
4. Math and More Loops

4.1. Introduction

Figure 4.1: An illustration of “Moore’s
Law” for CPUs. Note that the vertical
axis is logarithmic.
Source: Wikimedia Commons

In 1965, Gordon Moore observed that the density of components in

integrated circuits (such as computer CPUs) was doubling every year

or two1. This observation came to be known as “Moore’s Law” and it

1 Moore, G. E. Electronics 38, 114-117

(1965).

continued to be valid for several decades, although recently the rate

has slowed2. Similar “Moore’s Laws” have been observed for other

2 Nature 530, 144-147 (11 February
2016).

computer components, such as disk drives, memory, and displays.

The first “PC”: The IBM PC 5150,
introduced in 1981.
Source: Wikimedia Commons

A modern supercomputer: NASA’s
Pleiades Cluster.
Source: Wikimedia Commons

As we saw in Chapter 2, modern computers can do thousands of cal-

culations in the blink of an eye. In the final version of our “gutter”

program (Program 2.7) we used nested “for” loops to simulate the be-

havior of ten thousand stones during ten rainstorms, and our program

ran in less time than it took you to read this sentence.

Computers are very good at doing things over and over again very

rapidly. Previously we’ve used “for” loops for this. In this chapter,

we’ll look at several other kinds of loops available in the C programming

language. We’ll start out by using a “for” loop to test how fast your

computer is. Along the way, we’ll find out about C’s math functions

and use them to give your computer something substantial to chew on.

4.2. Math Functions in C
C provides a rich set of math functions and some predefined math

constants such as the value of π. Table 4.2 shows some of the most

commonly-used functions.

https://commons.wikimedia.org/wiki/File:Moores_law_(1970-2011).PNG
http://www.cs.utexas.edu/~fussell/courses/cs352h/papers/moore.pdf
http://www.cs.utexas.edu/~fussell/courses/cs352h/papers/moore.pdf
http://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338
http://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338
https://commons.wikimedia.org/wiki/File:IBM_PC_5150.jpg
https://commons.wikimedia.org/wiki/File:Pleiades_row.jpg

114 practical computing for science and engineering

sqrt(x) Square Root

fabs(x) Absolute Value

cos, sin, tan,... Trig Functions

acos, asin, atan,... Inverse Trig
Functions

exp(x) ex

log(x) Natural Logarithm

pow(x,y) x
y

Figure 4.2: Some of C’s commonly-used
math functions.As we learned in Chapter 1, functions in C are a lot like the functions

you’ve used in math class. We give the function some number of

arguments, and the function gives us back a value. In C the expression

y = cos(x); means “make the variable y equal to the cosine of the

value in the variable x”. We’ll learn a lot more about how C functions

work in Chapter 9. For now, it’s important to know that most of C’s

math functions require double values for their arguments, and these

functions also give back a double value.

To use these functions in your programs, you’ll need to add another

“#include” statement at the top of your program, like this:

#include <math.h>

But what about. . . ?

What do these #include statements do, anyway? The answer is

that they insert chunks of text from other files into your program.

Somewhere on your computer there’s a file called math.h that

contains information about how math functions like sqrt are

chapter 4. math and more loops 115

supposed to be used. The information in this file allows g++

to check that you’re using sqrt correctly: Are you giving the

function the right number of arguments? Are you putting the

value returned by sqrt into the right kind of variable?

For example, sqrt takes one double number as an argument,

and it returns a double number. Take a look at Figure 4.3. It

shows a couple of incorrect ways to use the sqrt function.

In the first case, the programmer puts the output of sqrt into

an integer variable. Since sqrt returns a double number, this

means that the decimal part of the number will be chopped off.

The g++ compiler will warn you about this, but it will go ahead

and compile the program.

In the second case, the programmer has made a worse mistake.

The sqrt function takes only one argument, but it’s been given

two. The g++ compiler doesn’t know what the programmer wants

it to do, so it emits an error message and refuses to compile the

program.

double q;

int i;

i = sqrt(10.);

q = sqrt(10.,2.);

g++ will give a warning.g++ will give a warning.

g++ will give an error, and

refuse to do this.

g++ will give an error, and

refuse to do this.

Figure 4.3: Wrong ways to use the sqrt
function.The math.h file also defines values for some common constants.

For example, if you need the value of π in your program, you can

just write M_PI, and for the base of natural logarithms (e), you can

write M_E.

4.3. How Fast is Your Computer?
Let’s use one of these math functions to test how fast your computer is.

Take a look at Program 4.1. This program uses the sqrt function, and

sums up the square roots of a billion numbers!

Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Stopwatch2.jpg

116 practical computing for science and engineering

The program uses C’s “exponential notation”, which makes it easier

to write large numbers. Instead of writing 1000000000 we can write

1e+9, meaning “1x109”. Here are some more examples:

2.5e+3 = 2, 500

6.02e+23 = 6.02 × 1023 (' Avogadro’s number)

5e-11 = 5 × 10−11

Notice that 103 is just 1e+3 (“one times ten to the third power”), not

10e+3. Here the e means “times ten to the . . . ”.

Program 4.1 begins by recording the current time3 in the variable 3 in terms of the number of seconds
since January 1, 1970. You might
remember the time function from
Chapter 2, where we used it to pick a
“seed” for our pseudo-random number
generator.

tstart. After summing up all of the numbers, the program looks at

the new time, and prints out how long, in seconds, the program ran.

Notice that the sqrt function, like all of the math functions we’ll be

using, takes double arguments and returns a double value. Because

the variable i is an integer, we need to “cast” it as a double by saying

(double) in front of it. If we didn’t do this g++ would complain.

Why do we set sum equal to zero before we start the program’s loop?

Won’t it just be zero automatically? No, not necessarily. You shouldn’t

assume that a variable has any particular value before you explicitly

give it one. Remember that variables are temporary boxes in the

computer’s memory. After the program is done with them, the same

chunk of memory can be re-used by other programs. In some cases,

if you don’t explicitly give a variable a value, it will contain whatever

random data happens to be at that memory location, leftover from the

last program that used it.4 4 Some compilers will automatically set
all variables to zero at the beginning of
a program, but it’s best not to assume
this.Program 4.1: timer.cpp (Version 1)

#include <stdio.h>

#include <time.h>

#include <math.h>

int main () {

int i;

int tstart;

int delay;

double sum = 0.0;

tstart = time(NULL);

for (i=0; i<1e+9; i++) {

sum = sum + sqrt((double)i);
}

delay = time(NULL) - tstart;

printf ("Sum is %lf\n", sum);

printf ("Total time %d sec.\n", delay);

}

chapter 4. math and more loops 117

This is important for a variable like sum in Program 4.1. Notice the

line in bold. Each time around the loop, this sets the new value of sum

equal to the old value plus
√

i. If we didn’t explicitly set sum = 0.0

before we began adding things up, then the “old value” of sum would

be undefined (and possibly some bizarre, unexpected number) the first

time we went through the loop.

Exercise 21: How Fast is Your Computer?

Create, compile and run Program 4.1. On a typical computer,

it should take no more than a minute or two to run. If you

find that it takes longer, press Ctrl-C to stop it, and try

reducing the number of loops by a factor of ten. How many

square roots per second can your computer do?

4.4. Progress Reports

Another kind of progress: A Russian
Progress cargo spacecraft departing from
the International Space Station. The
computers that control the ISS aren’t
particularly new or fast. They’re
tried-and-true technology chosen for its
reliability. The “Vehicle Management
Computers”, for example, are many
redundant computers each powered by
an Intel 386SX CPU running at 32 MHz.
This is 100 times slower than the CPUs
in most modern laptop and desktop
computers.
Source: Wikimedia Commons

While your timer program was running, you may have worried that it

wasn’t actually doing anything. It’s often useful to make your program

print out reports periodically, so you can see its progress. Let’s modify

Program 4.1 and make it do this. We’ll use a new mathematical operator

to help us.

The “modulo” (or “modulus”) operator, “%”, does one peculiar but

useful thing: it tells us the remainder left over after we do division. For

example, “10 % 5” would be equal to zero, since the remainder after

dividing ten by five is zero. Here are some other examples:

10 % 7 gives 3

1001 % 10 gives 1

25 % 7 gives 4

Program 4.2 uses the modulo operator to print out the elapsed time,

and the number of square roots that have been summed so far, every

million times around the loop. It does this by looking at i % 1000000

(we can read this as “i modulo one million”). When this quantity is

zero, it means that i is a multiple of 1,000,000.

