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k(UnFq))

1. Preliminary observations, notation and statement of results.

The aim of this paper is to provide a framework to attack the following conjec-

ture:

(C) For all n ∈ N, there is a polynomial fn(x) ∈ Z[x] such that

k(Un(Fq)) = fn(q) for all Fq.

If G is a group, k(G) denotes the cardinality of the set ccl(G) of conjugacy classes

of G. If F is a field, then GLn(F ) is a (B,N)−pair, and I set

U = Un(F ), H = H(F×) = the diagonal matrices in GLn(F ),

(1.1) N = the monomial matrices in GLn(F ),

W = N/H, P = permutation matrices,

and I use the isomorphism

(1.2)

ιn = ι : Sn → P

σ 7→
n∑
i=1

ei,iσ = σι.

The iota is often suppressed, and when context permits, Sn, P and W are

coalesced.

This notation is standard, and when it is helpful for reasons of clarity to specify

n,

I write Un,Hn, . . . for U,H, . . .
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The group G×G acts on G by the rule

(1.3)
G× (G×G)→ G

(g, (x, y)) 7→ g ◦ (x, y) = x−1gy.

If Γ ≤ G×G, X is a Γ−set, and x ∈ X, then Γx denotes the stabilizer of x in Γ.

Naturally, we make use of the diagonal map

(1.4)
δ : G→ G×G

g 7→ δ(g) = (g, g).

Let Un(F ) be the ring of strictly upper triangular n × n matrices over F , so

that 1 + Un(F ) = Un(F ). Since g−1(1 + u)g = 1 + g−1ug, Un(F ) and Un(F ) are

isomorphic δ(Un(F ))−sets, and Un(F )× Un(F ) stabilizes Un(F ). Since

(1.5) Un(F ) =
n−1⋃
d=0

Ud,n(F ),

where Ud,n(F ) is the set of elements of Un(F ) of rank d, and since U0,n(F ) = {0},

we get

(1.6) k(Un(Fq)) = 1 +
n−1∑
d=1

ad,n(q),

where ad,n(q) is the number of orbits of δ(Un(Fq)) in Ud,n(Fq). It is the ad,n(q)

which are studied in this paper. If f : X → Y is a map, set

(1.7) D(f) = X, R(f) = Y, im(f) = f(X).

If m,n ∈ Z, set

(1.8) [m,n] = {z ∈ Z|m ≤ z ≤ n}.
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Set

(1.9) An−1 = {(z1 . . . , zn) ∈ Zn|z1 + z2 · · ·+ zn = 0}

and let
∑

=
∑
n−1 be the corresponding root system:

(1.10)
∑

= {ei − ej |i 6= j}

where {ei} is the standard basis for Zn, and by abuse, is the standard basis for

Rn for every commutative ring R with 1. The set
∑+ of positive roots is {r =

ei− ej |i < j} and
∑− = −

∑+. (The positive elements of Rn are those whose first

nonzero coordinate is positive). If S ⊆ [1, n]2, R+(S) denotes the set of positive

roots ei−ej such that (i, j) ∈ S, and R−(S) denotes the set of negative roots ei−ej

such that (i, j) ∈ S.

If R ⊆
∑

we say that

R is closed if and only of (R+R) ∩
∑
⊆ R.

When R is a closed, set

(1.11) Un(R,F ) = 〈Xr(F )|r ∈ R〉.

Here

(1.12) xr(t) = 1 + teij if r = ei − ej ∈
∑

,

and

(1.13) Xr(F ) = 〈xr(t)|t ∈ F 〉.
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If R ⊆
∑+, then we adopt the convention that

(1.14) R′ is the complement of R in
∑+

.

If ω is in Sn, P or W , set

(1.15) Rω = {r ∈
∑+

| rω < 0},

and let ω0 be the unique element (of Sn, P, or W , as the case may be) such that

(1.16) Rω0 =
∑+

.

Thus, iω0 = n + 1 − i for all i ∈ [1, n] and if I ∈ Pd([1, n]), then since [1, n] =

Iω0

·
∪ I ′ω0, it follows that (I ′)ω0 = (Iω0)′ where ′ now denotes complementation in

[1, n]. Set

Un,ω(F ) = Uω(F ) = 〈Xr(F )|r ∈ Rω〉.

Then we have the basic result that

(1.18) U(F ) = Uω(F ) · Uωω0(F ), Uω(F ) ∩ Uωω0(F ) = 1.

We next record that

(1.19)

if R,R′ are complementary sets of roots in
∑+

and both are closed, then there is ω ∈W such that

R = Rω.

This easily proved fact is helpful in this paper.

The set of all d−element subsets of the set S is denoted by Pd(S). If I, J ∈

Pd([1, n]), then

(1.20) λ(I, J) is the unique order-preserving map from I to J,
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(1.21) λ−(I, J) is the unique order-reversing map from I to J,

with the convention that λ−(I, J) = λ(I, J) if d = 1. Also π(I) is defined:

(1.22)
π(I) is the unique element of Sn which agrees with λ(I, [1, d]) on I and

agrees with λ(I ′, [d+ 1, n]) on I ′.

And ρ(I) is defined as the unique element of Sn which agrees with

λ−(I, [n− d+ 1, n]) on I and agrees with λ−(I ′, [1, n− d]) on I ′. A picture of ρ(I)

might look something like

(1.23)

I I ′

o××× ×o××

ρ(I)

×× o× ×××o

[1, n− d] [n− d+ 1, n]

We check directly that

(1.24) U(R+(I × I ′), F ) = Uπ(I′)(F ),

with analogous equalities for other subsets [1, n]2 which have suitable box-like prop-

erties.

We embed Sd in Sn in the usual way by extending each σ in Sd to the element

of Sn which agrees with σ on [1, d] and fixes every element of [d+ 1, n]. Similarly,

we embed GLd(F ) in GLn(F ), sending g in GLd(F ) to(
g 0
0 1n−d

)
.

If I, J ∈ Pd[1, n], set

(1.25)
Cn(I, J) = {ω ∈ Sd|i < iπ(I)ωπ(J)−1

for all i ∈ I}
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(1.26) Pn(I, J) = {ωι|ω ∈ Cn(I, J)}.

Cn(I, J) is often empty, but we study carefully the set of triples (I, J, ω), where

I, J ∈ Pd([1, n]) and ω ∈ Cn(I, J). Suppose (I, J, ω) is such a triple. Write

(1.27) I = {i1, . . . , id} J = {j1, . . . , jd}

i1 < i2 < · · · < id, j1 < j2 < · · · < jd. Hence, for m ∈ [1, d], imπ(I) =

m,mπ(J)−1 = jm, and so imπ(I)ωπ(J)−1 = (mω)π(J)−1 = jmω and so (1.25)

yields

(1.28) im < jmω, m ∈ [1, d].

I continue to examine (I, J, ω). Since [1, n] = I
·
∪ I ′, we have

J = I ∩ J
·
∪ I ′ ∩ J,

and similarly,

I = I ∩ J
·
∪ I ′ ∩ J,

So d = |J | = |I ∩ J |+ |I ′ ∩ J |, d = |I| = |I ∩ J |+ |I ∩ J ′|, so

|I ′ ∩ J | = |I ∩ J ′|.

Since id < jdω ≤ jd, we get jd /∈ I, and so I 6= J . Since |I| = |J |, this forces

(1.29) I ′ ∩ J 6= φ, I ∩ J ′ 6= φ.
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Let Λ = Λ(I, J) be the set of all maps λ with D(λ) ⊆ I ′ ∩ J,R(λ) = I ∩ J ′, such

that

(1.30)
(i) λ : D(λ)→ I ∩ J ′ is an injection.

(ii) a < aλ for all a ∈ D(λ).

I adopt the convention that the empty map is in Λ. This is the map λ with

D(λ) = φ, R(λ) = I ∩ J ′. If, for example, id < j1, then Λ consists only of the

empty map. We shall, however, meet some large Λ.

It is extremely helpful to observe that

(1.31) D(λ) ⊂ I ′ ∩ J for all λ ∈ Λ.

For if D(λ) = I ′ ∩ J , then λ is a bijection between I ′ ∩ J and I ∩ J ′, and since

λ is increasing by (1.30. ii), we get∑
a∈I′∩J

a <
∑

b∈I∩J′
b,

and so ∑
a∈J

a <
∑
b∈I

b.

But ∑
b∈I

b =
∑

m∈[1,d]

im <
∑

m∈[1,d]

jmω =
∑

m∈[1,d]

jm =
∑
a∈J

a.

So (1.31) holds.

We next consider a 4-tuple (I, J, ω, λ), where ω ∈ Cn(I, J), λ ∈ Λ(I, J). For each

field F , I define a subgroup Γ = Γ(I, J, λ, F ) of Ud(F ) × Ud(F ), by giving a set G

of generators. Set

(1.32)

A = D(λ), C = I ′ ∩ J\A,

B = D(λ)λ, D = I ∩ J ′\B,

π1 = π(I), π2 = π(J).
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We take G to be the set of displayed elements.

(1.33) (Ud(R+(Dπ1 × [1, d]), F ), 1).

(1.34) (1, Ud(R+([1, d]× Cπ2), F )).

(1.35)
(xiπ1,jπ1(t),xiπ2,jπ2(t)), t ∈ F,

ei − ej ∈ R+(I ∩ J × I ∩ J).

(1.36)
(xaλπ1,a′λπ1(t),xaπ2,a′π2(t)), t ∈ F,

a, a′ ∈ A, a < a′, aλ < a′λ.

(1.37)
(xaλπ1,jπ1(t),xaπ2,jπ2(t)), t ∈ F, a ∈ A,

j ∈ I ∩ J, aλ < j.

(1.38)
(xjπ1,aλπ1(t), xjπ2,aπ2(t)), t ∈ F,

j ∈ I ∩ J, a ∈ A, j < a.

This gives us Γ(I, J, λ, F ). Let

(1.39)
f(I, J,ω, λ, q) be the number of orbits of

Γ(I, J, λ,Fq) on Ud(Fq)ωιUd(Fq).

The appearance of ι in (1.39) makes clear that we are to examine Ud(Fq)PdUd(Fq).

The Cartan subgroup has disappeared. It is to be understood that Γ ≤ GLd(F )×

GLd(F ) and that Ud(F )ωιUd(F ) ⊆ GLd(F ), so that (1.3) applies.

Theorem 1. If 1 ≤ d ≤ n− 1, then

ad,n(q) =
∑

(q − 1)d+|D(λ)| · f(I, J, ω, λ, q),

where the sum is over all 4-tuples (I, J, ω, λ) such that I, J ∈ Pd([1, n]), ω ∈ Cn(I, J), λ ∈

Λ(I, J).
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Theorem 2. If I, J ∈ Pd([1, n]) and λ ∈ Λ(I, J), then there are σ1, σ2, τ1, τ2 ∈ Sd

such that for all fields F , there are exact sequences

1→ Uτ1(F )→ Γ(I, J, λ, F )
p1→ Uσ1(F )→ 1,

1→ Uτ2(F )→ Γ(I, J, λ, F )
p2→ Uσ2(F )→ 1,

where pi is the projection of Γ to the ith factor of Ud(F )× Ud(F ).

One of the building blocks in the proofs of Theorems 1 and 2 is of independent

interest.

Theorem 3. Suppose I, J ∈ Pd([1, n]). For each non empty λ ∈ Λ(I, J), and each

field F , set

T (λ,F ) =

 ∏
a∈D(λ)

xa,aλ(ta)|ta ∈ F×
 ,

T (I, J, F ) = {1} ∪
⋃
T (λ, F ),

where the union is over the non empty λ ∈ Λ(I, J). Then

Un(F ) =
·⋃

g∈T (I,J,F )

Uρ(J′)(F )gUρ(I)(F ).

Theorem 3 gives an explicit description of the double coset space

Uρ(J′)(F )\Un(F )/Uρ(I)(F ),

for all pairs of d−element subsets of [1, n] and fields F . This space is the disjoint

union of copies of F×
h

, where h ranges over a multi set of non negative integers,

precisely one of which is zero.

The stabilizer of E in G×G.

Set G = GLn(F ),Γ = G × G, Ed = E =
d∑
i=1

eii, where 1 ≤ d ≤ n − 1, and F

is a field. Denote by Mn(F ) the set of n × n matrices over F . The group Γ acts
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on Mn(F ), and so Γ acts on dMn(F ), the set of elements of Mn(F ) of rank d. The

action is the usual one

Mn(F )× Γ→Mn(F )

(M, (g, g′)) 7→M ◦ (g, g′) = g−1Mg′.

Since Γ acts transitively on dMn(F ), and since E ∈ dMn(F ), every element of

dMn(F ) is of the form P−1EQ, where (P,Q) ∈ Γ. The representation is not unique.

I propose to remedy this.

We examine (g, g′) ∈ ΓE . Write

g =
(
α β
γ δ

)
, g′ =

(
α′ β′

γ′ δ′

)
,

where α, α′ ∈Md(F ). We have

(
α 0
γ 0

)
= gE = eg′ =

(
α′ β′

0 0

)
.

so

α = α′, γ = 0, β′ = 0.

Since g and g′ are non singular, we get that α ∈ GLd(F ),

g =
(
α β
0 δ

)
, g′ =

(
α 0
γ′ δ′

)
.

Set

P d0 = P0 =
{(

α β
0 δ

)∣∣∣∣α ∈ GLd(F ), δ ∈ GLn−d(F ),

β ∈Md,n−d(F )},

P 0
d = P 0 =

{(
α 0
γ δ

)∣∣∣∣α ∈ GLd(F ), δ ∈ GLn−d(F ),

γ ∈Mn−d,d(F )}
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Thus,

ΓE = {(g, g′) ∈ P0 × P 0|EgE = Eg′E}.

3. The coset structure of P0 in G.

We study the action of G×P0 on G×G. I construct two sets of representatives

for the set {gP0|g ∈ G} of cosets of P0 in G. I call them T0 and T ′0. I begin with

M = (αi,j) ∈ G (G = GLn(F )).

