-separated columns into its output file, instead of space-

separated columns. Run the program to generate a new bullet.txt

output file.

(b) Modify Program 5.4 (the readbullet.cpp program) so that it

will read the new comma-separated data file.

4. Using nano, create a data file called numbers.dat that contains a

column of at least ten integers (positive or negative), like this:

27

-3

189

43

-1280

https://commons.wikimedia.org/wiki/File:Eastern_Comma_(15320319450).jpg

172 practical computing for science and engineering

Write a program called readnum.cpp that uses a “while” loop to

read the numbers from numbers.dat. Make the program print out

the sum of all of the numbers, the value of the largest number, and

the value of the smallest number, like this:

Sum is -1024

Largest is 189

Smallest is -1280

Make sure your program does the right thing even if all the numbers

are negative.

5. Using nano, create a file named budget.dat that contains three

equal-length columns of numbers, like this:

-462.13 486.47 973.79

755.42 843.04 -963.67

442.58 -843.02 -462.86

-233.93 -821.67 399.59

-379.65 -556.37 837.46

55.18 -144.93 -93.15

533.73 804.64 -66.25

-922.12 914.68 -264.67

-600.27 -838.59 747.02

-962.97 49.96 -677.79

Now write a program named budget.cpp that reads this file and

adds up the numbers in each column. The program’s output should

look like this:

Column sums are: -1774.16 -105.79 429.47

Note that you can limit the number of decimal places you print by

using %.2lf instead of just %lf. This tells printf to print only two

numbers after the decimal point.

Doing homework.
Source: Wikimedia Commons

6. Using nano, create the file grades.dat shown in Figure 5.13 on

Page 166. Now write a program named meangrade.cpp that reads

grades.dat and prints out a list of student IDs along with each

student’s average grade. Determine the average by adding up the

student’s grades for the three homework assignments and dividing

the result by 3. The program should print "Student ID" and

"Mean Grade" at the top of the output, to tell the user what the

numbers mean.

7. Using nano, create the file grades.dat shown in Figure 5.13 on

Page 166. Now write a program named lowgrade.cpp that reads

grades.dat and prints the lowest grade for the first homework

assignment, and the ID number of the student who got this grade.

https://commons.wikimedia.org/wiki/File:The_hygiene_of_the_schoolroom_(1911)_(14784071055).jpg

chapter 5. reading and writing files 173

Make sure your program tells the user what these numbers mean.

(If there’s more than one student with the lowest grade, just print

the first student ID that has this grade.) Don’t assume the grades

will always be between zero and 100. (What if the program were

given a file full of SAT scores, for example?)

8. Write a program named oddeven.cpp that generates 10,000 random

integers and sorts them into two files. Put the odd integers into

odd.dat and the even integers into even.dat. Here are a few

hints to help you:

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 0 1000 2000 3000 4000 5000 6000

Figure 5.19: This is how the data in
odd.dat and even.dat might look if
plotted with gnuplot.

• You can generate a random number with the rand function, as

we did in Chapter 2. For example:

number = rand();

• You can use the modulo operator, %, to check whether a number is

positive or negative. If number % 2 is zero, then number is even.

Otherwise it’s odd. (Look back at Chapter 4 for more information

about the modulo operator.)

You might find it interesting to look at odd.dat and even.dat with

gnuplot. For example, if you start gnuplot and give it the command:

plot "odd.dat", "even.dat"

you should see a rectangle filled with dots of two different colors,

one color for odd numbers and the other for even (see Figure 5.19).

The extent of the rectangle horiontally will show you how many

numbers there are of each type. About half of the numbers you

generated should fall into each category, so the rectangle should go

up to about 5,000. The vertical axis shows the actual numbers you

generated. The height of the rectangle will depend on what kind of

C compiler and computer you’re using, but it should go up to some

very big numbers.

Linc, Julie, and Pete: The Mod Squad
Source: Wikimedia Commons

9. Write a program named mod3.cpp that generates 10,000 random

integers and sorts them into three files, depending on the remainder

when the number is divided by 3. If the number is n, then the

remainder is given by n%3, and will be either 0, 1, or 2. If the

remainder is 0, write the number into a file named zero.dat, if it’s

1, write the number into one.dat, and if it’s 2, write the number

into two.dat. After running the program, each of these three files

should contain a single column of random numbers. Here are a few

hints to help you:

• You can generate a random number with the rand function, as

we did in Chapter 2. For example:

https://en.wikipedia.org/wiki/The_Mod_Squad
https://commons.wikimedia.org/wiki/File:Mod_Squad_1971.JPG

174 practical computing for science and engineering

number = rand();

• You’ll have three files open at the same time, so you’ll need three

different file handles. I suggest something like this:

FILE *zero;

FILE *one;

FILE *two;

Each of these will need to be opened before you start sorting

the numbers. Then you just need to pick the appropriate file for

each number. For example, if n%3 is 1 the program should do

something like this:

fprintf (one, "%d\n", number);

 0

 1

 2
 0

 1000

 2000

 3000

 4000

 0

 5×10
8

 1×10
9

 1.5×10
9

 2×10
9

 2.5×10
9

Number mod 3

Trial

N
u

m
b

e
r

Figure 5.20: Data from the three files
created by the mod3.cpp program.