Exercise 22: Speed Test with Progress

Report

Create, compile, and run Program 4.2. Does it behave as

expected? Is it more entertaining to see evidence that the

program is doing something?

https://commons.wikimedia.org/wiki/File:ISS_Progress_cargo_spacecraft.jpg

118 practical computing for science and engineering

Program 4.2: timer.cpp (Version 2)

#include <stdio.h>

#include <time.h>

#include <math.h>

int main () {

int i;

int tstart;

int delay;

double sum = 0.0;

tstart = time(NULL);

for (i=0; i<1e+9; i++) {

sum = sum + sqrt((double)i);

if (i%1000000 == 0) {

delay = time(NULL) - tstart;

printf ("Time after %d terms: %d sec.\n", i, delay);

}

}

delay = time(NULL) - tstart;

printf ("Sum is %lf\n", sum);

printf ("Total time %d sec.\n", delay);

}

Figure 4.4: Have two hours passed, or
14 hours? Or even a 26 hours? We can’t
tell. Source: Openclipart.org

But what about. . . ?

What does “modulo” mean anyway? Where does that word come

from?

Take a look at the two clocks in Figure 4.4. Can you tell how much

time has passed? Not necessarily, because clocks count to twelve,

and then they start over again. This is what mathematicians call

“modular arithmetic”. In the case of the clocks, we could say that

they have a “modulus” of twelve.

For example, if we start at midnight and wait 28 hours, the little

hand on the clock will be pointing to 28 % 12 (“28 modulo 12”),

which is 4.

In modular arithmetic, two numbers that have the same remainder

when divided by the modulus are said to be “congruent”. A

mathematician would say that 2 AM and 2 PM are congruent in

the clock’s modular arithmetic.

https://openclipart.org/detail/217065/3-oclock

chapter 4. math and more loops 119

4.5. Trigonometric Functions

Figure 4.5: Math tables were once
widely used to find values for
trigonometric functions, logarithms,
and other functions. Source: Wikimedia Commons

The advantages you young people have! Take a look at Figure 4.5.

Back in the days before pocket calculators, if your ancestors needed

to find the sine or cosine of an angle they looked up the values in

“trig tables” like this one. Think about the hours of work that went

into constructing these tables. The numbers had to be computed by

hand, using tedious mathematical techniques to find the value of each

function at given angles. One of the first tasks given to early computers

like ENIAC (1945-1947, Figure 4.6) was the creation of mathematical

tables, particularly those needed for aiming artillery shells.

For a good overview of the techniques
used in constructing such tables, see
this Wikipedia article

Figure 4.6: Betty Jennings and Frances
Bilas operating ENIAC.
Source: Wikimedia Commons

Modern computers make this much easier for us. Let’s write a program

that uses C’s math functions to generate a table of values for cos(θ)

and sin(θ) for various values of θ. Before we start, it might be good to

remind ourselves what sine and cosine are. Take a look at Figure 4.7. If

you imagine a point travelling along the circumference of a circle with

a radius of 1, then cos(θ) and sin(θ) are just the x and y coordinates of

the point when it’s at the angle θ. Let’s start out with θ = 0 and move

around the circle in 100 steps, until we get back to where we started.

r = 1

Figure 4.7: The definition of sine and
cosine.
Source: Wikimedia Commons

Remember that there are two different systems for measuring angles:

degrees and radians. When you go all the way around a circle, you’ve

turned by 360°. This is equivalent to 2π radians. C’s trigonometric

functions all use radians, so our program will need to divide 2π radians

into 100 steps, and calculate the sine and cosine for each.

That’s what we do in Program 4.3. Notice that we’re careful to set

https://commons.wikimedia.org/wiki/File:GoniometrischeTafel.jpg
https://en.wikipedia.org/wiki/Trigonometric_tables
https://commons.wikimedia.org/wiki/File:Two_women_operating_ENIAC.gif
https://commons.wikimedia.org/wiki/File:Sin-cos-defn-I.png

120 practical computing for science and engineering

Program 4.3: trig.cpp

#include <stdio.h>

#include <math.h>

int main () {

double theta = 0.0;

double step = 2.0 * M_PI / 100.0;

int i;

for (i=0; i<100; i++) {

printf ("%lf %lf %lf\n", theta, cos(theta), sin(theta));

theta += step;

}

}

theta equal to zero at the beginning, just as we did with sum in

Program 4.1. Each time around the loop, we add a little bit to theta

until we’ve worked our way completely around the circle. The size of

each step is 2π/100, since the whole circle is 2π radians and we want

to divide it up into 100 steps.

Also notice that we use the symbol M_PI that’s conveniently provided

for us by math.h.

-1

-0.5

 0

 0.5

 1

 0 1 2 3 4 5 6

C
os

in
e

Angle (radians)

-1

-0.5

 0

 0.5

 1

 0 1 2 3 4 5 6

S
in

e

Angle (radians)

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

S
in

e

Cosine

Figure 4.8: Plots of θ versus cos(θ), θ

versus sin(θ), and cos(θ) versus sin(θ).

Exercise 23: Making a Trig Table

Create, compile, and run Program 4.3. It should make three

columns of text, containing values for θ, cos(θ) and sin(θ).

Now run it again, like this, to write the table into a file:

./trig > trig.dat

It’s hard to see whether your program is doing the right

thing by just looking at the numbers. Let’s try graphing

them. Start up gnuplot by typing its name, and then give it

this command:

plot "trig.dat"

You should see something that looks like the top graph in

Figure 4.8. Now try giving gnuplot this command:

plot "trig.dat" using 1:3

chapter 4. math and more loops 121

You should see something like the middle graph in Figure

4.8. Next try this gnuplot command:

plot "trig.dat" using 1:2, "trig.dat" using 1:3

The result should be the first two graphs laid on top of each

other. Finally, try this:

plot "trig.dat" using 2:3

You should see something like the bottom graph in Figure

4.8.

Hipparchus of Nicea (180-125 BCE) is
credited with creating the first
trigonometric tables. He’s the bearded
gentleman shown holding the blue
celestial sphere in this detail from The
School of Athens, by Raffaello Sanzio
(1509). Source: Wikimedia Commons

What did gnuplot do? The first command told gnuplot to plot the

contents of the file trig.dat, but how did it know which columns to

use? The file contains three columns of data: θ, cos(θ), and sin(θ). As it

turns out, gnuplot assumes that the first two columns in a file represent

the x and y coordinates of a set of points to be plotted. If the file only

contains one column, gnuplot uses the line number as x, and the value

on each line as y.

If your file contains more than two columns, you can tell gnuplot which

ones to use as x and y with the “using” qualifier. If you say “using

1:3”, that means “column 1 is x and column 3 is y”. We can ask gnuplot

to superimpose multiple graphs by giving it a comma-separated list of

things to plot, as we did in the next-to-last “plot” command in the

exercise above.

Before computers and calculators
became widely available, the slide rule
was widely used for calculations
involving logarithms or trigonometric
functions.
Source: Wikimedia Commons

As you can see from the bottom graph in Figure 4.8, our values for

cos(θ) and sin(θ) really do correspond to the x and y values of a point

at various angles, as they should. (The circle looks flattened because

the vertical and horizontal scales are different. By default, gnuplot fits

its graphs into a rectangular window that’s wider than it is tall. You

can fix this by telling gnuplot “set size square”.)

4.6. Using “while” Loops
Until now we’ve used just one of the kinds of loops that the C pro-

gramming language provides. The “for” loop that we’ve been using is

what programmers call a “counted” loop, because we tell the computer

how many times to go around the loop. Another kind of loop is called

a “conditional” loop. We can create one of these using C’s “while”

statement, which looks like this:

https://commons.wikimedia.org/wiki/File:La_scuola_di_Atene.jpg
https://commons.wikimedia.org/wiki/File:Frank_Whittle_CH_011867.jpg

122 practical computing for science and engineering

while (CONDITION) {

BLOCK OF STATEMENTS

}

The statements inside the loop will be acted upon again and again, as

long as the “CONDITION” is true. You might notice that this looks a

lot like an “if” statement, where a block of statements is only executed

if some condition is met. With “if”, the block of statements is only

acted upon once, but with while they’re done over and over, for as

long as the condition continues to be met. Here’s an example:

int i = 0;

while (i < 10) {

printf ("%d\n", i);

i++;

}

The code in this example would print out the integers from zero to nine.