For i ∈ [1, n], set

vi = (αi1, αi2, . . . , αid) ∈ F d.

Set V0 = 0, Vi =
i∑

j=1

Fυj . This gives us a chain V0 ⊆ V1 ⊆ · · · ⊆ Vn of subspaces

of F d. Set ri = dimVi, so that

0 = r0 ≤ r1 ≤ · · · ≤ rn = d,

the equality holding since row and column rank coincide, and since M is non sin-

gular, so that its columns are linearly independent.

Since Vi = Vi−1 + Fυi, we get

ri−1 ≤ ri ≤ ri−1 + 1, i ∈ [1, n].

Since d = rn =
n−1∑
i=0

(ri+1 − ri), there is I ∈ Pd([1, n]) such that

ri =
{
ri−1 + 1 if i ∈ I.
ri−1 if i ∈ I ′.

From the construction of the υj , we get that for each j ∈ I ′, there are cij ∈

F, i ∈ I, i < j, such that

(3.1) υj =
∑

cijυi.
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Set I = I(M). We check that I(M) = I(Mg) for all g ∈ P0. This equality

obviously holds if g ∈ Hn(F×), while if g = xαβ(t), and (α, β) ∈ ([1, d] × [1, n]) ∪

([d+1, n]× [d+1, n]), the equality is easily checked, using once again that row rank

and column rank coincide. Indeed, if Mxαβ(t) = M ′ = (a′ij), then for all i ∈ [1, n],

the matrices  a11 . . . a1d
...
ai1 . . . aid

 ,

 a′11 . . . a′1d
...
a′i1 . . . a′id


have the same column rank. Since Hn(F×) and {xαβ(t)|t ∈ F, (α, β) ∈ ([1, d] ×

[1, n]) ∪ ([d+ 1, n]× [d+ 1, n])} generate P0, I(M) is constant on MP0.

Set x(M) =
∏
xji(−cij), where j ∈ I ′, i ∈ I, i < j, and where the cij are given

in (3.1). The order of the product is immaterial, since U(R−(I ′× I), F ) is abelian.

Set M̃ = x(M)M = (ãij). Thus,

ãij = 0 for all i ∈ I ′, j ∈ [1, d].

This tells us that π(I)−1M̃ ∈ P0. It would be more accurate to write (π(I)ι)−1

in place of π(I)−1, but by abuse, I omit the iota. So

(3.2) M ∈ U(R−(I ′ × I), F )π(I)P0.

Set

(3.3) T ′0 =
⋃

I∈Pd([1,n])

U(R−(I ′ × I), F )π(I).

Since I(M) = I(Mg) for all M ∈ G, f ∈ P0, it is straightforward to check that

T ′0P0 = G,T ′0
−1T ′0 ∩ P0 = {1}.
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Set

T 0 =t T ′0,

the set of transposes of elements of T ′0. Since tP0 = P 0, and since tπ(I) = π(I)−1,

and since tU(R−(I ′ × I), F ) = U(R+(I × I ′), F ), it follows that

(3.4) T 0 =
⋃

I∈Pd([1,n])

π(I)−1U(R+(I × I ′), F ),

(3.5) P 0T 0 = G, P 0 ∩ T 0T 0−1 = {1}.

We start again. Set W0 = 0,W1 = Fυn,

Wj =
k=n∑

k=n−j+1

Fυk.

Then W0 ⊆ W1 ⊆ · · · ⊆ Wn, and if we set si = dimWi, then 0 = s0 ≤ s1 ≤ · · · ≤

sn = d. So there is J ∈ Pd(n) such that

sj − sj−1 =
{

1 if j ∈ J.
0 if j ∈ J ′.

Thus, we get, for j ∈ J ′,

υj =
∑

c′jkυk

where c′jk ∈ F , and the sum is over k ∈ I, k > j. Set

M̃ = xM = (ãij),

where x = x(M) =
∏
xjk(−c′jk), where the sum is over j ∈ I ′, k ∈ I, j < k. Thus

ãij = 0 for all i ∈ J ′, j ∈ [1, d].
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Hence, π(J)−1M̃ ∈ P0, or equivalently,

M ∈ x(M)−1π(J)P0.

Set

T0 =
⋃

j∈Pd[1,n]

U(R+(J ′ × J), F )π(J).

Then we have shown that

(3.6) T0P0 = G, T−1
0 T0 ∩ P0 = {1}.

Putting these pieces together, we conclude that

(3.7) Every X ∈ dMn(F ) has a representation as

X = t0EgEt
0, t0 ∈ T0, t

0 ∈ T 0, g ∈ GLd(F ).

In addition, we get that if X = t′0Eg
′Et0′, where t′0 ∈ T0, t

0′, g′ ∈ GLd(F ), then

t0 = t′0, t
0 = t0′, g = g′. I call (3.7) the normal form of X. Note also that if t0 ∈ T0,

then t0 = x1π(I1), x1 ∈ U(R+(I ′1× I1), F ), I1 ∈ Pd[1, n], and if t0 = x2π(I2), where

x2 ∈ U(R+(I ′2 × I2), F ), I2 ∈ Pd([1, n]), then x1 = x2, I1 = I2, and similarly for t0.

Thus, if X ∈ dMn(F ), and

X = xπ(I)EgEπ(J)−1y,

where x ∈ U(R+(I ′ × I), F ), y ∈ U(R+(J × J ′), F ), g ∈ GLd(F ), then the 5-tuple

(x, I, g, J, y) is uniquely determined by X.

If g ∈ GLd(F ), then

g = u1hωu2, u1, u2 ∈ Ud(F ), h ∈ Hd(F×), ω ∈ Pd,
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and so

X = xπ(I)Eu1hωu2Eπ(J)−1y.

Note that

π(I)EUd(F ) = Un(R+(I × I), F )π(I)E,

and

Ud(F )Eπ(J)−1 = Eπ(J)−1Un(R+(J × J), F ).

Thus

X ∈ Un(F )π(I)EhωEπ(J)−1Un(F ),

whence

X ∈ Ud,n(F )⇔ π(I)EhωEπ(J)−1 ∈ Ud,n(F ).

If we note that for all i ∈ I ′,

eiπ(I)E = 0,

we conclude that

(3.8) X ∈ Ud,n(F )⇔ i < iπ(I)ωπ(J)−1 for all i ∈ I.

By (1.25), we conclude that

(3.9) Ud,n(F ) =
⋃
Un(F )π(I)EhωιEπ(J)−1Un(F ),

where the union is over all 4-tuples (I, J, ω, h), I, J ∈ Pd([1, n]), ω ∈ Cn(I, J), h ∈

Hd(F×).

4. (I, J, ω).
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I examine the process whereby an element of

Un(F )π(I)EhωEπ(J)−1Un(F )

is put in normal form. If u ∈ Un(F ), then by (1.18) and (1.24),

u = xũ, x ∈ U(R+(I ′ × I), F ),

ũ ∈ U(R+(I×I)∪R+([1, n]×I ′), F ), so ũ = tz, t ∈ U(R+(I×I), F ), z ∈ U(R+(I×

I ′), F ). Then zπ(I)E = π(I) · xπ(I)E = π(I)E, whence uπ(I)E = xtπ(I)E =

xπ(I)Etπ(I), with tπ(I) ∈ Ud(F ). A similar argument with Eπ(J)−1Un(F ) leads to

the normal form of the element being examined. There are 4 relevant subgroups of

Un(F ) which are involved in this process:

U(R+(I ′ × I), F ), U(R+(I × I) ∪R+([1, n]× I ′), F ) for π(I),

U(R+(J ′ × [1, n]) ∪R+(J × J), F ), U(R+(J × J ′), F ) for π(J)−1.

Since

R+(I × I) ∪R+([1, n]× I ′) = Rρ(I),

and

R+(J ′ × [1, n]) ∪R+(J × J) = Rρ(J′),

the (Uρ(J′)(F ), Uρ(I)(F )) double cosets in Un(F ) begin to emerge.

Pick u, u′ ∈ Un(F ) and consider the δ(Un(F )) orbit O which contains

uπ(I)EhωEπ(J)−1u′.
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Let

O′ = {X ∈ O| the normal form for X is

1 · π(I)EgEπ(J)−1y, y ∈ Uρ(J′)ωo(F ),

g ∈ Ud(F )hωUd(F )}.

Note that Uρ(J′)ω0(F ) is just another name for U(R+(J × J ′), F ). Obviously,

O′ 6= φ, since

uπ(I)EhωEπ(J)−1u′ ◦ δ(u) ∈ O′.

Next we observe that if Y ∈ O′, x ∈ Un(F ) and Y ◦ δ(x) ∈ O′, then x−1 ∈

Uρ(I)(F ), in which case O′ = O′ ◦ δ(x). So

δ(Uρ(I)(F )) is the stabilizer of O′ in

δ(Un(F )),

and O′ is a δ(Uρ(I)(F ))−orbit. Let

L(I, J, h, w) = {w ∈ Un(F )π(I)EhωEπ(J)−1Un(F )|

the normal form for w is

1 · π(I)EgEπ(J)−1y, y ∈ Uρ(J′)ω0(F ),

g ∈ Ud(F )hωUd(F ).}.

We have just shown that there is a bijection between the δ(Un(F )) orbits on

Un(F )π(I)EhωEπ(J)−1Un(F ) and the δ(Uρ(I)(F )) orbits on L(I, J, h, ω). Note
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that since Eg = gE = EgE for all g ∈ GLd(F ), we can dispense with one of the

E′s in EgE, and write Eg. Next, we prove that

if g, g′ ∈ GLd(F ), y, y′ ∈ Uρ(J′)ωo(F ) and

π(I)Egπ(J)−1y and π(I)Eg′π(J)−1y′

are in the same δ(Uρ(I)(F ))−orbit, then

Uρ(J′)(F )yUρ(I)(F ) = Uρ(J′)(F )y′Uρ(I)(F ).

For suppose that

π(I)Eg′π(J)−1y′ = π(I)Egπ(J)−1y ◦ δ(u),

where u ∈ Uρ(I)(F ). Write u−1 = w · w′, where w′ ∈ U(R+([1, n] × I ′), F ), w ∈

U(R+(I × I), F ), set u1 = wπ(I) ∈ Ud(F ), and get

π(I)Eg′π(J)−1y′ = π(I)Eu1gπ(J)−1yu.

Write yu = zy1, where z ∈ Uρ(J′)(F ), y1 ∈ Uρ(J′)ω0(F ). Then write z =

z2z1, z2 ∈ U(R+(J ′ × [1, n]), F ), z1 ∈ U(R+(J × J), F ), set u2 = z
π(J)
1 ∈ Ud(F ),

and get
π(I)Eu1gπ(J)−1yu = π(I)u1gEπ(J)−1z2z1y1

= π(I)u1gEπ(J)−1z1y1

= π(I)u1gu2Eπ(J)−1y1

and so by uniqueness of the normal form,

g′ = u1gu2, y′ = y1.
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Hence y′ = y1 = z−1yu ∈ Uρ(J′)(F )yUρ(I)(F ), and our assertion is proved.

To continue the discussion, I assume for the remainder of this section that The-

orem 3 is available. By that theorem and by what we have just shown there is

T ∈ T (I, J, F ) such that every element π(I)Egπ(J)−1y of O′, with g ∈ GLd(F ), y ∈

Uρ(J′)ω0(F ), has the property that y ∈ Uρ(J′)(F )TUρ(I)(F ). We now observe that

T (I, J, F ) ⊆ Uρ(J′)ω0(F ), a remark which could have been made earlier and is

hardly surprising, but nevertheless needs to be mentioned since it means that

π(I)Egπ(J)−1T is in normal form for all g ∈ GLd(F ), T ∈ T (I, J, F ). So we

are led to

Ud,n(I, J, h, ω, T, F ) =

{Z ∈ Ud,n(F )|

Z = π(I)Egπ(J)−1T, g ∈ Ud(F )hωUd(F )}.

We need to decide when two elements of this set are in the same δ(Un(F ))−orbit,

since Theorem 3 tells us that every orbit of δ(Un(F )) on Ud,n(F ) has a nonempty in-

tersection with Ud,n(I, J, h, ω, T, F ) for a uniquely determined 5-tuple (I, J, h, ω, T )

where I, J ∈ Pd([1, n]), ω ∈ Cn(I, J), h ∈ Hd(F×), T ∈ T (I, J, F ).

Suppose π(I)Eg1π(J)−1T, π(I)Eg2π(J)−1T ∈ Ud,n(I, J, h, ω, T, F ) and u ∈ Un(F )

satisfy

π(I)Eg2π(J)−1T = π(I)Eg1π(J)−1T ◦ δ(u).

As we have already seen, this forces u ∈ Uρ(I)(F ), which in turn guarantees that

u−1π(I)Eg1 = π(I)Eu1g1
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for some u1 ∈ Ud(F ). So we get

π(I)Eg2π(J)−1T = π(I)Eu1g1π(J)−1Tu.

This in turn forces

Tu = vT, v ∈ Uρ(J′)(F ),

and so (v, u) ∈ (Uρ(J′)(F )× Uρ(I)(F ))T . Thus

π(I)Eg2π(J)−1T =

π(I)Eu1g1π(J)−1vT = π(I)Eu1g1u2π(J)−1T

for some u2 ∈ Ud(F ). So g2 = u1g1u2. Conversely, if (v, u) ∈ (Uρ(J′)(F ) ×

Uρ(I)(F ))T and u1, u2 are defined by

u−1π(I)E = π(I)Eu1,

Eπ(J)−1v = u2Eπ(J)−1,

then π(I)Eg1π(J)−1T and π(I)Eu1g1u2π(J)−1T are in the same δ(Un(F ))−orbit.

It remains to identify (u1, u2) from

(v, u) ∈ (Uρ(J′)(F )× Uρ(I)(F ))T .