After running the program, try plotting your results with gnuplot.

The following lengthy gnuplot command should give you a graph

similar to Figure 5.20 (type the command all on one line):

splot "zero.dat" using (0):($0):1,

"one.dat" using (1):($0):1,

"two.dat" using (2):($0):1

This command plots the data from all three files in three dimensions,

using one axis to represent n%3, another to represent the values of

the random numbers, and a third axis that just counts the numbers.

You should see three mor-or-less evenly filled rectangles of the same

size.

The Incas of South America used
knotted strings called quipus to record
financial transactions. Alex Bellos
describes how quipus work in a
Numberphile video.
Source: Wikimedia Commons

10. Let’s write a data-entry program that collects payment information

and stores it in a file. Call the program ledger.cpp. The program

will have an infinite “while” loop that asks for an account number

and an amount paid into that account. If the account number is

zero, the loop stops. Whenever a non-zero account number and

amount are entered, those numbers are written into a file named

ledger.dat. For example, if the user enters 100 as the account

number and 1.98 as the amount, the program should write:

100 1.98

into the ledger.dat file.

While the program is collecting amounts, it should also sum them

up. At the end of the program it should write the sum on the screen

(not in ledger.dat) in a form like this:

Total amount entered was 293.600000

(Don’t worry about how many decimal places the numbers show, as

long as it’s at least two.)

Hint: Remember that you can use a break statement to stop a loop.

https://en.wikipedia.org/wiki/Quipu
https://www.youtube.com/watch?v=OFbbiAf8kUo
https://commons.wikimedia.org/wiki/File:Quipu.png

chapter 5. reading and writing files 175

11. Although the surface of the sun is very hot (about 6,000 kelvin),

there are slightly cooler spots that look dark when the sun is viewed

through a filter that blocks most of its light. Sunspots are temporary,

and their number varies over time in an 11-year cycle.

Figure 5.21: A large group of sunspots
on July 7, 2012. The largest spot in this
photo is about 11 times as wide as the
whole Earth.
Source: Wikimedia Commons

 0

 50

 100

 150

 200

 250

 300

 1700 1750 1800 1850 1900 1950 2000 2050

N
u
m

b
e
r

o
f
S

p
o
ts

Year

Figure 5.22: The number of sunspots
varies in an 11-year cycle. This graph
shows the number of sunspots each
year from 1700 to 2021.

As you can see from Figure 5.22, each cycle has a different maximum

number of sunspots. Let’s write a program named sunspots.cpp

that reads some sunspot data and finds the year with the highest

number of sunspots.

First you’ll need to fetch the data. You can do that by typing either:

wget https://www.sidc.be/silso/DATA/SN_y_tot_V2.0.txt

or

curl -L -O https://www.sidc.be/silso/DATA/SN_y_tot_V2.0.txt

whichever works on your computer. This file contains sunspot data

for all the years between 1700 and 2021. Each line has four columns:

The year, the average number of sunspots per day, an estimate of

the error in this number, and the number of observations7. The 7 The last two columns contain “-1” for
the early years, since this information
isn’t available.

downloaded file will be named SN_y_tot_V2.0.txt.

Your program should read this file and tell the user which year had

the most sunspots per day, and how many sunspots that was. See

Program 5.4 on page 159 for some hints about how to write your

program.

12. Modify Program 5.3 (the “bullet” program) so that it uses a

“do-while” loop to track the bullet until it reaches the ground.

(See the gray box after bullet program for information about

how to do this.) Make the program write out how long (in sec-

onds) it takes the bullet to reach the ground. Call the new program

bullettimer.cpp.

https://commons.wikimedia.org/wiki/File:Solar_Archipelago_-_Flickr_-_NASA_Goddard_Photo_and_Video.jpg

176 practical computing for science and engineering

13. In 1912 the ocean liner Titanic hit an iceberg during the ship’s maiden

voyage across the Atlantic. About 1,500 passengers and crew died as

a result.

Figure 5.23: Headlines announce the
disaster.
Source: Wikimedia Commons

Let’s write a program to analyze a file full of data about passengers

on the Titanic. First download the file by doing either:

wget http://jse.amstat.org/datasets/titanic.dat.txt

or

curl -L -O http://jse.amstat.org/datasets/titanic.dat.txt

If you use nano to look inside this file you’ll see that it contains four

columns of numbers. Each line of the file describes one person. In

the first column is a number that tells whether the person was a crew

member, or a first-, second-, or third-class passenger (0=crew, 1=first,

2=second, 3=third). The second column indicates age: (1=adult,

0=child). The third column divides people into two sexes: (1=male,

0=female). The final column indicates whether the person survived

or not: (1=yes, 0=no).

Margaret Brown, known later as “the
unsinkable Molly Brown”, was a
survivor of the Titanic disaster. She
went on to be a world-renowned
advocate for womens’ rights, workers’
rights, education, and many other
causes.
Source: Wikimedia Commons

Write a program named titanic.cpp that reads titanic.dat.txt

and tells the user how many people survived in each of these four

groups: Crew members, First Class passengers, Second Class, and

Third Class.

https://commons.wikimedia.org/wiki/File:Titanic_Headline.jpeg
https://commons.wikimedia.org/wiki/File:Margaret_Brown,_standing.jpg