This is the same kind of thing we’ve done with “for” loops, but done

in a different way. Consider the following example, though:

int i = 0;

while (i < 1000000) {

i = rand();

printf ("%d\n", i);

}

How many loops are in this roller
coaster?
Source: Wikimedia Commons

The second example will continue printing random numbers until it

finds one that’s greater than 1,000,000, and then it will stop. We don’t

know in advance how many times the computer will go around the

loop. The number of loops just depends on the condition we set in the

while statement. That’s why this kind of loop is called a “conditional”

loop.

4.7. Writing a Game
Program 4.4 also uses a while loop. In this case, we’re playing a game

like Blackjack. Blackjack (also know as Twenty-One) is a card game

where each player is dealt cards, one card at a time. Each card has a

https://commons.wikimedia.org/wiki/File:Vekomaboomerang.jpg

chapter 4. math and more loops 123

numerical value from one to thirteen. The object of the game is to get

the sum of all your cards as close to twenty-one as possible, without

going over. Each time Program 4.4 goes through its while loop, it

picks a random number from one to thirteen, then adds this number to

the sum so far. It keeps doing this for as long as the sum is less than

twenty-one.

Traditional playing cards have either
numbers or faces on them. The values
of the numbers are self-explanatory. For
the faces, we count Jack, Queen and
King as 11, 12 and 13, respectively.
Source: Wikimedia Commons

Program 4.4: addem.cpp (Version 1)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int sum = 0;

int card;

srand(time(NULL));

while (sum < 21) {

card = (int)(1 + 13.0*rand()/(1.0 + RAND_MAX));

sum += card;

printf ("Got %d. Sum is now %d\n", card, sum);

}

}

Do you see how this makes

a number between 1 and 13?

Exercise 24: Add ’Em Up!

Create, compile and run Program 4.4. Does it work as

expected? Run it several times to see if you can hit exactly

twenty-one.

The card-player, by Aba Novak.
Source: Wikimedia Commons

We could improve on Program 4.4 by telling it to congratulate us when

we win. To do this we might modify the while loop to make it look

like this:

while (sum < 21) {

card = (int)(1 + 13.0*rand()/(1,0 + RAND_MAX));

sum += card;

printf ("Got %d. Sum is now %d\n", card, sum);

if (sum == 21) {

printf ("You WIN!\n");

}

}

https://commons.wikimedia.org/wiki/File:Playing_cards_collage.jpg
https://commons.wikimedia.org/wiki/File:Aba-Novák_The_card-player.jpg

124 practical computing for science and engineering

4.8. Stopping or Short-Circuiting Loops
The problem with our game so far is that there’s no skill involved in

playing it. It’s purely random whether you win or lose.

The Card Players by Catherine Ann
Dorset. (Note that one of the players
seems to be a Great Auk, which sadly
became extinct in the mid nineteenth
Century.)
Source: Wikimedia Commons

In the real game of Blackjack, after each card is dealt the player is asked

whether he/she wants another. If the player is very close to twenty-one

already, he or she may choose not to get any more cards, hoping that all

of the other players will either go over twenty-one, or not get as close.

(Whichever player gets closest to twenty-one, without going over, wins.)

Let’s modify our program to allow for this. Take a look at Program 4.5.

Program 4.5: addem.cpp (Version 2)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int sum = 0;

int card;

int ans;

srand(time(NULL));

while (sum < 21) {

card = (int)(1 + 13.0*rand()/(1.0 + RAND_MAX));

sum += card;

printf ("Got %d. Sum is now %d\n", card, sum);

if (sum == 21) {

printf ("You WIN!\n");

} else if (sum > 21) {

printf ("You lose!\n");

} else {

printf ("Enter 1 to continue or 0 to quit while you're ahead: ");

scanf("%d", &ans);

if (ans != 1) {

printf("Your final score was %d\n",sum);

break;
}

}

}

}

As you can see, we’ve added an “if” statement to deal with the various

possible outcomes. If the sum is exactly twenty-one, we tell the player

he or she has won. If it’s over twenty-one, we identify the player as

a loser. If the sum is under twenty-one, we give the player a choice:

continue or quit? If the player chooses to continue, we go around the

loop again.

https://commons.wikimedia.org/wiki/File:The_Card_Players.jpg

chapter 4. math and more loops 125

But what if the player chooses to quit? How can we make the loop stop

right now, without waiting for the sum to get greater than twenty-one?

To do this, we use the C language’s “break” statement. A break

statement causes the loop it’s in to stop immediately.

Exercise 25: Playing a Card Game

Create, compile and run Program 4.5. Try running it several

times, making sure you sometimes tell it to continue, and

sometimes tell it to quit. Does it behave as expected?

Figure 4.9 shows another program that uses the break statement. The

program in the figure does a countdown, from ten toward zero, but

before it reaches zero the countdown is stopped by using break.

Figure 4.9: Using break to stop a loop.

C’s break statements are often useful when your program is searching

for something. Imagine you’re looking through a big stack of books,

trying to find one with a particular title. You start from the top and

look at the books one at a time until you find the one you want. Then

you stop. You don’t keep looking through the rest of the stack.

You can use break to do something similar in a C program. When we

find the thing we’re looking for, we can immediately stop looping and

go on with the rest of the program.

126 practical computing for science and engineering

But what about. . . ?

What if you use break inside two or more nested loops, like this?:

for (i=0; i<nrocks; i++) {

for (j=0; j<nstorms; j++) {

...

break;

}

}

This is similar to the nested loops in Program 2.7, which tracked

each of many rocks as they were washed down a gutter by some

number of rainstorms.

The break statement only halts the innermost loop containing it.

In the example above, the break would stop the nstorms loop,

and the computer would go back to the top of the nrocks loop. If

there were more rocks left to do, it would continue with the next

rock, and start the nstorms loop again for the new rock.

Compare that with the following example:

for (i=0; i<nrocks; i++) {

for (j=0; j<nstorms; j++) {

...

}

...

break;

}

In the second example, the break statement would stop the outer,

nrocks, loop, and the computer would continue without doing

anything else with either of these loops.

What if you wanted to skip the rest of this trip around a loop, but not

stop looping? You can do that, too, using C’s “continue” statement.

chapter 4. math and more loops 127

Consider the following example:

for (i=0; i<10; i++) {

printf ("Loop number %d\n", i);

if (i >= 5) {

continue;

}

printf ("This number is below 5.\n");

}

If we ran a program containing this code, it would print:

Loop number 0

This number is below 5.

Loop number 1

This number is below 5.

Loop number 2

This number is below 5.

Loop number 3

This number is below 5.

Loop number 4

This number is below 5.

Loop number 5

Loop number 6

Loop number 7

Loop number 8

Loop number 9

When the continue statement is acted upon, the computer skips

everything else in this trip around the loop and goes directly back to

the top, to start the next trip. Just like break, continue only affects

the innermost loop containing it.

Figure 4.10 shows another countdown example. This time, for some

reason, Mission Control has decided to omit some numbers from the

countdown. (Maybe they’re superstitious?)

As with the other countdown example, we can imagine an analogy

between this and searching for something in the real world. Imagine

that you have a stack of books, some of which are paperback and

some of which are hardback. You’re looking for a particular title, and

you remember that it’s a hardback book. You’ll go through the stack

quickly, discarding the paperbacks without even looking at them, and

proceeding down the stack.

128 practical computing for science and engineering

We can use a continue statement to do this kind of thing in a loop.

The continue causes the current trip around the loop to stop, and the

computer goes immediately back up to the top of the loop and starts

the next trip.

#include <stdio.h>
int main ()
{
 int n;
 for (n=10; n>0; n--) {
 if (n==5 || n==6) {

continue;
 }
 printf(“%d, ”, n);
 }
 printf("G0!\n");
}

10, 9, 8, 7, 4, 3, 2, 1, GO!
Output:

Note missing
numbers

Note missing
numbers

Figure 4.10: Using “continue” to
short-circuit a loop.

chapter 4. math and more loops 129

4.9. Writing a Two-Player Game
Let’s use use our new knowledge of while loops to write another

game. This time, we’ll write a two-player game in which the user plays

against the computer. It will be a version of an ancient game called

“Nim”.

There are more complicated versions of
Nim. Often it’s played by laying out a
pyramid of objects (such as the
matchsticks shown here), and only
allowing players to remove objects from
a single row during each turn.
Source: Wikimedia Commons

In this version of Nim, twelve coins are placed on a table, as in Figure

4.11. The players take turns picking up 1, 2, or 3 coins at a time (the

player is free to choose how many coins to take). The player who picks

up the last coin wins.