We need to find generators for (Uρ(J′)(F ) × Uρ(I)(F ))T . Having done so, we need

to examine closely the process which converts (v, u) to (u1, u2). We have

T =
∏

a∈D(λ)

xa,aλ(ta),
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where λ ∈ Λ(I, J) and each ta ∈ F×. As h ∈ Hd(F×), there are elements ξ1, . . . ξd ∈

F× such that

h = diag(ξ1, . . . , ξd) = h(ξ1, . . . , ξd).

Set

(4.1)
A = D(λ), C = I ′ ∩ J\A,

B = D(λ)λ, D = I ∩ J ′\B, m = |A|.

In case m = 0 so that T = 1 and λ is the empty map, some of the following

discussion is not needed, but I carry the argument out for all T ∈ T (I, J, F ).

Let A = {a1 . . . , am}, a1 < a2 < · · · < am. If ξ1, . . . , ξd, ta1 , . . . , tam ∈ F×, set

X (I, J, ω, λ, ξ1, . . . , ξd, ta1 , . . . , tam , F ) =

π(I)EUd(F )h(ξ1, . . . , ξd)ωUd(F )π(J)−1 ·
m∏
i=1

xaiaiλ(tai).

Set

(Uρ(J′)(F )× Uρ(I)(F ))x =

Q(I, J, λ, ta1 , . . . , tam), where

x =
m∏
i=1

xaiaiλ(tai)

Set

X (I, J, ω, λ, F ) =

⋃
(F×)d+m

X (I, J, ω, λ, ξ1, . . . , ξd, ta1 , . . . , tam , F ).

5. The action of Hn(F×) on X (I, J, ω, λ, F ).
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Fix i ∈ [1, n] and for each c ∈ F×, set

hi(c) =
n∑
j=1
j 6=i

ejj + ceii,

the diagonal matrix with c in position i, 1 elsewhere. If η1, . . . , ηn ∈ F×, set

h(η1, . . . , ηn) =
n∑
i=1

ηieii. Pick X ∈ χ(I, J, ω, λ, F ), and write

X = π(I)Eu1h(ξ1, . . . , ξd)ωu2π(J)−1 ·
m∏
j=1

xaj ,ajλ(taj ).

We examine closely Y = hi(c)−1Xhi(c). We have

hi(c)−1π(I) = π(I)hiπ(I)(c)−1.

For j ∈ [1,m]

xaj ,ajλ(taj )hi(c) =

hi(c)xaj ,ajλ(cf taj ),

where

f = f(i, aj) = −δi,aj + δi,ajλ,

and where δ is that of Kronecker.

Hence

π(J)−1
m∏
j=1

xaj ,ajλ(taj )hi(c) =

hiπ(J)(c)π(J)−1 ·
m∏
j=1

xaj ,ajλ(cf(i,aj)taj ).

Case 1. i ∈ I ′, i ∈ J ′.

Here

hiπ(I)(c)−1E = E
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E = Ehiπ(J)(c).

Case 2. i ∈ I ′, i ∈ J.

Here

hiπ(I)(c)−1E = E,

hiπ(J)(c)E = Ehiπ(J)(c), iπ(J) ∈ [1, d].

Case 3. i ∈ I, i ∈ J ′.

Here

hiπ(I)(c)−1E = Ehiπ(I)(c)−1, iπ(I) ∈ [1, d]

E = Ehiπ(J)(c).

Case 4. i ∈ I, i ∈ J. Here

hiπ(I)(c)−1E = Ehiπ(I)(c)−1, iπ(I) ∈ [1, d],

hiπ(J)(c)E = Ehiπ(J)(c), iπ(J) ∈ [1, d].

This tells us that

Y = π(I)Eu′1h(ξ′1, . . . , ξ
′
d)ωu

′
2π(J)−1.

m∏
j=1

xaj ,ajλ(t′aj ),

where u′1, u
′
2 ∈ Ud(F ),

t′aj = cf(i,aj)taj , j ∈ [1,m],

ξ′k = cg(i,k)ξk, k ∈ [1, d],
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where
g(i, k) = −1 if k = iπ(I) and i ∈ I,

= 1 if k = iπ(J)ω−1 and i ∈ J

= 0 if k 6= {iπ(I), iπ(J)ω−1}.

Here I am using crucially the fact that iπ(I) 6= iπ(J)ω−1 for all i ∈ I ∩ J , which is

a consequence of ω ∈ Pn(I, J).

Note too that since D(λ) ∩ D(λ)λ = φ, it follows that f(i, aj) ∈ {0, 1,−1}, and

for each i ∈ [1, n], {j ∈ [1, n]|f(i, aj) 6= 0} is either empty or has precisely one

element. We build a matrix M , indexed by [1, n] × [1, d + m] whose (i, `) entry is

mi`, and

mil = g(i, `) if ` ∈ [1, d],

while

mid+l = f(i, al), if d+ l ∈ [d+ 1, d+m].

I aim to prove

(5.1)
(i) M has Q− rank d+m.

(ii) All Z− elementary divisors of M are 1.

Before tackling this task, note that since Hn(F×) normalizes Un(F ), Uρ(J′)(F )

and Uρ(I)(F ), we get

hi(c)−1

(
(Uρ(J′)(F )× Uρ(I)(F )) m∏

j=1
xaj,ajλ(taj)

)
hi(c) =

(Uρ(J′)(F )× Uρ(I)(F )) m∏
j=1

xaj,ajλ(cf(i,aj))

that is, Q(I, J, λ, ta1 , . . . , tam)hi(c) = Q(I, J, λ, t′a1
, . . . , t′am), where t′aj = cf(i,aj)taj ,

j ∈ [1,m]. Also, since Hd(F×) normalizes Ud(F ) and ω normalizes Hd(F×),
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the orbits of Q(I, J, λ, ta1 , . . . , tam) on X (I, J, ω, λ, ξ1, . . . , ξd, ta1 , . . . , tad , F ) and

the orbits of Q(I, J, λ, t′a1
, . . . , t′am) on X (I, J, ω, λ, ξ′1, . . . , ξ

′
d, t
′
a1
, . . . , t′am , F ) (where

ξ′j = cg(i,j)ξj , j ∈ [1, d], are in 1-1 correspondence via hi(c). Thus if (5.1) holds, we

get that the number of orbits of Uρ(J′)(Fq)× Uρ(I)(Fq) on

X (I, J, ω, λ,Fq) is (q − 1)d+mf∗(I, J, ω, λ, q),

where f∗(I, J, ω, λ, q) is the number of orbits of

(Uρ(J′)(Fq)× Uρ(I)(Fq)) m∏
j=1

xajajλ
(1)

on

π(I)EUd(Fq)ωUd(Fq)π(J)−1 ·
m∏
j=1

xaj ,ajλ(1).

This result then leads on naturally to Theorem 1, so we first concentrate on proving

that (5.1) holds.

The matrix M is sparse, and for such matrices, it is worthwhile to introduce a

graph Γ. The vertex set of Γ is [1, n]× [1, d+m] and (i, j), (k, l) are connected by

an edge if and only if

δik + δjl = 1 and mijmkl 6= 0.

The connected components of Γ are two types, types I and II. Type I compo-

nents are defined to be those which contain a vertex (i, j) with mij 6= 0. Type II

components are all the remaining components. Each of them consists of a single

vertex (i, j) and mij = 0.

Consider a connected component Γ̃ of type I. Choose (i, j) ∈ Γ̃ with mij 6= 0, and

suppose (k, l) ∈ Γ̃. There is a path between (i, j) and (k, l), and by consideration
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of the length of the path, we conclude that mkl 6= 0 for all (k, l) ∈ Γ̃. In the case

at hand, this means that mkl = 1 or −1 for all (k, l) ∈ Γ̃.

Set

I(Γ̃) = {k ∈ [1, n]|(k, l) ∈ Γ̃ for some l ∈ [1, d+m]},

J(Γ̃) = {l ∈ [1, d+m]|(k, l) ∈ Γ̃ for some k ∈ [1, n]}.

Set

I(Γ̃)′ = [1, n]\I(Γ̃), J(Γ̃)′ = [1, d+m]\J(Γ̃).

Then I argue that mij = 0 for all (i, j) ∈ I(Γ̃)′ × J(Γ̃). Suppose mij 6= 0. By

definition of J(Γ̃), there is k ∈ [1, n] such that (k, j) ∈ Γ̃. For this element of Γ̃, we

have mkj 6= 0. But then (k, j) and (i, j) are connected in Γ, so (i, j) ∈ Γ̃, against

(i, j) ∈ I(Γ̃)′ × J(Γ̃). So mij = 0 if (i, j) ∈ I(Γ̃)′ × J(Γ̃), and similarly, mij = 0 if

(i, j) ∈ I(Γ̃)× J(Γ̃)′.

Set r(Γ̃) = |I(Γ̃)|, c(Γ̃) = |J(Γ̃)|. I proceed to show that c(Γ̃) ≤ r(Γ̃). To do this,

I partition J(Γ̃) into J1(Γ̃) = J(Γ̃) ∩ [1, d], and J2(Γ̃) = J(Γ̃) ∩ [d + 1, d + m]. I

define a map

τ : J(Γ̃)→ I(Γ̃),

as follows: if j ∈ J1(Γ̃), jτ = jπ−1
1 ∈ I ⊆ [1, n]. Then jτ ∈ I(Γ̃), since (jτ, j) ∈ Γ̃,

i.e., mjτ,j 6= 0. More precisely, mjτ,j = −1, since j = (jτ)π1. If j ∈ J2(Γ̃), say

j = d + l, set jτ = al ∈ I ′ ∩ J . Then jτ ∈ I(Γ̃), since (jτ, j) ∈ Γ̃. More precisely

mjτ,j = −1, by definition of mjτ,j . Now this gives us our map τ . The restriction

of τ to J1(Γ̃) is an injection of J1(Γ̃) into I(Γ̃) ∩ I, since π1 ∈ Sn. The restriction

of τ to J2(Γ̃) is an injection of J2(Γ̃) into I ′ ∩J , since the map from [1,m] to I ′ ∩J
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given by l 7→ al is an injection. Since I ∩ (I ′ ∩ J) = φ, τ is indeed an injection of

J(Γ̃) into I(Γ̃), and so c(Γ̃) ≤ r(Γ̃).

The preceding discussion shows that [1, n] is partitioned into subsetsA1, A2, . . . , Ar,

and [1, d+m] is partitioned into subsets B1, . . . , Br, with the following properties:

Γ has precisely r − 1 connected components of type I. They are Γ1, . . . ,Γr−1, and

(i) Ap = I(Γp), Bp = J(Γp), 1 ≤ p ≤ r − 1;

(ii) If i ∈ Ar, then mij = 0 for all j ∈ [1, d+m].

(iii) If j ∈ Br, then mij = 0 for all i ∈ [1, n].

We admit the possibility that Ar = φ and we admit the possibility that Br = φ.

I first show that Br = φ. For if j ∈ [1, d] then mjπ−1
1 ,j 6= 0, and if j = d + ` ∈

[d+ 1, d+m], then mal,j 6= 0. Thus, to complete the proof of (5.1), it is necessary

and sufficient to show that for all p ∈ [1, r − 1], the Q−rank of Mp is c(Jp) and all

Z−elementary divisors of Mp are 1, where Mp is the submatrix of M indexed by

I(Γp)× J(Γp). Denote by mi(p) the ith row of Mp, i ∈ I(Γp).

I make use of (4.1), and show that

(5.2) I(Γp) ∩ (C ∪D) 6= φ, ∀p ∈ [1, r − 1].

Suppose false.

Let J(Γp) ∩ [d + 1, d + m] = {d + l1, . . . , d + ls}, l1 < · · · < ls. It may hap-

pen that s = 0, but I carry out discussion of all cases. Then {al1 , al2 . . . , als} ∪

{al1λ, . . . , alsλ} ⊆ I(Γp). Moreover, if l ∈ [1,m], and {al, alλ} ∩ I(Γp) 6= φ, then

l ∈ {l1, . . . , ls}. Thus

A ∩ I(Γp) = {al1 , . . . als},
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B ∩ I(Γp) = {al1λ, . . . alsλ}.

By assumption, C ∩ I(Γp) = φ,D ∩ I(Γp) = φ, and so

(I ′ ∩ J) ∩ I(Γp) = {al1 , . . . , als},

(I ∩ J ′) ∩ I(Γp) = {al1λ, . . . , alsλ}.

Since mij = 0 for all (i, j) ∈ I ′ ∩ J ′ × [1, d+m], we have

(I ′ ∩ J ′) ∩ I(Γp) = φ.

Thus,

I(Γp) = {al1 , . . . , als}
·
∪ {al1λ, . . . , alsλ}

·
∪ I(Γp) ∩ (I ∩ J).

Denote by c the largest element of I(Γp); c exists because I(Γp) is a nonempty

set of positive integers. Suppose c ∈ {al1 . . . , als} ∪ {al1λ, . . . , alsλ}. Since λ is

increasing, we get c = alµλ for some µ. So c ∈ I ∩ J ′, and mc,cπ1 6= 0, whence

cπ1 ∈ [1, d] ∩ J(Γp). Set e = cπ1. Then meωπ−1
2, e
6= 0, so eωπ−1

2 ∈ I(Γp). Since

e = cπ1, we get cπ1ωπ
−1
2 ∈ I(Γp). But c < cπ1ωπ

−1
2 , against the maximality of

c in I(Γp). So c ∈ I(Γp) ∩ I ∩ J . This also leads to a contradiction: since c ∈ I,

we get cπ1 ∈ J(Γp), and since cπ1 ∈ J(Γp) ∩ [1, d] we get cπ1ωπ
−1
2 ∈ I(Γp), and so

c < cπ1ωπ
−1
2 . This establishes (5.2).

Now suppose I(Γp) ⊆ C ∪ D. In this case, each row of Mp has precisely one

nonzero entry, which is 1 or −1, so every edge of Γp is a vertical segment. This

implies that Mp is a 2×1 matrix of Q−rank 1, whose unique Z−elementary divisor

is 1. Suppose I(Γp) * C ∪D. Set

Ĩ(Γp) = I(Γp)\I(Γp) ∩ (C ∪D),
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and consider the submatrix M̃(Γp) of Mp indexed by Ĩ(Γp)× J(Γp).

Now we view this setup in terms of integral lattices, by putting on Zd+m the

usual inner product: (z, z′) =
∑
ziz
′
i, if z = (z1, . . . , zd+m), z′ ∈ (z′1, . . . , z

′
d+m). Let

L(Γp) be the lattice generated by the rows of M̃(Γp). By Witt’s theorem, L(Γp)

is the orthogonal sum of sublattices L1(Γp), . . . , Lk(Γp), each of which is of type

A,D, or E. Since the E6, E7, E8 lattices cannot be embedded isometrically in ZN

for any N , each Lj(Γp) is of type A or D.

For each j = 1, . . . , k, let J(j) = {i ∈ [1, d+m], ei is not orthogonal to Lj(Γp)}.

First, suppose that the sets J(1), . . . , J(k) are pairwise disjoint. In this case, we get

a partition of I(Γp)∩ (C ∪D). For i ∈ I(Γp)∩ (C ∪D), there is a unique j ∈ [1, k]

such that mi(p) is not orthogonal to Lj(Γp). This forces k = 1, and it is trivial to

check that L1(Γp)+Zmi(p) = Z
J(Γp) where i ∈ I(Γp)∩ (C ∪D). Thus, in this case,

Mp has Q−rank |J(Γp)| = c(Γp), and all Z−elementary divisors are 1.

It remains to treat the case where k ≥ 2, and where J(1)∩J(2) 6= φ. To exclude

this possibility, it is necessary to make use of the fact that for every i ∈ Ĩ(Γp), the

two nonzero entries of mi(p) are of opposite sign. So if mi(p) ∈ L1(Γp),mj(p) ∈

L2(Γp), then on the one hand, (mi(p),mj(p)) = 0, whereas for suitable i, j, there

is l ∈ J(1) ∩ J(2) with (mi(p), el) 6= 0, (mj(p), el) 6= 0. There are no solutions. It

was necessary to discuss this case, since D2
∼= A1 ⊕A1.

The isomorphism D3
∼= A3, causes no difficulty, since if Lj(Γp) ∼= D3, it is to

be understood that |J(j)| = 3, and if Lj(Γp) ∼= A3, it is to be understood that

|J(j)| = 4. So (5.1) holds.

6. Γ∗(I, J, λ, F ) = Γ(I, J, λ, F ).
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I retain the earlier notation:

I, J ∈ Pd([1, n]), ω ∈ Cn(I, J), λ ∈ Λ(I, J),

(6.1) A = D(λ), B = D(λ)λ,C = I ′ ∩ J\A,D = I ∩ J ′\B,

π1 = π(I), π2 = π(J),m = |D(λ)|,

T =
∏
a∈A

xa,aλ(1).

Set

X = π(I)EUd(F )ωUd(F )π(J)−1T.

Note that X = X (I, J, ω, λ, ξ1, . . . , ξd, ta1 , . . . tam , F ) is the special case ξ1 = · · · =

ξd = ta1 = · · · = tam = 1.

If (v, u) ∈ (Uρ(J′)(F )× Uρ(I)(F ))T , then

(6.2) v−1Tu = T = vTu−1.

Pick X ∈ X , so that

(6.3) X = π(I)Eu1ωu2π(J)−1T, u1, u2 ∈ Ud(F ).

By (6.2), we have

X = π(I)Eu1ωu2π(J)−1vTu−1,

so

(6.4) X ◦ δ(u) = u−1π(I)u1ωu2π(J)−1vT.
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We have

u = x2x1, x2 ∈ U(R+([1, n]× I ′), F ), x1 ∈ U(R+(I × I), F ),

v = y2y1, y2 ∈ U(R+(J ′ × [1, n]), F ), y1 ∈ U(R+(J × J), F ).

We have ordered
∑+ by setting r < s to mean 0 < s−r. This is a linear ordering

of
∑+ and so there is a bijection

(6.6) ρ0 : [1, N ]→
∑+

such that ρ0(1) < ρ0(2) < · · · < ρ0(N), where N = |
∑+ |. Since π(I) agrees with

λ(I, [1, d]) on I, it follows that if r, s ∈ R+(I × I) and r < s, then rπ1 < sπ1,

and, of course, rπ1, sπ1 ∈ R+([1, d]× [1, d]). A similar remark applies to π(J) and

R+(J × J).

Write

(6.7)
x1 =

∏
xα,β(tα,β),

y1 =
∏

xγ,δ(t′γ,δ),

where the product for x1 runs over R+(I × I) in ascending order, and the product

for y1 runs over R+(J × J) in ascending order.

From (6.4), (6.5), (6.7), we get

(6.8)

X ◦ δ(u) = x−1
1 x−1

2 π(I)Eu1ωu2π(J)−1y2y1T

= x−1
1 π(I)Eu1ωu2π(J)−1y1T

= π(I)E{
∏

xαπ1,βπ1(tα,β)}−1u1ωu2.

(
∏

xγπ2,δπ2(t′γδ))π(J)−1T ∈ X .

This gives us a map

(6.9)
X × (Uρ(J′)(F )× Uρ(I)(F ))T → X ,

(X, (v, u)) 7→ X ◦ δ(u).
32



As we have just seen, this map exists, and is given by (6.8). Since

(v1, u1) · (v2, u2) = (v1v2, u1u2),

δ(u1u2) = δ(u1)δ(u2)

for all (v1, u1), (v2, u2) ∈ (Uρ(J′)(F ) × Uρ(I)(F ))T , (6.9) gives us an action of

(Uρ(J′))F )× Uρ(I)(F ))T on X .

Denote by Γ∗(I, J, λ, F ) the subgroup of Ud(F ) × Ud(F ) generated by all the

elements

(6.10)
(∏

xαπ1,βπ1(tα,β),
∏

xγπ2,δπ2(t′γ,δ)
)

such that

(6.11) (y2y1, x2x1) ∈ (Uρ(J′)(F )× Uρ(I)(F ))T ,

and

(6.12)

y2 ∈U(R+(J ′ × [1, n]), F ), x2 ∈ (R+([1, n]× I ′), F ),

x1 =
∏

xα,β(tα,β) ∈ U(R+(I × I), F ),

y1 =
∏

xγ,δ(t′γ,δ) ∈ U(R+(J × J), F ).

The action (6.9) shows us that the set of orbits of (Uρ(J′)(F ) × Uρ(I)(F ))T on

X is in 1-1 correspondence with the set of orbits of Γ∗(I, J, λ, F ) on Ud(F )ωUd(F ),

and so Theorem 1 is a consequence of

Γ∗(I, J, λ, F ) = Γ(I, J, λ, F ),

an equality which will be proved in this section.
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Before attacking this problem directly, I make some comments about orderings.

Let Ord be the set of all bijections ρ : [1, N ]→
∑+, and let Ord∗ consist of those

ρ such that

r, s, r + s ∈
∑+

⇒ r = ρ(i), r + s = ρ(j) and i < j.

Our given ρ0 is in Ord∗. For obvious reasons, elements of Ord are called orderings

of
∑+.

If u ∈ U(F ) and u 6= 1, and

u =
N∏
i=1

xρ0(i)(tρ0(i)),

we define the leading ρ0−root of u to be ρ0(i), where tρ0(i) 6= 0 and tρ0(j) = 0 for

all j < i. We denote the leading ρ0−root of u by rρ0(u), and set rρ0(1) =∞, with

the convention that r <∞ for all r ∈
∑+.

Lemma 6.1. If ρ ∈ Ord, then to every u ∈ U(F ) is associated a unique map∑+ → F, r 7→ tr such that

u = xρ(1)(tρ(1)) · . . . · xρ(N)(tρ(N)).

Proof. Let Su be the set of all sequences

σ = (xρ(1)(tρ(1)), y1, . . . , xρ(N)(tρ(N)), yN ),

where
(i) tρ(i) ∈ F, all i.

(ii) yi ∈ U(F ), all i.

(iii) u = xρ(1)(tρ(1))y1 · . . . · xρ(N)(tρ(N))yN .
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Then, Su 6= φ, since, for example, (1, u, 1, . . . , 1) ∈ Su. There are various

maps Su → Su and various auxiliary sequences and integers associated to ele-

ments of Su. In particular, we set σ(ρ0) = (rρ0(y1), . . . , rρ0(yN )), and we set

r(σ) = min{rρ0(y1), . . . , rρ0(yN )}, where min is computed in the ρ0−ordering.

We first concentrate on showing that r(σ) =∞ for some σ ∈ Su. Suppose false.

Choose σ such that r(σ) is maximal, and with this restriction, minimize the number

ν(σ) of i ∈ [1, N ] such that rρ0(yi) = r(σ).

Pick i such that rρ0(yi) = r(σ), and set r = r(σ). Write yi = xr(t)ỹi, with

r < rρ0(ỹi). If ρ(i) = r, set σ̃ = (xρ(1)(tρ(1)), y1, . . . , xρ(i−1)(tρ(i−1)), yi−1,

xρ(i)(tρ(i) + t), ỹi, xρ(i+1)(tρ(i+1)), . . . ),

and observe that σ̃ ∈ Su, and that either r(σ̃) > r, or r(σ̃) = r and ν(σ̃) < ν(σ),

against our choice of σ. So we only need to rearrange σ, preserving r(σ) and ν(σ)

and reach the previous situation, to show that there is σ in Su with ρ(σ) = ∞.

This is easy to do, and the details are omitted.

If F is finite there is just one map for each u, since |Un(F )| = |F |N , the total

number of maps from
∑+ to F . If F is infinite, we make use of an elementary

result. Namely, if R is any finitely generated subring of F, a ∈ R and a 6= 0, then

there is a finite field F0 and a ring homomorphism ϕ : R→ F0 such that ϕ(a) 6= 0.

This yields Lemma 6.1.

Since Lemma 6.1 holds, we can now define rρ(u) for all ρ ∈ Ord, u ∈ U(F ), u 6= 1.

We write

u =
N∏
i=1

xρ(i)(tρ(i))
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and set rρ(u) = ρ(i) if tρ(i) 6= 0 and tρ(j) = 0 for all j < i. And we set rρ(1) =∞.

I also introduce the notation r <
ρ
s to mean that r = ρ(i), s = ρ(j) and i < j.

This agrees with the definition of < for ρ0, that r <
ρ0
s if and only if r < s.

We amplify Lemma 6.1. Suppose ρ1 ∈ Ord∗. Let Φ(ρ1) be the set of all maps

(6.13) ϕ :
∑+

×F → U(F )

such that

(i) ϕ(r, 0) = 1 for all r ∈
∑+

.

(ii) ϕ(r, t) = xr(t)y(r, t), where

r <
ρ1
rρ1(y(r, t)), all (r, t).

Lemma 6.2. Suppose ρ ∈ Ord, ρ1 ∈ Ord∗, u ∈ U(F ). Then there is precisely one

map
∑+ → F, r 7→ tr such that u = ϕ(ρ(1), tρ(1)) . . . ϕ(ρ(N), tρ(N)).

Proof. We proceed as in the proof of Lemma 6.1. We again examine sequences

σ = (ϕ(ρ(1), tρ(1)), z1, . . . , ϕ(ρ(N), tρ(N)), zN ),

where zi ∈ U(F ), and the product ϕ(ρ(1), tρ(1))z1 · · · = u. This time, when we

examine
p =ϕ(ρ(i), tρ(i))zi (zi = xr(t)z̃i, etc.)

= xρ(i)(tρ(i))y(ρ(i), tρ(i))zi,

where ρ(i) = rρ1(z1) = r(σ), we cannot simply amalgamate as before, but rather,

write
p = xρ(i)(tρ(i) + t)y(ρ(i), tρ(i) + t).

{y(ρ(i), tρ(i) + t))−1xr(t)−1y(ρ(i), tρ(i))zi},
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and check that
r =r(σ) = ρ(i) < rρ1(y(ρ(i), tρ(i) + t)),

r < rρ1(xr(t)−1y(ρ(i), tρ(i))xr(t)),

r < rρ1(z̃i).

The proof then carries on as in Lemma 6.1. At the end of the proof a finitely

generated subring of F appears, since we only need to augment the previous R by

tossing into R all the elements of F which appear in expressions

y(ρ(i)), tρ(i)) =
N∏

j=i+1

xρ(j)(ui,ρ(j)).

So Lemma 6.2 holds.

There is yet another game to play. Define a graph Γ whose vertex set is Ord,

and where ρ1, ρ2 are connected by and edge if and only of there is i ∈ [1, N − 1]

such that
(i) ρ1(j) = ρ2(j) for all j /∈ [1, N ], j ∈ {i, i+ 1}.

(ii) ρ1(i) = ρ2(i+ 1), ρ1(i+ 1) = ρ2(i).

(iii) ρ1(i) + ρ1(i+ 1) /∈
∑+

.

I argue that for all maps
∑+ → F, r 7→ tr,

(6.14)
N∏
j=1

xρ1(j)(tρ1(j)) =
N∏
j=1

xρ2(j)(tρ2(j)).

Namely, the two products agree term by term except for the ith and (i+1)st terms,

which are

xρ1(i)(tρ1(i))xρ1(i+1)(tρ1(i+1)), xρ2(i)(tρ2(i))xρ2(i+1)(tρ2(i+1)),

respectively. Since
xρ1(i)(tρ1(i))xρ1(i+1)(tρ1(i+1)) =

xρ2(i+1)(tρ2(i+1))xρ2(i)(tρ2(i)),

and since ρ1(i) + ρ1(i+ 1) /∈
∑+, (6.14) follows.
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Lemma 6.3. Suppose ρ ∈ Ord, ρ1 ∈ Ord∗, R1, R2 are non empty sets of positive

roots and ϕ : R1 → R2 has the following properties:

(i) r + ϕ(r) ∈
∑+

, all r ∈ R1 and r + s /∈
∑+

if s 6= ϕ(r), r ∈ R1, s ∈ R2.