Program 4.6 plays this game. It starts out with 12 coins on the table by

setting the variable coins equal to 12. After telling the user the rules

(using some printf statements) the program begins a while loop.

Each time around the loop one of the players (user or computer) takes

some number of coins, and this number is subtracted from coins. The

while loop keeps going as long as the value of coins is greater than

zero.

Figure 4.11: Are you ready for a game of
“12-coin Nim”?
Source: Wikimedia Commons (1, 2, 3)

If you try playing this game, you’ll find that the computer always wins!

By employing a simple strategy, the computer can always win the game.

Can you understand how it works?5 5 There’s an excellent Wikipedia ar-
ticle about the game of Nim and the
mathematics behind it. You’ll also be
amused by Matt Parker’s explanation
of the game on his YouTube channel,
“Standup Maths”. Take a look if you
can’t figure out how the computer’s
strategy works.

Notice that the program uses a continue statement to keep users from

cheating. If the user picks a number other than 1, 2, or 3, the program

sends the user back to the top of the loop to try again.

https://commons.wikimedia.org/wiki/File:NimGame.svg
https://commons.wikimedia.org/wiki/File:Denier_à_l'effigie_de_Didia_Clara.jpg
https://commons.wikimedia.org/wiki/File:Denier_frappé_par_les_Lingons.jpg
https://commons.wikimedia.org/wiki/File:Didrachme_de_l'ile_de_Paros_à_l'effigie_de_Déméter.jpg
https://en.wikipedia.org/wiki/Nim
https://en.wikipedia.org/wiki/Nim
https://www.youtube.com/watch?v=9KABcmczPdg

130 practical computing for science and engineering

Also notice how the program switches between “Player 0” and “Player

1”. After each player’s turn, the variable nextplayer is set to a value

that indicates who the next player should be.

Program 4.6: nim.cpp

#include <stdio.h>

int main () {

int coins = 12;

int take;

int nextplayer = 0; // Player 0=user, 1=computer

int currentplayer;

printf ("There are %d coins.\n", coins);

printf ("You may take 1, 2, or 3 of them.\n");

printf ("Whoever gets the last coin wins.\n");

printf ("You are player 0, the computer is player 1.\n");

while (coins > 0) {

currentplayer = nextplayer;

printf ("-------- Player %d's Turn --------\n", currentplayer);

if (currentplayer == 0) {

printf ("How many coins will you take?: ");

scanf("%d", &take);

if (take > 3 || take < 1) {

printf ("You must take 1, 2, or 3. Try again\n");

continue;

}

nextplayer = 1;

} else {

take = 4 - take;

printf ("I will take %d of them.\n", take);

nextplayer = 0;

}

coins = coins - take;

printf ("There are now %d coins left.\n", coins);

}

printf("Player %d Wins!\n", currentplayer);

}

The computer’s

winning strategy

Player 0

Player 1

Keep looping until

all coins are gone

chapter 4. math and more loops 131

4.10. One More Kind of Loop
Programmers say that for loops and while loops are both “pre-test

loops”. Take a look at the partial program below, containing a for loop

and a while loop:

int nloops = 0;

int i;

for (i=0; i<nloops; i++) {

printf ("%d\n", i);

}

while (nloops > 0) {

printf ("%d\n", i);

}

Neither of these loops will print out anything, because their conditions

are never satisfied. In the first loop, nloops is zero, and i will never

be less than zero, and the second loop does nothing for a similar reason.

The statements in these loops will never be acted upon, not even once.

The C language offers a third kind of loop that’s a “post-test loop”.

This is the “do” loop (also known as the “do-while” loop). Consider

this example:

do {

printf ("%d\n", i);

} while (i < 0);

If we ran the example above, it would always print out something, no

matter what the value of i is. The statements inside a do-while loop

will always be acted upon at least once. After each trip through the

loop, the do-while statement’s condition is examined to see whether

it’s satisfied, determining whether to go around the loop again. A

do-while loop is sort of an upside-down while loop.

The important difference is that statements inside a do-while loop

will always be acted upon at least once, but there’s no guarantee that

statements inside a while loop will ever be acted upon. do-while

loops can be useful in cases where initial values are undetermined

before the loop starts.

132 practical computing for science and engineering

The general form of a do-while loop is this:

do {

BLOCK OF STATEMENTS

} while (CONDITION);

4.11. Estimating the Value of π

Take a look at Program 4.7. This program estimates the value of π

by using an approximation discovered in the 14th-Century by Indian

mathematician Madhava of Sangamagrama. He found that π was given

by the sum of the terms of an infinite series:

A π pie. Source: Wikimedia Commons

π =
√

12

(

1 −
1

3 · 3
+

1

5 · 32
−

1

7 · 33
+ · · ·

)

Notice that the size of term number n inside the parentheses is:

1

(1 + 2n) · 3n

and that the sign of the terms bounces back and forth between positive

and negative. The terms get smaller and smaller as the series goes on.

Program 4.7 starts calculating the terms in this series and adding them

up. It keeps going until it comes to a term that’s smaller than 10−11 (we

chose this value arbitrarily, deciding that we could ignore corrections

smaller than that). The program uses a do-while loop to do the

work. Notice that we use C’s pow function to get the value of 3n when

calculating each term, and the fabs function to find the absolute value

of the term.6 The alternating signs of the terms is taken care of by the 6 See Figure 4.2.

multiplier variable, which alternates between 1 and −1 (can you

see why?).

After each trip through the loop, the computer checks the absolute value

(since the terms alternate between positive and negative) of the current

term to see if it’s less than our cutoff value of 10−11. A do-while loop

https://commons.wikimedia.org/wiki/File:Pi_pie2.jpg

chapter 4. math and more loops 133

is more convenient than a while loop in this case, since we don’t know

what the value of the first term will be until we’ve gone through the

loop once.

At the end of the program, we print out our estimate of π and compare

it to the “actual” value as given by M_PI. Notice that we have to

multiply our sum by
√

12 to get π (see Madhava’s series, above). The

program’s output looks like this:

Pi = 3.141592653595635 after 21 terms.

Actual = 3.141592653589793

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 0 5 10 15 20

D
if
fe

re
n

c
e

 f
ro

m
 P

i

Term Number

Figure 4.12: The difference betwen our
estimate of π and the actual value, as we
add more terms to the sum. Note that
the vertical scale is logarithmic.

Program 4.7: findpi.cpp

#include <stdio.h>

#include <math.h>

int main () {

double sum = 0.0;

double term;

double multiplier = 1.0;

double small = 1.0e-11;

int nterms = 0;

do {

term = multiplier / ((1.0 + 2.0*nterms) * pow(3.0,nterms));

sum += term;

nterms++;

multiplier = -multiplier;

} while (fabs(term) >= small);

printf ("Pi = %.15lf after %d terms.\n", sum*sqrt(12.0), nterms);

printf ("Actual = %.15lf\n", M_PI);

}

134 practical computing for science and engineering

4.12. Conclusion
C provides a rich set of math functions and a versatile toolkit of loop

structures. Together, these allow us to write computer programs that

accomplish in seconds tasks that once took many hours of human labor.

To summarize some of the things we’ve talked about in this chapter:

• To use C’s math functions, you need to add #include <math.h>

to the top of your program.

• The math functions take arguments of type double, and return

double values.

• Several constants are defined in math.h, including M_PI and M_E.

• “for” loops are good for situations where you know in advance

how many times you want to go around the loop.

• while loops are good when you want to keep going until some

condition is met.

• do-while loops are good when you want to do a test after going

through the loop the first time.

chapter 4. math and more loops 135

Practice Problems
1. Create a modified version of Program 4.1 (the first version of the

timer.cpp program) that tells you how many square roots per sec-

ond your computer can do. Call the new program speedtest.cpp.

2. Write a program named clocktime.cpp that uses only addition

and j
¯
ust one modulo operator (see the example in Program 4.2) to

calculate what number the hour hand of a clock would be pointing

to after a given number of hours have passed. The program should

ask the user for the current hour, and then ask how many hours in

the future. For example, if the user says that the hour is currently 3,

and wants to know what the hour will be after 15 hours have passed,

the program should say “6”. Hint: It’s OK if your program prints

zero when the answer should really be 12.

3. Write a new program called square.cpp. The new program should

be like Program 4.3, except that:

(a) instead of θ, sin(θ) and cos(θ), the new program should print out

two columns: θ and
√

θ

(b) instead of going from zero to 2π, do it for 100 steps between zero

and ten.