(ii) For all r1 ∈
∑+

,

|{(r, s) ∈ R1 ×R2|r + s = r1}| ≤ 1.

(iii) r∗ ≤
ρ1

r + ϕ(r) for all r ∈ R1.

(iv) r∗ = r0 + ϕ(ro) for some r0 ∈ R1.

Suppose also that

x =
∏
r∈R1

xr(tr), y =
∏
r∈R2

xr(ur),

where both products are taken in ascending ρ−order, and where tr 6= 0 for all

r ∈ R1, ur 6= 0 for all r ∈ R2. Then r∗ = rρ1([x, y]).

Proof. Define Rα,β for α, β ∈ N by

R1,1 = {r + s ∈
∑+

|r ∈ R1, s ∈ R2},

Rα,β+1 = {r + s ∈
∑+

|r ∈ Rα,β , s ∈ R2},

Rα+1,β = {r + s ∈
∑+

|r ∈ R1, s ∈ Rα,β}.

Since R1,1 = {r + ϕ(r)|r ∈ R1}, we get

r∗ ≤
ρ1

r for all r ∈ R1,1,

and since ρ1 ∈ Ord∗, we get

r∗ <
ρ1
r for all r ∈ Rα,β and all α, β with α+ β > 2.
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Now

[x, y] =
∏

(r,s)∈R1×R2

[xr(tr), xs(us)] · Z,

where r∗ <
ρ1
rρ1(Z). Also

∏
(r,s)∈R1×R2

[xr(tr), xs(us)] =
∏
r∈R1

xr+ϕ(r)(±truϕ(r)).

The lemma follows.

Remark. It is easy to appreciate that in order to apply Lemma 6.3, very good

information about R1, R2 needs to be available. The hypotheses of Lemma 6.3 are

stringent.

Define ρ : [1, N ] →
∑+ as follows: if r = ei − ej , s = ek − el ∈

∑+, then r <
ρ
s

if and only if one of the following holds:

(i) j < l.

(ii) j = l and i > k.

One checks easily that ρ ∈ Ord∗.
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I begin the study of Γ∗(I, J, λ, F ) by partitioning [1, n]2 into 38 subsets S(1), . . . , S(38),

as in the following list

i S(i) i S(i)

1 I ′ ∩ J ′ ×D 21 D × I ∩ J

2 I ′ ∩ J ′ × I ∩ J 22 D ×A

3 C × I ∩ J 23 D × C

4 I ′ ∩ J ′ ×B 24 I ′ ∩ J ′ × C

5 {(a, α) ∈ A× I ∩ J | aλ > α} 25 B × I ′ ∩ J ′

6 {(a, a′) ∈ A×A | aλ > a′λ} 26 D ×B

7 B ×B 27 D ×D

8 C ×A 28 D × I ′ ∩ J ′

9 B ×D 29 I ′ ∩ J ′ × I ′ ∩ J ′

10 B × I ∩ J 30 I ∩ J ×B

11 {(a, α) ∈ A× I ∩ J | aλ < α} 31 I ∩ J ×D

12 {(a, a′) ∈ A×A | aλ < a′λ} ∪ {(a, a) | a ∈ A} 32 I ∩ J × I ′ ∩ J ′

13 I ′ ∩ J ′ ×A 33 A×B

14 I ∩ J × I ∩ J 34 A×D

15 I ∩ J ×A 35 A× I ′ ∩ J ′

16 I ∩ J × C 36 C ×B

17 A× C 37 C ×D

18 B ×A 38 C × I ′ ∩ J ′

19 B × C

20 C × C
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To verify that we have partitioned [1, n]2, note that [1, n] = I ∩ J
·
∪A

·
∪B

·
∪C

·
∪

D
·
∪ I ′ ∩ J ′ that S(5) ∪ S(11) = A× (I ∩ J), S(6) ∪ S(12) = A× A, and that each

of the remaining X × Y , where X,Y ∈ {I ∩ J,A,B,C,D, I ′ ∩ J ′} occurs just once

as an S(i).

Next, I record that

(*)

ea − ea′ <
ρ
eaλ − ea′λ if a, a′ ∈ A, a < a′, aλ < a′λ

eε − ea <
ρ
eε − eaλ, if ε ∈ I ∩ J, a ∈ A, ε < a

eaλ − ea′ <
ρ
eaλ − ea′λ, if a, a′ ∈ A, aλ < a′.

I define ϕ ∈ Φ(ρ) as follows:

If r /∈ R+(S(12)) ∪R+(S(13)) ∪R+(S(18)),

ϕ(r, t) = xr(t).

If r = ea − ea′ ∈ R+(S(12)),

ϕ(r, t) = xr(t)xr′(t), r′ = eaλ − ea′λ.

If r = eε − ea ∈ R+(S(13)),

ϕ(r, t) = xr(t)xr′(−t), r′ = eε − eaλ.

If r = eaλ − ea′ ∈ R+(S(18)),

ϕ(r, t) = xr(t)xr′(−t), r′ = eaλ − ea′λ.

From (*), we get ϕ ∈ Φ(ρ).
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We construct ρ̃ ∈ Ord. If r ∈ R+(S(i)), s ∈ R+(S(j)), we say r <
ρ̃
s if and only

if one if the following holds:

(i) i < j.

(ii) i = j and r <
ρ
s.

By Lemma 6.2, with ρ in the role of ρ1, ρ̃ in the role of ρ, ϕ in the role of ϕ, we

get that to each u ∈ U(F ) there is associated a unique map
∑+ → F, r 7→ tr, such

that

(6.15) u =
N∏
i=1

ϕ(ρ̃(i), tρ̃(i)).

Set

Ni = |R+(S(i))|, i ∈ [1, 38].

I examine the product (6.15) and in particular the contribution from the interval

I10,11 = {N1 + · · ·+N9 + 1, N1 + · · ·+N11}.

Set R10,11 = R+(S(10)) ∪R+(S(11)). We observe that

(6.16) (R10,11 +R10,11) ∩
∑+

= φ,

and so the order of the product

∏
i∈I10,11

ϕ(ρ̃(i), tρ̃(i))

is immaterial. Here I am using (6.13) and also using ϕ(ρ̃(i), tρ̃(i)) = xρ̃(i)(tρ̃(i)) for

all i ∈ I10,11. If i ∈ I10,11 and i ≤ N1 + · · · + N10, then ρ̃(i) = eaλ − eα for some
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aλ ∈ B,α ∈ I ∩ J, aλ < α. Then ea − eα ∈ R+(S(11)) and we have ea − eα = ρ̃(j)

for some j ∈ I10,11, N1 + · · ·+N10 < j. We also have

(6.17)
xρ̃(i)(tρ̃(i)) · xρ̃(j)(tρ̃(j)) =

xρ̃(i)(tρ̃(i))− tρ̃(j)) · xρ̃(i)(tρ̃(j))xρ̃(j)(tρ̃(j)).

This gives rise to a map

x̂ :
∑+

×F → U(F ),

defined as follows:

x̂(r, t) = ϕ(r, t) if r /∈ R+(S(11)),

x̂(r, t) = xr(t)xr′(t) if r ∈ R+(S(11)),

r = ea − eα, r′ = eaλ − eα.

By (6.17), we see that to each u ∈ U(F ) there is associated a unique map∑+ → F, r 7→ tr such that

(6.18) u =
N∏
i=1

x̂(ρ̃(i), tρ̃(i)).

The reason we cannot use Lemma 6.2 directly to get x̂ is that in the ρ−ordering,

which is important here, we have

eaλ − eα <
ρ
ea − eα.

Were it not for (6.16), we would have an obstacle to getting (6.18). As it is,

we get (6.18) simply by using (6.15) and then use (6.17) in the abelian group

U(R+(S(10)) ∪R+(S(11)), F ) for each relevant pair (ρ̃(i), ρ̃(j)). Now set

(6.19) K =
5∑
i=1

Ni, L =
10∑
i=1

Ni,
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(6.20) |Rρ(J′)| = M =
29∑
i=1

Ni,

(6.21)
∏0

0
=
{ K∏
i=1

x̂(ρ̃(i), tρ̃(i))
}
,

(6.22)
∏1

0
=
{ L∏
i=K+1

x̂(ρ̃(i), tρ̃(i))
}
,

(6.23)
∏

0
=
{ L∏
i=1

x̂(ρ̃(i), tρ̃(i))
}
,

(6.24)
∏

1
=
{ M∏
i=L+1

x̂(ρ̃(i), tρ̃(i))
}
.

Here it is to be understood that in defining any one of the sets in (6.21)-(6.24), we

range over all maps from
∑+ to F . The point of this fussiness is that

∏0
0,
∏

0,
∏

1

are subgroups of Uρ(J′)(F ), that
∏

0 =
∏0

0 ·
∏1

0,
∏0

0 ∩
∏1

0 = {1}, Uρ(J′)(F ) =∏
0

∏
1,
∏

0 ∩
∏

1 = {1}. The verification of these assertions is time-consuming,

but utterly straightforward. The data have been arranged with considerable care,

and taken in the right spirit, the verifications are fun.

Now let

Γ0 =
∏T

0
,Γ1 =

∏T

1
,

so that

Uρ(J′)(F )T = Γ0 · Γ1,Γ0 ∩ Γ1 = {1}.

The situation has been cooked up so that

(6.25) Γ1 ⊆ Uρ(I)(F ),
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yet another verification which is left to the reader. The reason the verification is so

easy is that the x̂(ρ̃(i), tρ̃(i)) are very special elements, and that

x̂T = x̂[x̂, T ],

and the commutators may be calculated easily since {ea − eaλ|α ∈ A} is a set of

pairwise orthogonal roots.

By (6.25), we get

Uρ(J′)(F )T ∩ Uρ(I)(F ) = Γ1 ·∆,

where

∆ = Γ0 ∩ Uρ(I)(F ).

The final piece of the puzzle falls into place once we show that ∆ = 1, so suppose

by way of contradiction that ∆ 6= 1. Choose x ∈ ∆, x 6= 1. Then there is y ∈
∏

0

such that x = yT , and we have

(6.26) x 6= 1, x ∈ Uρ(I)(F ), x = yT , y ∈
∏

0
.

Write y = y1 . . . y10, where yi ∈ U(R+(S(i)), F ), and set

Y = y1y2y3y4y5, Z = y6y7y8y9y10.

Since U(R+(S(i)), F ) ⊆ CU(F )(T ), 1 ≤ i ≤ 5, we get

x = yT = Y · ZT .

Since U(R+(S(i)), F ) ⊆ Uρ(I)(F ), 6 ≤ i ≤ 10, we get

xZ−1 ∈ Uρ(I)(F ),
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and

xZ−1 = Y ZTZ−1 = Y [T,Z−1],

which we write as Y · [Z−1, T ]−1. Since
∏0

0 =
∏0T

0 ⊆ Uρ(I)ω0(F ), we get

Z−1 /∈
∏0

0
.

Write Z−1 = Z0Z1, Z0 ∈
∏0

0, Z1 ∈
∏1

0, so that Z1 6= 1 and

Z1 =
∏
i∈E

xρ̃(i)(cρ̃(i)),

where E is a non empty subset of {K + 1, . . . , L}, and cρ̃(i) 6= 0 for all i ∈ E. Note

that

(6.27) [Z−1, T ] = [Z0Z1, T ] = [Z1, T ]

as [Z0, T ] = 1. Set

R1 = {ρ̃(i)|i ∈ E},

R2 = {ea − eaλ|a ∈ A}.

We check that for each r ∈ R1, there is precisely one s in R2 such that r+s ∈
∑+

.

Define

ϕ : R1 → R2 by r + ϕ(r) ∈
∑+

.

So ϕ is well-defined. We next check that (R1, R2, ϕ) satisfies the hypotheses of

Lemma 6.3, with ρ in the role of ρ1, ρ̃ in the role of ρ. By (6.24) and Lemma 6.3,

there are ρ̃(i), i ∈ E, and ea0−ea0λ
= ϕ(ρ̃(i)) such that

rρ([Z−1, T ]−1) = ρ̃(i) + ϕ(ρ̃(i)).
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Yet another check reveals that

ρ̃(i) + ϕ(ρ̃(i)) /∈
5⋃
i=1

R+(S(i)),

and we conclude that

rρ(Y [Z−1, T ]−1) ∈ {ρ̃(i) + ϕ((̃i))} ∪
5⋃
i=1

R+(S(i)).

This is false, since

{ρ̃(i) + ϕ(ρ̃(i))} ∪
5⋃
i=1

R+(S(i)) ⊆ Rρ(I)ω0 .

All the pieces fit snugly and we have shown that

Uρ(J′)(F )T ∩ Uρ(I)(F ) = Γ1.

Since

(Uρ(J′)(F )× Uρ(I)(F )T = {(TuT−1, u)|u ∈ Γ1},

the last check reveals that Γ∗(I, J, λ, F ) = Γ(I, J, λ, F ), by appealing to (6.10),

(6.11), (6.12), (1.33)-(1.38).

As a help to the reader, and as evidence of the ease with which we check that

Γ∗(I, J, λ, F ) = Γ(I, J, λ, F ), I provide the necessary checks.

We have ∏
1

= {
M∏

i=L+1

x̂(ρ̃(i), tρ̃(i))},

where we range over all maps from
∑+ to F . Fix i with L + 1 ≤ i ≤ M, and

consider the map which sends ρ̃(i) to t and sends ρ̃(j) to 0 for all j 6= i. This shows
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that
∏

1 contains x̂(ρ̃(i), t) for all i ∈ {L + 1, . . . ,M} and all t ∈ F . We examine

all these special elements.