4. Like trig tables, tables of logarithms were also very important to

scientists and engineers before calculators and computers were avail-

able7. One of the first tasks assigned to early computers was the 7 This Numberphile video
by Roger Browley shows
how log tables were used:
https://www.youtube.com/watch?v=VRzH4xB0GdM.

generation of these tables. Write a program named log.cpp that

uses a while loop to generate a list of numbers from 1 to 10, in

steps of 0.01, along with the natural logarithm of each number, as

given by C’s log function (see Figure 4.2). Make the program write

two columns, separated by a space: The first column should be the

number, and the second column should be its log.

Hints: Define two double variables, x and deltax. Set deltax =

0.01 and initially set x = 1. Then use a while loop to print x and

log(x). Then, before going around the loop again, add deltax to

x. Make the loop stop when x is no longer less than ten.

5. Imagine that a very generous bank offers you a nominal annual

interest rate of 100% on your investments. If you deposit $1,000 at

the beginning of the year and the bank adds 100% at the end of the

year, you’d end up with $2,000! Sweet!

Portrait of Jacob Bernoulli (1654-1705).
Source: Wikimedia Commons

But what if, instead of adding all the interest at the end of the year,

the bank gave you 50% interest after six months and another 50%

https://www.youtube.com/watch?v=VRzH4xB0GdM
https://commons.wikimedia.org/wiki/File:Jakob_Bernoulli.jpg

136 practical computing for science and engineering

after another six months? (A banker would say that the interest

was “compounded” two times per year.) In the middle of the year

you’d have $1,500. Adding another 50% to that at the end of the year

would give you a total of $2,250. Even better! And if the bank paid

us 25% four times per year we’d end up with $2,441, an even larger

amount. Compounding the interest more often apparently gives us

more money at the end of the year.

In the 17th Century, Jacob Bernoulli realized that you can find out

how much money you’ll have at the end of the year by multiplying

your original investment by:
 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 0 20 40 60 80 100

n

Figure 4.13: This is what a graph of
your interest.cpp program’s output
should look like. Notice that the value
rises rapidly at first, then levels of to a
value approaching e.

(1 +
1

n
)n

where n is the number of times per year that the interest is com-

pounded. He discovered that there’s a limit to how much money

you can make, even if you let n go to infinity. In this limit, the

expression above approaches a value of about 2.718. Today we know

this number as Euler’s Constant, e, the base of natural logarithms8. 8 e is perhaps the second most
important mathematical constant,
after π. If we think of π as the “circle
constant”, we might think of e as
the “growth constant”. It appears
in equations describing growth
and decay in every area of science.
For more information, see this
Numberphile video by James Grime:
https://www.youtube.com/watch?v=AuA2EAgAegE

So, the most we’d have at the end of the year would be about $2,718,

no matter how often the interest is compounded.

Write a program named interest.cpp that uses the pow function

(see Figure 4.2) to evaluate the mathematical expression above. For

each value of n from 1 to 100 print n and the expression’s value.

(The program’s output should be two columns of numbers.) Check

your program by making sure that the value approaches about 2.718

as n increases.

You can also graph your results by typing ./interest > interest.dat

and then using gnuplot to graph the data. To do this, start gnuplot

and type plot "interest.dat" with linespoints. The re-

sult should look something like Figure 4.13.

6. Write a program (call it baselpi.cpp) that uses a “do-while”

loop to sum up the terms of the series:

s =
1

12
+

1

22
+

1

32
+

1

42
+ · · ·

Notice that the terms keep getting smaller and smaller. Keep adding

terms until you come to a term that’s less than 10−6 (include this

https://www.youtube.com/watch?v=AuA2EAgAegE

chapter 4. math and more loops 137

term in your sum). Print out the sum and the number of terms,

clearly identifying which is which. Your program should also use

this sum to print an estimate of the value of π. How can it do this?

Read on!

Portrait of Leonhard Euler (1707-1783).
Source: Wikimedia Commons

This is a famous problem in the history of mathematics, known as

the “Basel Problem9”. Leonhard Euler was the first to solve this

9 See Wikipedia for much more informa-
tion.

problem, finding that the sum of this series approaches the value

π
2/6. This provides a way to check your program: Multiply the

sum by 6 and take the square root. You should get a number that is

approximately equal to π.

Hint: When C divides one integer by another, it assumes that you

want the answer to be an integer, too. So, if you type 1/i, where i

is an integer, C will chop off any decimal places in the answer. If

you want to preserve those decimal places, type 1.0/i instead. This

gives C a hint that you want to save things after the decimal place.

7. Many people think that everything in mathematics is boring, and

that there aren’t any mathematical discoveries remaining to be made.

Nothing could be farther from the truth. Just as there are still plenty

of unanswered questions in physics (for example: What is dark

matter?) there are also lots of unanswered questions in math. One

unsolved mathematical mystery is called the Collatz conjecture10, 10 See
https://www.youtube.com/watch?v=5mFpVDpKX70

and
https://en.wikipedia.org/wiki/Collatz_conjecture.

named after German mathematician Lothar Collatz. Let’s write

a program that illustrates the property of numbers that Collatz

observed.

Make a program named lothar.cpp that asks the user to enter a

starting number that’s an integer greater than 1. After the number

has been entered, the program should have a “while” loop that

does the following:

• If the number is even, divide it by 2.

• If the number is odd, multiply by 3 and add 1.

Lothar Collatz (1910-1990)
Source: Wikimedia Commons

The loop should keep doing this for as long as the result is not

equal to 1. Each time around the loop, print the current result. For

example, if the user enters the number 5, the program should print:

16

8

4

2

1

Hint: You can find out whether a number is even by using the

https://commons.wikimedia.org/wiki/File:Leonhard_Euler.jpg
https://en.wikipedia.org/wiki/Basel_problem
https://www.youtube.com/watch?v=5mFpVDpKX70
https://en.wikipedia.org/wiki/Collatz_conjecture
https://commons.wikimedia.org/wiki/File:Lothar_Collatz.jpg

138 practical computing for science and engineering

modulo operator (%). For example, if i%2 is zero, then i is even.

1

2

3

10

5

16

8

4

6

7

22

11

34

17

52

26

13

40

20

9

28

14

12

15

46

23

70

35

106

53

160

80

18 19

58

29

88

44

21

64

32

24

25

76

38

27

82

41

124

62

31

94

47

142

71

214

107

322

161

484

242

121

364

182

91

274

137

412

206

103

310

155

466

233

700

350

175

526

263

790

395

1186

593

1780

890

445

1336

668

334

167

502

251

754

377

1132

566

283

850

425

1276

638

319

958

479

1438

719

2158

1079

3238

1619

4858

2429

7288

3644

1822

911

2734

1367

4102

2051

6154

3077

9232

4616

2308

1154

577

1732

866

433

1300

650

325

976

488

244

122

61

184

92

30

33

100

50

36 37

112

56

39

118

59

178

89

268

134

67

202

101

304

152

42

43

130

65

196

98

49

148

74

45

136

68

48

51

154

77

232

116

54 55

166

83

250

125

376

188

57

172

86

60

63

190

95

286

143

430

215

646

323

970

485

1456

728

66

69

208

104

72

73

220

110

75

226

113

340

170

85

256

128

78 79

238

119

358

179

538

269

808

404

81

84

87

262

131

394

197

592

296

90 93

280

140

96

97

292

146

99

298

149

448

224

102

105

316

158

108 109

328

164

111

114 115

346

173

520

260

117

352

176

120

123

370

185

556

278

139

418

209

628

314

157

472

236

126

127

382

191

574

287

862

431

1294

647

1942

971

2914

1457

4372

2186

1093

3280

1640

820

410

205

616

308

129

388

194

132 133

400

200

135

406

203

610

305

916

458

229

688

344

138 141

424

212

144

145

436

218

147

442

221

664

332

150 151

454

227

682

341

1024

512

153

460

230

156

159

478

239

718

359

1078

539

1618

809

2428

1214

607

162 163

490

245

736

368

165

496

248

168

169

508

254

171

514

257

772

386

193

580

290

174 177

532

266

180 181

544

272

183

550

275

826

413

1240

620

186

187

562

281

844

422

211

634

317

952

476

189

568

284

192

195

586

293

880

440

198

199

598

299

898

449

1348

674

337

1012

506

253

760

380

201

604

302

204

207

622

311

934

467

1402

701

2104

1052

210

213

640

320

216

217

652

326

219

658

329

988

494

247

742

371

1114

557

1672

836

222 223

670

335

1006

503

1510

755

2266

1133

3400

1700

225

676

338

228

231

694

347

1042

521

1564

782

391

1174

587

1762

881

2644

1322

661

1984

992

234

235

706

353

1060

530

265

796

398

237

712

356

240241

724

362

243

730

365

1096

548

246 249

748

374

252

255

766

383

1150

575

1726

863

2590

1295

3886

1943

5830

2915

8746

4373

13120

6560

258 259

778

389

1168

584

261

784

392

264

267

802

401

1204

602

301

904

452

270 271

814

407

1222

611

1834

917

2752

1376

273

276 277

832

416

279

838

419

1258

629

1888

944

282

285

856

428

288

289

868

434

291

874

437

1312

656

294

295

886

443

1330

665

1996

998

499

1498

749

2248

1124

297

892

446

300

303

910

455

1366

683

2050

1025

3076

1538

769

306 307

922

461

1384

692

309

928

464

312

313

940

470

315

946

473

1420

710

355

1066

533

1600

800

318

321

964

482

324

327

982

491

1474

737

2212

1106

553

1660

830

415

1246

623

1870

935

2806

1403

4210

2105

6316

3158

1579

4738

2369

7108

3554

1777

5332

2666

1333

4000

2000

1000

500

330

331

994

497

1492

746

373

1120

560

333

336

339

1018

509

1528

764

342 343

1030

515

1546

773

2320

1160

345

1036

518

348 349

1048

524

351

1054

527

1582

791

2374

1187

3562

1781

5344

2672

354 357

1072

536

360

361

1084

542

363

1090

545

1636

818

409

1228

614

366

367

1102

551

1654

827

2482

1241

3724

1862

931

2794

1397

4192

2096

369

1108

554

372

375

1126

563

1690

845

2536

1268

378

379

1138

569

1708

854

427

1282

641

1924

962

481

1444

722

381

1144

572

384

385

1156

578

387

1162

581

1744

872

390

393

1180

590

396 397

1192

596

399

1198

599

1798

899

2698

1349

4048

2024

402 403

1210

605

1816

908

405

1216

608

408

411

1234

617

1852

926

463

1390

695

2086

1043

3130

1565

4696

2348

414

417

1252

626

420 421

1264

632

423

1270

635

1906

953

2860

1430

715

2146

1073

3220

1610

805

2416

1208

426

429

1288

644

432

435

1306

653

1960

980

438 439

1318

659

1978

989

2968

1484

441

1324

662

444

447

1342

671

2014

1007

3022

1511

4534

2267

6802

3401

10204

5102

2551

7654

3827

11482

5741

17224

8612

4306

2153

6460

3230

1615

4846

2423

7270

3635

10906

5453

16360

8180

4090

2045

6136

3068

1534

767

2302

1151

3454

1727

5182

2591

7774

3887

11662

5831

17494

8747

26242

13121

39364

19682

9841

29524

14762

7381

22144

11072

5536

2768

450 451

1354

677

2032

1016

453

1360

680

456

457

1372

686

459

1378

689

2068

1034

517

1552

776

462

465

1396

698

468 469

1408

704

471

1414

707

2122

1061

3184

1592

474

475

1426

713

2140

1070

535

1606

803

2410

1205

3616

1808

477

1432

716

480483

1450

725

2176

1088

486

487

1462

731

2194

1097

3292

1646

823

2470

1235

3706

1853

5560

2780

489

1468

734

492 493

1480

740

495

1486

743

2230

1115

3346

1673

5020

2510

1255

3766

1883

5650

2825

8476

4238

2119

6358

3179

9538

4769

14308

7154

3577

10732

5366

2683

8050

4025

12076

6038

3019

9058

4529

13588

6794

3397

10192

5096

2548

1274

637

1912

956

498

501

1504

752

504

505

1516

758

507

1522

761

2284

1142

571

1714

857

2572

1286

643

1930

965

2896

1448

510

511

513

1540

770

516

519

1558

779

2338

1169

3508

1754

877

2632

1316

522

523

1570

785

2356

1178

589

1768

884

525

1576

788

528529

1588

794

531

1594

797

2392

1196

534 537

1612

806

540 541

1624

812

543

1630

815

2446

1223

3670

1835

5506

2753

8260

4130

2065

6196

3098

1549

4648

2324

546 547

1642

821

2464

1232

549

1648

824

552

555

1666

833

2500

1250

625

1876

938

558

559

1678

839

2518

1259

3778

1889

5668

2834

1417

4252

2126

1063

3190

1595

4786

2393

7180

3590

1795

5386

2693

8080

4040

2020

1010

561

1684

842

564 565

1696

848

567

1702

851

2554

1277

3832

1916

570 573

1720

860

576

579

1738

869

2608

1304

582

583

1750

875

2626

1313

3940

1970

985

2956

1478

739

2218

1109

3328

1664

585

1756

878

588

591

1774

887

2662

1331

3994

1997

5992

2996

594 595

1786

893

2680

1340

597

1792

896

600

601

1804

902

603

1810

905

2716

1358

679

2038

1019

3058

1529

4588

2294

1147

3442

1721

5164

2582

1291

3874

1937

5812

2906

1453

4360

2180

606

609

1828

914

612 613

1840

920

615

1846

923

2770

1385

4156

2078

1039

3118

1559

4678

2339

7018

3509

10528

5264

618

619

1858

929

2788

1394

697

2092

1046

621

1864

932

624

627

1882

941

2824

1412

630 631

1894

947

2842

1421

4264

2132

633

1900

950

636

639

1918

959

2878

1439

4318

2159

6478

3239

9718

4859

14578

7289

21868

10934

5467

16402

8201

24604

12302

6151

18454

9227

27682

13841

41524

20762

10381

31144

15572

7786

3893

11680

5840

2920

1460

642

645

1936

968

648

649

1948

974

651

1954

977

2932

1466

733

2200

1100

654 655

1966

983

2950

1475

4426

2213

6640

3320

657

1972

986

660

663

1990

995

2986

1493

4480

2240

666

667

2002

1001

3004

1502

751

2254

1127

3382

1691

5074

2537

7612

3806

1903

5710

2855

8566

4283

12850

6425

19276

9638

4819

14458

7229

21688

10844

5422

2711

8134

4067

12202

6101

18304

9152

4576

2288

669

2008

1004

672

673

675

2026

1013

3040

1520

678

681

2044

1022

684 685

2056

1028

687

2062

1031

3094

1547

4642

2321

6964

3482

1741

5224

2612

690 691

2074

1037

3112

1556

693

2080

1040

696

699

2098

1049

3148

1574

787

2362

1181

3544

1772

702

703

2110

1055

3166

1583

4750

2375

7126

3563

10690

5345

16036

8018

4009

12028

6014

3007

9022

4511

13534

6767

20302

10151

30454

15227

45682

22841

68524

34262

17131

51394

25697

77092

38546

19273

57820

28910

14455

43366

21683

65050

32525

97576

48788

24394

12197

36592

18296

9148

4574

2287

6862

3431

10294

5147

15442

7721

23164

11582

5791

17374

8687

26062

13031

39094

19547

58642

29321

87964

43982

21991

65974

32987

98962

49481

148444

74222

37111

111334

55667

167002

83501

250504

125252

62626

31313

93940

46970

23485

70456

35228

17614

8807

26422

13211

39634

19817

59452

29726

14863

44590

22295

66886

33443

100330

50165

150496

75248

37624

18812

9406

4703

14110

7055

21166

10583

31750

15875

47626

23813

71440

35720

17860

8930

4465

13396

6698

3349

10048

5024

2512

1256

705

2116

1058

708 709

2128

1064

711

2134

1067

3202

1601

4804

2402

1201

3604

1802

901

2704

1352

714 717

2152

1076

720

721

2164

1082

723

2170

1085

3256

1628

726 727

2182

1091

3274

1637

4912

2456

729

2188

1094

732

735

2206

1103

3310

1655

4966

2483

7450

3725

11176