Case 1. ρ̃(i) = r and L + 1 ≤ i ≤ L + N11. Here we have r = ea − eα, a ∈

A,α ∈ I ∩ J, a < α, and r′ = eaλ − eα, aλ < α, x̂(r, t) = xr(t)xr′(t). Here I have

used the property that λ is increasing to conclude from aλ < α that a < α. Thus,

(xr(t)xr′(t))T = u ∈ Γ1. Since

T = xa,aλ(1) · T1 = T1 · xa,aλ(1),

where T1 centralizes xr(t)xr′(t), we get

u = (xr(t)xr′(t))xa,aλ(1)

= xr(t) · xr′(t)xa,aλ(1)

= xr(t) · xr′(t)[xr′(t), xa,aλ(1)].

Now xr′(t) = xaλ.α(t), and so

u = xr(t)xr′(t) · xa,α(−t) = xr′(t).

Also aλ ∈ I ∩ J ′, α ∈ I ∩ J , so (aλ, α) ∈ I × I. Thus, setting υ = xr(t)xr′(t) =

TuT−1, we have (υ, u) ∈ (Uρ(J′)(F )× Uρ(I))T , and

u = x2x1, υ = y2y1,

where x2 = 1, x1 = xr′(t). As for υ, we have a ∈ I ′ ∩ J, α ∈ I ∩ J, aλ ∈ I ∩ J ′, so

xr(t) ∈ U(R+(J × J), F ), xr′(t) ∈ U(R+(J ′ × J), F ),

and y2 = xr′(t), y1 = xr(t). So x1 = xaλ,α(t), y1 = xa,α(t), and

(xaλπ1,απ1(t), xaπ2,απ2(t)) ∈ Γ∗(I, J, λ, F ).
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From (1.37), we get

(xaλπ1,απ1(t), xaπ1,απ2(t)) ∈ Γ(I, J, λ, F ),

and this holds for all ρ̃(i) ∈ ea − eα with L + 1 ≤ i ≤ L + N11, that is, for all

r ∈ R+(S(11)), and for all t ∈ F.

Case 2. L+N11 + 1 ≤ i ≤ L+N11 +N12.

Here ρ̃(i) = r, r = ea − ea′ , a < a′, a, a′ ∈ A, aλ < a′λ. Also

x̂(ρ̃(i), t) = ϕ(ρ̃(i), t)

= xr(t)xr′(t), r′ = eaλ − ea′λ.

We need u = (xr(t)xr′(t))T . Now T = xa,aλ(1)xa′,a′λ(1)T1, where T1 centralizes

xr(t) and xr′(t), so

u = xa,a′(t)xa,aλxa′,a′λ(1) ·xaλ,a′λ (t)xa,aλ(1)xa′,a′λ(1)

= xa,a′(t)xa′,a′λ(1) · xaλ,a′λ(t)xa,aλ(1)

= xa,a′(t)[xa,a′(t), xa′,a′λ(1)] · xaλ,a′λ(t)[xaλ,a′λ(t), xa,aλ(1)]

= xa,a′(t)xa,a′λ(t) · xaλ,a′λ(t)xa,a′λ(−t)

= xa,a′(t)xaλ,a′λ(t) = u.

Thus,

(xa,a′(t)xaλ,a′λ(t), xa,a′(t)xaλ,a′λ(t)) ∈ (Uρ(J′)(F )× Uρ(I)(F ))T .

We have a ∈ I ′∩J, a′ ∈ I ′∩J , so xa,a′(t) ∈ U(R+(I ′×I ′), F ); and aλ ∈ I∩J ′, a′λ ∈

I ∩ J ′, so xaλ,a′λ(t) ∈ U(R+(I × I), F ). Hence x2 = xa,a′(t), x1 = xaλ,a′λ(t).

Also,

xa,a′(t) ∈ U(R+(J × J), F ),
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xaλ,a′λ(t) ∈ U(R+(J ′ × J ′), F ),

so y2 = xaλ,a′λ(t), y1 = xa,a′(t). Hence

x1 = xaλ,a′λ(t), y1 = xa,a′(t),

and so

(xaλπ1,a′λπ1(t), xaπ2,a′π2(t)) ∈ Γ∗(I, J, λ, F ).

From (1.36), we get

(xaλπ1,a′λπ1(t), xaπ2,a′π2(t)) ∈ Γ(I, J, λ, F ),

for all t ∈ F and all ea − ea′ ∈ R+(S(12)).

Case 3. ρ̃(i) = r and L+N11 +N12 + 1 ≤ i ≤ L+N11 +N12 +N13.

Here r = eε − ea, where ε ∈ I ′ ∩ J ′, a ∈ A, ε < a, and

x̂(r, t) = ϕ(r, t) = xr(t)xr′(−t), r′ = eε − eaλ,

so

u = (xr(t)xr′(−t))T .

We have T = xa,aλ(1) ·T1 = T1 ·xa,aλ(1), where T1 centralizes xr(t) and xr′(−t),

so
u = (xε,a(t)xε,aλ(−t))xa,aλ(1)

= xε,a(t)[xε,a(t), xa,aλ(1)] · xε,aλ(−t)

= xε,a(t)xε,aλ(t)xε,aλ(−t) = xε,a(t).

Now eε − ea ∈ R+(I ′ × I ′), and eε − aa ∈ R+(J ′ × J), eε − eaλ ∈ R+(J ′ × J ′), so

x2 = xε,a(t), x1 = 1, y2 = xε,a(t)xε,aλ(−t), y1 = 1,
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so, x1 = 1, y1 = 1, and the contribution to Γ∗(I, J, λ, F ) is (1,1).

Case 4. ρ̃(i) = r and r ∈ R+(S(14)).

Here x̂(r, t) = ϕ(r, t) = xr(t), and r = ej − ej′ , j, j′ ∈ I ∩ J, j < j′, u = xr(t)T =

xr(t), so υ = u = xr(t), and x2 = 1, x1 = xr(t), y2 = 1, y1 = xr(t), whence

(xjπ1,j′π1(t), xj′π1(t)) ∈ Γ∗(I, J, λ, F ). By (1.33), we get

(xjπ1,j′π1 , (t), xjπ2,j′π2(t)) ∈ Γ(I, J, λ, F ).

Case 5. ρ̃(i) = r and r ∈ R+(S(15)).

Here x̂(r, t) = ϕ(r, t) = xr(t), r = ei − ea, i ∈ I ∩ J, a ∈ A, i < a,

u = xr(t)T = xi,a(t)xa,aλ(1) = xi,a(t)xi,aλ(t),

ei − ea ∈ R+(I × I ′), ei − eaλ ∈ R+(I × I), so x2 = xi,a(t), x1 = xi,aλ(t); ei − ea ∈

R+(J × J), so y2 = 1, y1 = xi,a(t), and x1 = xi,aλ(t), y1 = xi,a(t),

(xiπ1,aλπ1(t)), xiπ2,aπ2(t)),∈ Γ∗(I, J, λ, F ).

By(1.38)

(xiπ1,aλπ1(t), xiπ2,aπ2(t)) ∈ Γ(I, J, λ, F ).

Case 6. ρ̃(i) = r ∈ R+(S(16)), r = ej − eγ , j ∈ I ∩ J, γ ∈ C. Also, x̂(r, t) =

ϕ(r, t) = xr(t), u = ur(t)T = xr(t). Since C ⊆ I ′ ∩ J , we get u ∈ R+(I × I ′), so

x2 = xr(t), x1 = 1. Also, xr(t) ∈ R+(J × J), F , so y2 = 1, y1 = xr(t) = xj,γ(t), and

(1, xjπ2,γπ2(t)) ∈ Γ∗(I, J, λ, F ).

By (1.34),

(1, xjπ2γπ2(t)) ∈ Γ(I, J, λ, F ).
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Case 7. ρ̃(i) = r ∈ R+(S(17)), r = ea − eγ , a ∈ A, γ ∈ C, a < γ, x̂(r, t) =

ϕ(r, t) = xr(t), u = xr(t)T = xr(t), xr(t) ∈ R+(I ′ = ×I ′), so x2 = xr(t), x1 = 1.

Since xr(t) ∈ R+(J × J), we have y2 = 1, y1 = xr(t), so

x1 = 1, y1 = xa,γ(t),

and

(1, xaπ2,γπ2(t)) ∈ Γ∗(I, J, λ, F ).

By (1.34), we have

(1, xaπ2,γπ2(t)) ∈ Γ(I, J, λ, F ).

Case 8. ρ̃(i) = r ∈ R+(S(18)), r = eaλ − ea′ , a, a′ ∈ A, aλ < a′, and x̂(r, t) =

ϕ(r, t) = xr(t)xr′(−t), r′ = eaλ−ea′λ. Now u = (xr(t)xr′(−t))T , T = xa,aλ(1)xa′,a′λ(1)T1,

and T1 centralizes xr(t) and xr′(−t), so

u = (xr(t)xr′(−t))xa,aλ(1)xa′,a′λ(1)

= xaλ,a′(t)xa,aλ(1)xa′,a′λ(1) · xaλ,a′λ(−t)xa,aλ(1)

= (xaλ,a′(t)[xaλ,a′(t), xa,aλ(1)])xa′,a′λ(1) · xaλ,a′λ(−t)[xaλ,a′λ(−t), xa,aλ(1)]

= (xaλ,a′(t)xa,a′(t)(−t))xa,a′λ(1) · xaλ,a′λ(−t)xa,a′λ(t)

= xaλ,a′(t)[xaλ,a′(t), xa′,a′λ(1)] · xa,a′(−t)[xa,a′(−t), xa′,a′λ(1)]·

xaλ,a′λ(−t)xa,a′λ(t)

= xaλ,a′(t)xaλ,a′λ(t)xa,a′(−t)xa′,a′λ(−t)xaλ,a′λ(−t)xa,a′λ(t)

= xaλ,a′(t)xa,a′(−t).

Now xaλ,a′(t) ∈ U(R+(I × I ′), F ), xa,a′(t) ∈ U(R+(I ′ × I ′), F ), so u = x2x1, x2 =

xaλ,a′(t)xa,a′(−t), x1 = 1, TuT−1 = υ = y2y1 = xaλ,a′(t)xaλ,a′λ(t) where xaλ,a′(t) ∈
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U(R+(J ′×J), F ), xaλ,a′λ(−t) ∈ U(R+(J ′×J ′), F ), so y2 = xaλ,a′(t)xaλ,a′λ(−t), y1 =

1. Hence

x1 = 1, y1 = 1,

and the Γ∗(I, J, λ, F )−contribution is (1,1).

Case 9. ρ̃(i) = r ∈ R+(S(19)), r = eaλ − eγ , a ∈ A, γ ∈ C, aλ < γ, x̂(r, t) =

xr(t), u = xr(t)T = xaλ,γ(t)xa,aλ(1) = xaλ,γ(t)[xaλ,γ(t), xa,aλ(1)] = xaλ,γ(t)xa,γ(−t),

and

xaλ,γ(t) ∈ U(R+(I × I ′), F ),

xa,γ(−t) ∈ U(R+(I ′ × I ′), F ),

so u = x2x1, x2 = xaλ,γ(t)xa,γ(−t), x1 = 1, and υ = TuT−1 = xr(t), xaλ,γ(t) ∈

U(R+(J ′ × J), F ), so υ = y2y1, y2 = xaλ,γ(t), y1 = 1, and

x1 = 1, y1 = 1,

and the Γ∗(I, J, λ, F )−contribution is (1,1).

Case 10. ρ̃(i) = r ∈ R+(S(20)), r = eγ − eγ′ , γ, γ
′ ∈ C, γ < γ′, x̂(r, t) =

xγ,γ′(t), u = xγ,γ,(t)Txγ,γ′(t). Since xγ,γ′(t) ∈ U(R+(I ′ × I ′), F ), we have u =

x2x1, x2 = xγ,γ′(t), x1 = 1. Since xγ,γ′(t) ∈ U(R+(J × J), F ), we have υ =

y2y1, y2 = 1, y1 = xγ,γ′(t). So x1 = 1, y1 = xγ,γ′(t) and

(1, xγπ2,γ′π2(t)) ∈ Γ∗(I, J, λ, F ).

By (1.34)

(1, xγπ2,γ′π2(t)) ∈ Γ(I, J, λ, F ).
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Case 11. ρ̃(i) = r ∈ R+(S(21)), r = eδ − ej , δ ∈ D, j ∈ I ∩ J, x̂(r, t) =

xr(t), u = xr(t)T = xr(t). Since xδ,j(t) ∈ U(R+(I × I), F ), we have

u = x2x1, x2 = 1, x1 = xδ,j(t).

Since xδ,j(t) ∈ U(R+(I × I), F ), we have

TuT−1 =υ = y2y1, y2 = xδj (t), y1 = 1,

x1 = xδ,j(t), y1 = 1,

and

(xδπ1,jπ1(t), 1) ∈ Γ∗(I, j, λ, F ).

By (1.31),

(xδπ1,jπ1 , (t), 1) ∈ Γ(I, J, λ, F ).

Case 12. ρ̃(i) = r ∈ R+(S(22)), r = eδ − ea, δ ∈ D, a ∈ A, δ < a, x̂(r, t) =

xδ,a(t), u = xδ,a(t)T = xδ,a(t)xδ,aλ(t). Since xδ,a(t) ∈ U(R+(I × I ′), F ), xδ,aλ(t) ∈

U(R+(I × I), F ), we have u = x2x1, x2 = xδ,a(t), x1 = xδ,aλ(t). Since xδ,a(t) ∈

U(R+(J ′ × J), F ), we have

TuT−1 = υ = xδ,a(t) = y2y1, y2 = xδ,a(t), y1 = 1,

so

x1 = xδ,aλ(t), y1 = 1,

and

(xδπ1,aλπ1(t), 1) ∈ Γ∗(I, J, λ, F ).

By (1.33),

(xδπ1,aλπ1(t), 1) ∈ Γ(I, J, λ.F ).
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Case 13. ρ̃(i) = r ∈ R+(S(23)), r = eδ−eγ , δ ∈ D, γ ∈ C, δ < γ, x̂(r, t) =

xδ,γ(t), u = xδ,γ(t)T = xδ,γ(t). Since xδ,γ(t) ∈ U(R+(I × I ′), F ), we have

u = x2x1, x2 = xδ,γ(t), x1 = 1.

Since xδ,γ(t) ∈ U(R+(J ′ × J), F ), we have

TyT−1 = υ = y2y1, y2 = xδγ(t), y1 = 1,

so

x1 = 1, y1 = 1,

and the Γ∗(I, J, λ, F )−contribution is (1, 1).

Case 14. ρ̃(i) = r ∈ R+(S(24)), r = eε − eγ , ε ∈ I ′ ∩ J ′, γ ∈ C, ε <

γ, x̂(r, t) = xε,γ(t), u = xε,γ(t)T = xε,γ(t). Since xε,γ(t) ∈ U(R+(I ′ × I ′), F ), we

have

u = x2x1, x2 = xε,γ(t), x1 = 1.

Since xε,γ(t) ∈ U(R+(J ′ × J), F ), we have

xε,γ(t) = y2y1, y2 = xε,γ(t), y1 = 1,

so x1 = 1, y1 = 1, and the Γ∗(I, J, λ, F )−contribution is (1, 1).

Case 15. ρ̃(i) = r ∈ R+(S(25)), r = eaλ − eε, a ∈ A, ε ∈ I ′ ∩ J ′, aλ <

ε, x̂(r, t) = xaλ,ε(t), u = xaλ,ε(t)T = xaλ,ε(t)xa,aλ(1) = xaλ,ε(t)xa,ε(−t). Since

xaλ,ε(t) ∈ U(R+(I × I ′), F ), xa,ε(−t) ∈ U(R+(I ′ × I ′), F ), we have u = x2x1, x2 =

xaλ,ε(t)xaε(−t), x1 = 1. Since xaλ,ε(t) ∈ U(R+(J ′× J ′), F ), we have υ = y2y1, y2 =

xaλ,ε(t), y1 = 1, so x1 = 1, y1 = 1 and the Γ∗(I, J, λ, F )−contribution is (1, 1).
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Case 16. ρ̃(i) = r ∈ R+(S(26)), r = eδ − eaλ, δ ∈ D, a ∈ A, δ <

aλ, x̂(r, t) = xδ,aλ(t), u = xδ,aλ(t)T = xδ,aλ(t). Since xδ,aλ(t) ∈ U(R+(I × I), F ),

we have u = x2x1, x2 = 1, x1 = xδ,aλ(t); since xδ,aλ(t) ∈ U(R+(J × J ′), F ), we

have

TuT−1 = υ = y2y1, y2 = xδ,aλ(t), y1 = 1,

so x1 = xδ,aλ(t), y1 = 1,

(xδπ1,aλπ1(t), 1) ∈ Γ∗(I, J, λ, F ).

By (1.33),

(xδπ1,aλπ1(t), 1) ∈ Γ(I, J, λ, F ).

Case 17. ρ̃(i) = r ∈ R+(S(27)), r = eδ − eδ′ , δ, δ
′ ∈ D, δ′ < δ, x̂(r, t) =

xδ,δ′(t), u = xδ,δ′(t)T . Since xδ,δ′(t) ∈ U(R+(I × I), F ), we have u = x2x1, x2 =

1, x1 = xδ,δ′(t); since xδ,δ′(t) ∈ U(R+(J ′×J ′), F ), we have TuT−1 = υ = y2y1, y2 =

xδ,δ′(t), y1 = 1, so x1 = xδ,δ′(t), y1 = 1, and

(xδπ1,δ′π1(t), 1) ∈ Γ∗(I, J, λ, F ).

By (1.33),

(xδπ1,δ′π1(t), 1) ∈ Γ(I, J, λ, F ).

Case 18. ρ̃(i) = r ∈ R+(S(28)), r = eδ − eε, δ ∈ D, ε ∈ I ′ ∩ J ′, δ <

ε, x̂(r, t) = xδ,ε(t), u = xδ,ε(t)T = xδ,ε(t). Since xδ,ε(t) ∈ U(R+(I × I ′), F ),

we have TuT−1 = υ = y2y1, y2 = xδ,ε(t), y1 = 1, so x1 = 1, y1 = 1, and the

Γ∗(I, J, λ, F )−contribution is (1,1).
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Case 19. ρ̃(i) = r ∈ R+(S(29)), r = eε−eε′ ε, ε′ ∈ I ′∩J ′, ε < ε′, x̂(r, t) =

xr(t), u = xε,ε′(t)T = xε,ε′(t) ∈ U(R+(I ′ × I ′, F )), u = x2x1, x2 = xε,ε′(t), x1 =

1, TuT−1 = υ = y2y1, y2 = xε,ε′(t), y1 = 1, so the Γ∗(I, J, λ, F )−contribution

is (1, 1).

Thus, in each case, the Γ∗(I, J, λ, F )−contribution is contained in Γ(I, J, λ, F ).

Conversely, we check that every element of G occurs as Γ∗(I, J, λ, F )−contribution.

Since U(R+([1, n] × I ′), F ) / Uρ(I)(F ), and U(R+(J ′ × [1, n]), F ) / Uρ(J′)(F ), and

since

Uρ(I)(F )× Uρ(J′)(F )
ξ−→ U(R+(I × I), F )× U(R+(J × J), F )

is a surjective homomorphism, where

(x2x1, y2y2) 7→ (xπ1
1 , yπ2

1 )

the Γ∗(I, J, λ, F )−contributions generate Γ∗(I, J, λ, F ), and so

Γ∗(I, J, λ, F ) = Γ(I, J, λ, F ).

This is Theorem 1.

Theorems 2 and 3.

Set
∑

=
∑
d−1, and set

(7.1)

E1 = (I ∩ J)π1, F1 = (I ∩ J)π2,

E2 = Bπ1, F2 = Aπ2,

E3 = Dπ1, F3 = Cπ2.

Since I = I ∩ J
·
∪B

·
∪D, and since π1 agrees with λ(I, [1, d]) on I, it follows that

(7.2) [1, d] = E1

·
∪ E2

·
∪ E3.
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Similarly

(7.3) [1, d] = F1

·
∪ F2

·
∪ F3.

From (7.2) and (7.3), we conclude that [1, d] is partitioned into nine sets Ei∩Fj , 1 ≤

i, j ≤ 3, some of which may be empty. So

(7.4) [1, d]2 is partitioned into 81 sets

Ei ∩ Fj × Ek ∩ Fl, 1 ≤ i, j, k, l ≤ 3.

These 81 sets are called cells, and much of the remaining discussion involves careful

examination of these cells.

Using (1.33)-(1.38), we check that

(7.5)
if (g1, g2), (h1, h2) ∈ G, then

([g1, h1], [g2, h2]) ∈ G;

(7.6) if r, s ∈
∑+

, t ∈ F×, and (xs(t), xr(t)) ∈ G,

then (xs(t′), xr(t′)) ∈ G for all t′ ∈ F ;

(7.7) if r, r1, s, s1 ∈
∑+

, t, t1 ∈ F×, {r, s} ∩ {r1, s1} 6= φ

and (xs(t), xr(t)), (xs1(t1), xr1(t1)) ∈ G, then r = r1 and s = s1;

(7.8) if r, r1, s ∈
∑+

, t, t1 ∈ F×, and

(xs(t), xr(t)), (1, xr1(t1)) ∈ G, then r 6= r1;
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(7.9) if r, s, s1 ∈
∑+

, t, t1 ∈ F×, and

(xs(t), xr(t)), (xs1(t1), 1) ∈ G, then s 6= s1.

Coupling (1.33)-(1.38) with (7.5)-(7.9), we see that there is an exact sequence

1→ K1 → Γ(I, J, λ, F )
p1→ L1 → 1,

where

(7.11) K1 = U(R+([1, d]× F3), F ),

(7.12) L1 = U(R∗, F ),

(7.13)

R∗ = R+(E3 × [1, d]) ∪R+(E1 × E1)∪

R+({(aλπ1, a
′λπ1)|a, a′ ∈ A, a < a′})∪

R+({(aλπ1, jπ1)|a ∈ A, j ∈ I ∩ J})∪

R+({(jπ1, aλπ1)|j ∈ I ∩ J, a ∈ A, j < a}).

It is obvious that R+([1, d]× F3) is closed, and so is R+([1, d]× F3)′ = R+([1, d]×

(F1 ∪ F2)), so K1 = Uτ1(F ) for some τ1 ∈ Sd. By (7.13), R∗ is closed. To check

that R∗
′

is closed, we use the fact that

[1, d]2 =(E1 × E1) ∪ (E1 × E2) ∪ (E1 × E3) ∪ (E2 × E1) ∪ (E2 × E2)∪

(E2 × E3) ∪ (E3 × E1) ∪ (E3 × E2) ∪ (E3 × E3).

Hence,

R∗ = R+(E1 × E1) ∪R+({(α, β) ∈ E1 × E2|α = jπ1, β = aλπ1,
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j ∈ I ∩ J, a ∈ A, j < a}) ∪ φ∪

R+({(α, β) ∈ E2 × E1|α = aλπ1, β = jπ1, a < j})∪

R+({(α, β) ∈ E2 × E2|α = aλπ1, β = a′λπ, a, a′ ∈ A, a < a′})∪

φ ∪R+(E3 × E1) ∪R+(E3 × E2) ∪R+(E3 × E3),

and so

R∗
′

=φ ∪R+({(α, β) ∈ E1 × E2|α = jπ1, β = aλπ1, j ∈ I ∩ J, a ∈ A, j > a}∪

R+(E1 × E3) ∪R+({(α, β) ∈ E2 × E1|α = aλπ1, β = jπ1, a > j})∪

R+({(α, β) ∈ E2 × E2|α = aλπ1, β = a′λπ1, a, a′ ∈ A, a > a′})∪

R+(E2 × E3) ∪ φ ∪ φ ∪ φ,

and we check that R∗
′

is closed so that L1 = Uσ1(F ) for some σ1 ∈ Sd. A similar

argument produces τ2 and σ2. This is Theorem 2.

Theorem 3 will be shown to be a consequence of the following lemma.

Lemma. Suppose I, J ∈ Pd([1, n]) and I ∩ J = φ. Let

Mn(I, J, F ) ={M ∈Mn(F ),M = (mij),

mij = 0 if i ∈ I ′,

mij = 0 if j ∈ J ′,

mij = 0 if i > j}.

Let P = U(R+(I×I), F ), Q = U(R+(J×J), F ), Then P×Q acts on Mn(I, J, F )

via
Mn(I, J,F )× (P ×Q)→Mn(I, J, F ),

(M, (P,Q)) 7→ P−1MQ.
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Then {0}
⋃

λ∈Λ(I,J)

M(I, J, λ, F ) is a set of representatives for the orbits of P ×Q

on Mn(I, J, F ), where

M(I, J, λ, F ) =
{ ∑
a∈D(λ)

taea,aλ, ta ∈ F×
}
,

and λ ranges over the nonempty maps in Λ(I, J).

The proof is omitted, being an exercise in row and column operations.

To be able to apply this lemma, we note that Uρ(J′)(F )× Uρ(I)(F ) contains

δ(U(R+(I ′ ∩ J × I ′ ∩ J), F ))× δ(U(R+(I ∩ J ′ × I ∩ J ′), F )).

Also, every orbit of Uρ(J′)(F )×Uρ(I)(F ) on Un(F ) contains an element of U(Rρ(J′)ω0∩

Rρ(I)ω0 , F ). Since Rρ(J′)ω0 ∩Rρ(I)ω0 = R+(I ′∩J × I ∩J ′), we can bring the lemma

into play by using the isomorphism

(7.14) ι : U(R+(I ′ ∩ J × I ∩ J ′), F ) ∼=

Mn(I ′ ∩ J, I ∩ J ′, F )

via xα,β(t) 7→ teα,β,

where eα − eβ ∈ R+(I ′ ∩ J × I ∩ J ′). Also,

(7.15)
δ(U(R+(I ′ ∩ J × I ′ ∩ J), F ))× δ(U(R+(I ∩ J ′ × I ∩ J ′), F ))

∼= U(R+(I ′ ∩ J × I ′ ∩ J), F )× U(R+(I ∩ J ′ × I ∩ J ′), F )

with the isomorphism being the deletion of δ, and one checks that (7.1) and (7.2)

are compatible; conjugation action on U(R+(I ′ ∩ J × I ∩ J ′), F ) by δ(U(R+(I ′ ∩

J × I ′ ∩ J), F )) induces action on the left on Mn(I ′ ∩ J, I ∩ J ′, F ), and conjugation

action on U(R+(I ′∩J×I∩J ′), F ) by δ(U(R+(I∩J ′×I∩J ′), F ) induces action on
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the right on Mn(I ′∩J, I∩J ′, F ). By the lemma, every orbit of Uρ(J′)(F )×Uρ(I)(F )

contains an element of the stated type.

Suppose λ, µ ∈ Λ(I, J), ta ∈ F× for all a ∈ D(λ), ua ∈ F× for all a ∈ D(µ),

and ∏
a∈D(λ)

xa,aλ(ta),
∏

a∈D(µ)

xa,aµ(ua)

are in the same Γ−orbit. We must show that λ = µ and that ta = ua for all

a ∈ D(λ). Suppose false for λ, µ, ta, a ∈ D(λ), ua, a ∈ D(µ). Set

R1 = {ea − eaλ|a ∈ D(λ)},

R2 = {ea − eaµ|a ∈ D(µ)},

R = R1 ∪R2.

Let r0 be the smallest root in the (ρ−ordering) in R such that one of the following

holds:

(a) r0 /∈ R1 ∩R2, and either r0 = ea − eaλ ∈ R1, with ta 6= 0, or r0 = ea − eaµ ∈ R2 with ua 6= 0

(b) r0 ∈ R1 ∩R2 and ta0 6= ua0 , where

r0 = ea0 − ea0λ, a0 ∈ D(λ) ∩ D(µ) and

a0λ = a0µ.