5588

738

741

2224

1112

744

745

2236

1118

747

2242

1121

3364

1682

841

2524

1262

750

753

2260

1130

756 757

2272

1136

759

2278

1139

3418

1709

5128

2564

762

763

2290

1145

3436

1718

859

2578

1289

3868

1934

967

2902

1451

4354

2177

6532

3266

1633

4900

2450

1225

3676

1838

919

2758

1379

4138

2069

6208

3104

765

2296

1148

768

771

2314

1157

3472

1736

774

775

2326

1163

3490

1745

5236

2618

1309

3928

1964

777

2332

1166

780 781

2344

1172

783

2350

1175

3526

1763

5290

2645

7936

3968

786

789

2368

1184

792

793

2380

1190

795

2386

1193

3580

1790

895

2686

1343

4030

2015

6046

3023

9070

4535

13606

6803

20410

10205

30616

15308

798

799

2398

1199

3598

1799

5398

2699

8098

4049

12148

6074

3037

9112

4556 801

2404

1202

804

807

2422

1211

3634

1817

5452

2726

1363

810

811

2434

1217

3652

1826

913

2740

1370

813

2440

1220

816

817

2452

1226

819

2458

1229

3688

1844

822 825

2476

1238

828 829

2488

1244

831

2494

1247

3742

1871

5614

2807

8422

4211

12634

6317

18952

9476

834 835

2506

1253

3760

1880

837 840843

2530

1265

3796

1898

949

2848

1424

846 847

2542

1271

3814

1907

5722

2861

8584

4292

849

852 853

2560

1280

855

2566

1283

3850

1925

5776

2888

858 861

2584

1292

864

865

2596

1298

867

2602

1301

3904

1952

870

871

2614

1307

3922

1961

5884

2942

1471

4414

2207

6622

3311

9934

4967

14902

7451

22354

11177

33532

16766

8383

25150

12575

37726

18863

56590

28295

84886

42443

127330

63665

190996

95498

47749

143248

71624

35812

17906

8953

26860

13430

6715

20146

10073

30220

15110

7555

22666

11333

34000

17000

8500

4250

2125

6376

3188

873

2620

1310

876

879

2638

1319

3958

1979

5938

2969

8908

4454

2227

6682

3341

10024

5012

882 883

2650

1325

3976

1988

885

2656

1328

888

889

2668

1334

891

2674

1337

4012

2006

1003

3010

1505

4516

2258

1129

3388

1694

894

897

2692

1346

900

903

2710

1355

4066

2033

6100

3050

1525

906

907

2722

1361

4084

2042

1021

3064

1532

909

2728

1364

912

915

2746

1373

4120

2060

918 921

2764

1382

924 925

2776

1388

927

2782

1391

4174

2087

6262

3131

9394

4697

14092

7046

3523

10570

5285

15856

7928

3964

1982

991

2974

1487

4462

2231

6694

3347

10042

5021

15064

7532

930

933

2800

1400

936

937

2812

1406

939

2818

1409

4228

2114

1057

3172

1586

942

943

2830

1415

4246

2123

6370

3185

9556

4778

2389

7168

3584

945

2836

1418

948

951

2854

1427

4282

2141

6424

3212

954

955

2866

1433

4300

2150

1075

3226

1613

4840

2420

957

2872

1436

960

961

2884

1442

963

2890

1445

4336

2168

966

969

2908

1454

972 973

975

2926

1463

4390

2195

6586

3293

9880

4940

978 979

2938

1469

4408

2204

981

2944

1472

984

987

2962

1481

4444

2222

1111

3334

1667

5002

2501

7504

3752

990

993

2980

1490

996 997

2992

1496

999

2998

1499

4498

2249

6748

3374

1687

5062

2531

7594

3797

11392

5696

This graph shows the path taken by
each of the integers up to 1,000 as they
work their way through the Collatz
process on their way to 1. As you can
see, the paths form a pretty shape, like
coral.
Source: Wikimedia Commons

You should find that any number you enter will generate a sequence

that ends in 1. Collatz speculated that this was always true for all

starting numbers, but nobody has ever been able to prove it. The

Collatz conjecture has been tested by computers for all numbers up

through 1060 and found to be true for each of them, but there might

be some huge number out there somewhere that doesn’t obey this

rule. Nobody knows.

8. Imagine that your algebra teacher has asked you to simplify the

expression 12x + 438. You suspect that there’s some common factor

of 12 and 438 that you could pull out, but how can you find it?

Fortunately, the ancient Greek mathematician Euclid provided us

with a simple recipe for finding the greatest common factor of two

numbers11. Let’s call the two numbers n1 and n2. Euclid’s method

11 This is also sometimes called the
“greatest common divisor” or “greatest
common denominator”.

works like this:

1) Divide n1 by n2 and find the remainder.

2) Now make n1 equal to n2, and make n2 equal to the remainder.

3) keep repeating steps 1 and 2 until you get to a remainder of zero.

At this point, the value of n1 will be the greatest common factor

of the original numbers.

Write a program named gcf.cpp that uses a “do-while” loop to

find the greatest common factor of two numbers by using Euclid’s

method. The program should start by asking the user for two

integers. When you run the program, it should look something like

this:

Enter first number: 12

Enter second number: 438

GCF is 6

Hint 1: Remember that the % operator gives you the remainder after

division.

Hint 2: If the remainder is rem, your loop should continue for as

long as rem != 0.

9. Write a program named sumto2.cpp that uses a do-while loop

to sum up the terms of the series:

https://commons.wikimedia.org/wiki/File:Collatz_orbits_of_the_all_integers_up_to_1000.svg

chapter 4. math and more loops 139

s =
1

1
+

1

2
+

1

4
+

1

8
+

1

16
+

1

32
+ · · ·

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2 4 6 8 10

Term Number

Size of term

Sum of terms

Figure 4.14: In the sumto2.cpp
program, as we add more terms, each
term becomes smaller and their sum
converges toward 2.

Notice that the denominators of the terms start with 1, and each de-

nominator is two times as large as the preceding one. Your program

should keep adding terms until it comes to one that’s smaller than

10−9 (include this term in your sum).

If we could add up an infinite number of such terms the sum would

be exactly 2. Since each term in the series is substantially smaller

than the preceding term, your program should show a sum that’s

approximately 2.

As we saw in Chapter 3 it’s possible to tell C how many decimal

places we want to show when printing a number. Inside your

program’s do-while loop, put a statement like this that prints the

number of terms so far, the value of each term, and the current sum

after adding that term:

printf ("%d %.20lf %.20lf\n", nterms, term, sum);

The “.20” between % and lf tells the program to print twenty digits

after the decimal point. By watching how the terms change, we can

see them get smaller and smaller, and we can see the sum get closer

and closer to 2.

Hint: To prevent your program from chopping off numbers after

the decimal point, use double variables to hold the values of the

denominators, the terms in the series, and the sum.

Boy with marbles.
Source: Wikimedia Commons

10. Imagine you have a bag containing a red marble, a green marble,

and a blue marble. You close your eyes, reach in and pull out two

marbles. What are the possible outcomes? Well, you could have

either:

• A red marble and a green marble,

• A green marble and a blue marble, or

• A red marble and a blue marble.

So there are three possible results.

We can calculate the number of possibilties for any number of mar-

bles in the bag (let’s call that number n), and any number of marbles

https://commons.wikimedia.org/wiki/File:Marbles,_Anuak,_Ethiopia_(11187838135).jpg

140 practical computing for science and engineering

pulled out (let’s call that k). The number of possibilities is given by:
(

n

k

)

=
n!

k!(n − k)!

where (n
k) is the called the “binomial coefficient” and is read like “n

choose k”. It tells you how many ways there are to choose k things

out of a collection of n things.

As you can see, the calculation involves factorials. C doesn’t have

a factorial function, but it has something else that can be used in

its place. It’s called tgamma, the “Gamma Function”, and it can be

used to give the value of factorials12. One tricky bit: For historical

12 Be careful! Some versions of C also
have a function named gamma, but
that’s something different, and should
be avoided.

reasons, n! = tgamma(n+1). So, to get 3! we’d use tgamma(3+1).

Note: tgamma returns a double value, so it’s important to put the

results of calculations using this function into double variables.

n k

(

n

k

)

2 1 2

2 2 1

3 1 3

3 2 3

3 3 1

7 1 7

7 2 21

7 3 35

7 4 35

7 5 21

7 6 7

Figure 4.15: A few values of

(

n

k

)

.

Now that you know all of that, write a program named marblechoice.cpp

that asks the user for n and k then prints the value of (n
k). You can

check your program with n = 7 and k = 3: the program should tell

you that there are 35 possible outcomes. (Figure 4.15 shows a few

more examples.) Make sure your program checks whether k is bigger

than n and gives an appropriate error message in that case. (You

can’t pull out more marbles than there are in the bag!)

11. The cosine function can be expressed as an infinite sum of terms13:

13 this is called a Taylor series.
cos x = 1 −

x2

2!
+

x4

4!
− · · ·

Each term in the series (including the first one) is of the form:

(−1)n

(2n)!
x2n

Where n = 0 for the first term, n = 1 for the second, and so forth.

Write a program named mycos.cpp that asks the user for an angle,

in radians, and calculates an approximate value for the cosine of

that angle by adding up terms of this series until it comes to a term

whose absolute value14 is less than 10−9. 14 We need to look at the absolute value
because some of the terms are negative.

The program should use a “do-while” loop and an integer variable

named n which starts with a value of zero.. Each time around the

loop, the program should calculate the value of the current term in

the series and add it to the current sum of all the terms15. (Let’s 15 Remember to set the sum equal to
zero before you start adding to it.store the value of the current term in a variable named term and

the value of the sum in a variable called sum.)

https://en.wikipedia.org/wiki/Taylor_series

chapter 4. math and more loops 141

As you can see, the calculation involves factorials. C doesn’t have

a factorial function, but it has something else that can be used in

its place. It’s called tgamma, the “Gamma Function”, and it can be

used to give the value of factorials16. One tricky bit: For historical 16 Be careful! Some versions of C also
have a function named gamma, but
that’s something different, and should
be avoided.

reasons, n! = tgamma(n+1). So, to get 3! we’d use tgamma(3+1).

Each time you calculate the value of a new term, print the current

values of n, term, and sum like this:

printf("%3d %23.20lf %23.20lf\n", n, term, sum);

The “23.20” between % and lf tells the program to print numbers

using 23 characters, with twenty digits after the decimal point. This

makes them line up nicely in columns. By watching how the terms

change, we can see them get smaller and smaller, and we can see the

sum get closer to the true value of cos x.

Add 1 to the value of n each time you go around the loop. At the

bottom of the loop (the “while” statement) the program should

check to see if the absolute value of the current term is still greater

than 10−9. The C math function fabs gives you the absolute value

of a number.

Serpentine walls at the University of
Virginia approximate the shape of sine
(or cosine) curves.
Source: Wikimedia Commons

If you give your program a value of 3.14 radians, its output should

look something like this:

0 1.00000000000000000000 1.00000000000000000000

1 -4.92980000000000018190 -3.92980000000000018190

2 4.05048800666666775072 0.12068800666666756882

3 -1.33120638501768939754 -1.21051837835102182872

4 0.23437790131643590485 -0.97614047703458595162

5 -0.02567635950910591297 -1.00181683654369191316

6 0.00191786844103015606 -0.99989896810266176708

7 -0.00010389788835813697 -1.00000286599101984031

8 0.00000426829841689953 -0.99999859769260290854

9 -0.00000013752848062504 -0.99999873522108351231

10 0.00000000356835738834 -0.99999873165272612496

11 -0.00000000007615276300 -0.99999873172887887574

So what good is all this? This is actually the way your calculator

finds the value of a cosine when you press the “cos” button. It

doesn’t have any magical mathematical knowledge of trigonometry.

It just uses a Taylor series to find an approximate value.

https://commons.wikimedia.org/wiki/File:Serpentine_wall_UVa_daffodils_2010.jpg

142 practical computing for science and engineering

12. The sine function can be expressed as an infinite sum of terms:

sin x = x −
x3

3!
+

x5

5!
− · · ·

Each term in the series is of the form:

(−1)n

(2n + 1)!
x2n+1

Using these facts, and the description given in Problem 11, write

a program named mysin.cpp that gives an approximate value for

the sine of an angle. Other than the formula for the terms in the

series, this program should be exactly like the program described in

Problem 11.

13. The exponential function (ex) can be expressed as an infinite sum of

terms:

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·

Each term in the series is of the form:

xn

n!

where n starts with a value of zero and 0! is, by definition, equal to

one.

Using these facts, and the description given in Problem 11, write a

program named myexp.cpp that gives an approximate value for ex.

Other than the formula for the terms in the series, and the fact that

it will ask for a value for x instead of an angle, this program should

be exactly like the program described in Problem 11.

In 2022, Emma Haruka Iwao took the
world record for calculating digits of π,
calculating its value to 100 trillion
digits.
Source: Wikimedia Commons

14. Gottfried Leibniz is one of several people who independently dis-

covered that
π

4
=

∞

∑
k=0

(−1)k

2k + 1

This relationship gives us a way to find an approximate value for

π. The right-hand side of the equation above is an infinite series of

terms of the form:
(−1)k

2k + 1

Since the denominator gets bigger as k increases, each term in the

series is a little smaller than the preceding one. To get an approximate

value for this infinite sum, we can just keep adding terms until the

terms get so small that we feel like we can ignore the rest of them.

https://en.wikipedia.org/wiki/Emma_Haruka_Iwao
https://commons.wikimedia.org/wiki/File:Emma_Haruka_Iwao_in_Morocco.jpg

chapter 4. math and more loops 143

Then we can get an approximate value for π by multiplying this sum

by 4 (see the left-hand side of the equation at the beginning).

Write a program named leibnizpi.cpp that uses this method to

calculate an approximate value for π. The program should use a

“do-while” loop and an integer variable named k which starts with

a value of zero.. Each time around the loop, the program should

calculate the value of the current term in the series and add it to the

current sum of all the terms17. (Let’s store the value of the current 17 Remember to set the sum equal to
zero before you start adding to it.term in a variable named term and the value of the sum in a variable

called sum.)

Each time you add a term to the series, print the current values of k,

term, and 4.0*sum like this:

printf("%d %.20lf %.20lf\n", k, term, 4.0*sum);

The “.20” between % and lf tells the program to print twenty digits

after the decimal point. By watching how the terms change, we can

see them get smaller and smaller, and we can see 4.0*sum get closer

and closer to π.

Add 1 to the value of k each time you go around the loop. At the

bottom of the loop (the “while” statement) the program should

check to see if the absolute value of the current term is still greater

than 10−5. The C math function fabs gives you the absolute value

of a number. (We need to look at the absolute value of the term

because some terms will be negative.)
 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0 20 40 60 80 100

Term Number

Figure 4.16: A graph of the output of
the leibnizpi.cpp program, showing
how the approximation zooms up and
down, eventually settling near the value
of π.

When you run your program, notice that the values converge toward

π very slowly. It should take about 5,000 terms before you get to one

that’s less than 10−5. That shows that this isn’t a very efficient way

to determine the value of π. Also notice that the value of 4.0*sum

bounces up and down: sometimes it’s larger than π and sometimes

it’s smaller. We can see this by graphing the program’s output. Run

your program again, like this:

./leibnizpi > leibnizpi.dat

and then start up gnuplot and give it these commands:

set xrange [0:100]

plot "leibnizpi.dat" using 3 with lines

The “using 3” tells gnuplot to plot the numbers from column 3 of

144 practical computing for science and engineering

your program’s output. The “set xrange [0:100]” tells gnuplot

to zoom in on the first part of the program’s output, when the terms

are changing a lot. The result should look like Figure 4.16.

15. Musicians usually organize sound into octaves, where an octave is

a range that starts at some base frequency and goes up to twice

that starting frequency. In music from the European tradition, an

octave is typically divided into twelve sections, each starting with a

different frequency, or “tone”.

Tone Frequency Frequency/Base

0 440.00 1.00

1 466.16 1.06

2 493.88 1.12

3 523.25 1.19

4 554.37 1.26

5 587.33 1.33

6 622.25 1.41

7 659.26 1.50

8 698.46 1.59

9 739.99 1.68

10 783.99 1.78

11 830.61 1.89

12 880.00 2.00

Figure 4.17: Twelve tones, starting with
a base frequency of 440 Hz. The table
also shows a thirteenth tone, which is
just twice the base frequency and is the
beginning of the next octave.

Figure 4.17 shows a set of twelve tones that starts with a base fre-

quency of 440 Hz18. Each of the tones is obtained by multiplying the

18 This is the frequency of the A above
middle C on a piano.

preceding term by a constant ratio, which we’ll call r. If we want

to get to twice the original frequency after twelve steps, that means

that r has to be equal to 12
√

2 (the twelfth root of two)19.

19 This is called the 12-tone even-
tempered system of tuning.

Write a program named 12tone.cpp that prints the data shown in

Figure 4.17. To do this, the program should devine a variable named

r, and we’ll need to set it to 12
√

2. (Hint: Use the pow function to

raise 2 to the 1.0/12 power.) Then the program should have a “for”

loop that prints tone number (0 to 12), frequency, and the ratio of

frequency to base frequency for each of the tones. The results should

look like the numbers in Figure 4.17.