From the minimality of r0, we conclude that if s <
ρ
r0 and s ∈ R, then

s ∈ R1 ∩R2, s = ea − eaλ = ea − eaµ, ta = ua. Set

T1 =
∏

a∈D(λ)

xa,aλ(ta), T2 =
∏

a∈D(µ)

xa,aµ(ua),

T =
∏

xa,aλ(ta),

where the product for T ranges over the s = ea − eaλ ∈ D(λ) with s <
ρ
r0, so that

T1 = T · T (1), T2 = T · T (2),
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where, with no loss of generality, r0 = ea0 − ea0λ ∈ R1, a0 ∈ D(λ). Thus, b0 =

a0λ, a0 ∈ I ′ ∩ J, b0 ∈ I ∩ J ′, a0 < b0. Also

T (1) = xa0b0(ta0) ·
∏

xa,aλ(ta),

T (2) = xa0,b0(c) ·
∏

xa,aµ(uµ),

where the product for T (1) ranges over r = ea − eaλ ∈ R1 with r0 <
ρ
r, and the

product for T (2) ranges over r = ea − eaµ ∈ R2 with r0 <
ρ
r, and where c = 0 if

r0 /∈ R2, c = ua0 if r0 ∈ R2. In all cases,

ta0 6= c.

At this point, I introduce the notion of retraction along a positive root r. Suppose

r = ei − ej ∈
∑+. Set

∑
(i, j)+ = {s ∈

∑+
|s = ei′ − ej′i ≤ i′ < j′ ≤ j}

U(i, j, F ) = 〈Xs(F )|s ∈
∑

(i, j)+〉.

Then there is an idempotent endomorphism ϕr of Ud(F ) which sends xs(t) to 1 if

s /∈
∑

(i, j)+, and which fixes xs(t) if s ∈
∑

(i, j)+, t ∈ F . The existence of ϕr is

obvious, since
∑

(i, j)+ and
∑

(i, j)+′ are closed, and since r1 ∈
∑+

, r2 ∈
∑

(i, j)+′

and r1 + r2 ∈
∑+ imply that r1 + r2 ∈

∑
(i, j)+′ .

We consider ϕ = ϕr0 and observe that

ϕ(Uρ(J′)(F )) ⊆ Uρ(J′)(F ),

ϕ(Uρ(I)(F )) ⊆ Uρ(I)(F ).

Set

P1 = ϕ(T1), P2 = ϕ(T2), P = ϕ(T ),
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so that

P1 = Pxr0(ta0), P2 = Pxr0(c),

where one of the following holds:

(i) c = 0 and r0 /∈ R2.

(ii) c = ua 6= ta.

By hypothesis, there are g1 ∈ Uρ(J′)(F ), g2 ∈ Uρ(I)(F ), such that g1T1 = T2g2.

Set

g = ϕ(g1), h = ϕ(g2),

so that

(*) gPxr0(ta0) = Pxr0(c)h.

Set

U0 = U(a0, b0, F );U1 = U(R∗, F ),

where R∗ = {ei′ − ej′ |a0 < i′ < j′ < b0} Thus P ∈ U1, and

U0 = U1U2, U1 ∩ U2 = {1},

where

U2 = U(R∗∗, F ),

and

R∗∗ = {ea0 − ej |a0 < j ≤ b0} ∪ {ei − ab0 |a0 < i < b0}.

Note that

U2 / U0.
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We first treat a special case. Suppose P = 1. Here (∗) becomes

gxr0(ta0) = xr0(c)h.

Since Xr0(F ) is in the center of U0, we get

gh−1 = xr0(c− ta0) = xr0(b), b ∈ F×.

Equivalently, g = xr0(b)h. This implies that either r0 ∈ Rρ(J′) or r0 ∈ Rρ(I). Since

a0 ∈ I ′ ∩ J, b0 ∈ I ∩ J ′, we get r0 /∈ Rρ(J′), r0 /∈ Rρ(I). We conclude that

P 6= 1.

Since P ∈ U1, this forces a0 + 1 < b0, and so

[U2, U2] = Xr0(F ).

Write

g = g̃u, h = h̃υ,

where g̃, h̃ ∈ U1, u, υ ∈ U2. From (∗), we get

g̃uP = Ph̃υxr0(b).

Since P ∈ U1, this gives us two equations:

g̃P = Ph̃, uP = υxr0(b),

u ∈ Uρ(J′)(F ) ∩ U1, υ ∈ Uρ(I)(F ) ∩ U1.

Write

u = u1u2, υ = υ1υ2,
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where

u1 =
b0−1∏
j=a0+1

xa0j(fj), u2 =
b0−1∏
j=a0+1

xjb0(f ′j),

υ1 =
b0−1∏
j=a0+1

xa0j(ej), υ2 =
b0−1∏
j=a0+1

xjb0(e′j).

Here I am using r0 /∈ Rρ(J′), r0 /∈ Rρ(I).

Since P normalizes 〈Xa0j(F )|a0 < j < b0〉 and 〈Xjb0(F )|a0, < j < b0〉, it follows

that

uP = ũ1ũ2,

where

ũ1 =
b0−1∏
j=a0+1

xa0j(f̃j), ũ2 =
b0−1∏
j=a0+1

xjb0(f̃ ′j),

whence from uP = υxr0(b), we get b = 0. This contradiction shows that Theorem

3 holds.

8. Partitions and associated groups

In order to study the groups Γ(I, J, λ, F ), I introduce a graph Γ = Γ(I, J, λ).

I set

(8.0)

V (Γ) = [1,d],

E(Γ) = {(µ,ν)| one of the following holds;

(1) jµ = iν ,

(2) jµ ∈ A, iν ∈ B and

jµλ = iν}.

Here I am using (1.27) and (1.32).

From (3.8), together with the definitions of π(I) and π(J), we get

(8.1) iµ < jµω for all µ ∈ [1, d].
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Lemma 8.1. iµ < jµ for all µ ∈ [1, d].

Proof. Fix µ ∈ [1, d]. Since

|{νω|ν ∈ [µ, d]}| = d− µ+ 1 and |[1, µ]| = µ,

It follows that

{νω|ν ∈ [µ, d]} ∩ [1, µ] 6= φ.

Choose k ∈ {νω|ν ∈ [µ, d]} ∩ [1, µ]. Thus

k = κω ≤ µ for some κ ∈ [µ, d].

It follows that

iµ ≤ iκ < jκω ≤ jµ,

and the lemma follows.

Lemma 8.2. If (µ, ν) ∈ E(γ), then µ < ν.

Proof. If (1) holds for (µ, ν), in (8.0), then jµ = iν . By Lemma 8.1, iν < jν , and

so jµ < jν , whence µ < ν. If (2) holds for (µ, ν) in (8.0), then

jµ ∈ A, iν ∈ B and jµλ = iν .

By definition of λ in (1.30 ii) we get

jµ < iν .

By Lemma 8.1, iν < jν , and so jµ < jν , whence µ < ν.
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Lemma 8.3. If (µ, ν1) and (µ, ν2) are edges of Γ, then ν1 = ν2.

Proof. Since A ⊆ I ′, if follows that if (1) holds for (µ, νi), then (1) also holds for

(µ, ν3−i). The lemma follows.

Lemma 8.4. If (µ1, ν) and (µ2, ν) are edges of Γ, then µ1 = µ2.

Proof. Since B ⊆ J ′, it follows that if (1) holds for (µi, ν), then (1) holds for

(µ3−i, ν). The lemma follows.

It follows from Lemmas 8.1, 8.2 and 8.3 that if Γ′ is a connected component if

Γ, then

V (Γ′) = {a1, a2, . . . , al} a1 < a2 < · · · < al,

and

E(Γ′) = {(ai, ai+1)| i ∈ [1, l − 1]}.

Let Γ1, . . . ,Γk be the connected components of Γ, ordered so that |V (Γi)| = µi

and

µ1 ≥ µ2 ≥ · · · ≥ µk.

Set µ(I, J, λ) = µ = (µ1, . . . , µk),

(8.2) V (Γi) = {a1i, a2i, . . . , aµii} a1i < a2i < · · · < aµii,

(8.3) D(µ) = {(x, y) ∈ N2|y ∈ [1, k], x ∈ [1, µy]}.

I call D(µ) the dot diagram of µ, and define

(8.4) ϕ(I, J, λ) = ϕ : D(µ)→ [1, d]
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ϕ(x, y) = axy.

Since [1, d] is the disjoint union of the V (Γi), it follows that ϕ is a bijection.

From the map ϕ, I construct a group G(ϕ, F ) for each field F , and as with

G(I, J, λ, F ), I give G(ϕ, F ) by giving a set of generators. As withG(I, J, λ, F ), G(ϕ, F )

is a subgroup of Ud(F )× Ud(F ). Here are generators:

(8.5)
{(xij(t), 1)|t ∈ F, i < j,

i = ϕ(1, y) for some y ∈ [1, k]},

(8.6)
{(1, xij(t)|t ∈ F, i < j,

j = ϕ(µy, y) for some y ∈ [1, h]},

(8.7) {(xi′,j′(t), xij(t))|t ∈ F, i < j, i′ < j′

i = ϕ(a, y), j = ϕ(b, z),

i′ = ϕ(a+ 1, y), j′ = ϕ(h+ 1, z),

for some {(a, y), (a+ 1, y), (b, z), (b+ 1, z)} ⊆ D(µ)}.

Theorem 8.1. For all (I, J, λ), and all fields F

G(I, J, λ, F ) = G(ϕ, F ),

where

ϕ = ϕ(I, J, F ).

Proof. We prove that each generator in any of (8.5), (8.6), (8.7) occurs in one of

(1.33)-(1.39), and conversely, that each of the elements appearing in (1.33)-(1.39)

is contained in G(ϕ, F ).
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I start with (8.5). Suppose t ∈ F, 1 ≤ µ < ν ≤ d and µ = ϕ(1, y) for some µ.

From the definition of Γ, this implies that iµ ∈ J ′ and in addition iµ /∈ B. Thus,

iµ ∈ I ∩ J ′ −B, that is iµ ∈ D. By (1.32), π1 = π(I), and by definition of π(I), we

get

iµπ1 = µ.

Since µ < ν, it follows that eµ − eν ∈ R+(Dπ1 × [1, d]), and so

(xµν(t), 1)

is one of the elements appearing in (1.33). The remaining assertions follow in a

similar manner.

Let ϕ = ϕ(I, J, λ) as before, and set

Ω(ϕ) = {ω ∈ Sd| if {(a, l), (a+ 1), l)} ⊆ D(µ),

then [ϕ(a+ 1, l), d]ω ⊆ [ϕ(a, l) + 1, d]}.

Lemma 8.5. If ω ∈ Sd and

iσ < jσω for all σ ∈ [1, d],

then ω ∈ Ω(ϕ).

Proof. Suppose iσ < jσω for all σ ∈ [1, d] and ω /∈ Ω(ϕ). Then for some {(a, l), (a+

1, l)} ⊆ D(µ) and some ν′ ≥ ϕ(a+ 1, l), we have

ν′ω ≤ ϕ(a, l).
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Set

σ = ϕ(a, l), σ′ = ϕ(a+ 1, l).

By definition of Γ, one of the following holds:

(a) jσ = iσ′ .

(b) jσ ∈ A, ισ′ ∈ B and jσλ = iσ′ .

In either case, we have

jσ ≤ iσ′ , and σ < σ′.

Namely, iσ′ < jσ′ , by Lemma 8.2. Thus, if (a) holds, then jσ = iσ′ , < jσ′ , so that

σ < σ′. If (b) holds, then since λ is increasing, we get jσ < iσ′ , and as iσ′ < jσ′ by

Lemma 8.2, we get jσ < jσ′ so σ < σ′.

We are given ϕ(a+ 1, l) = σ′ and ν′ ≥ σ′, ν′ω ≤ σ.

First, suppose that jσ = iσ′ . Since ν′ ∈ [1, d], we have jσ = iσ′ ≤ iν′ < jν′ω ≤ jσ,

a contradiction.

Suppose that jσλ = iσ′ , so that jσ < iσ′ ; now we get

jσ < iσ′ ≤ iν′ < jν′ω ≤ jσ,

a contradiction.

9. Constructing some (I, J, λ) from labeled dot diagrams

In this section, I start with a partition µ of d:

µ = (µ1, . . . , µk).

Set

(9.1) D(µ) = {(x, y) ∈ N2|y ∈ [1, k], x ∈ [1, µy]},
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the dot diagram of µ. Set

(9.2)
Φ(µ) = {ϕ :D(µ)→ [1, d]| ϕ is a bijection and

ϕ(x, y) < ϕ(x+ 1, y) for all {(x, y), (x+ 1, y)} ⊆ D(µ)}.

If ϕ ∈ Φ(µ) and F is a field, set

GL = {xij(t),1)|t ∈ F, i < j, and i = ϕ(1, y)

for some y ∈ [1, k]},

(9.3)
GR = {(1, xij(t))|t ∈ F, i < j and j = ϕ(µy, y)

for some y ∈ [1, k]},

GD = {xi′j′(t), xij(t))|t ∈ F, i < j, i′ < j′,

and

i = ϕ(a, y1), j = ϕ(b, y2),

i′ = ϕ(a+ 1, y1), j′ = ϕ(b+ 1, y2)

for some {(a, y1), (b, y2), (a+ 1, y1), (b+ 1, y2)} ⊆ D(µ)}

G(ϕ, F ) =< GL ∪GR ∪GD > .

Theorem 9.1. If µ ` d and ϕ ∈ Φ(µ), then for some n ∈ N, there are subsets

I, J ⊆ [1, n], |I| = |J | = d, subsets A ⊆ I ′ ∩ J,B ⊆ I ∩ J ′ and a map λ : A → B

such that λ is a bijection and a < aλ for all a ∈ A, such that for all fields F ,

G(I, J, λ, F ) = G(ϕ, F ).

In addition, setting

Ω(ϕ) = {ω ∈ Sd|[ϕ(a+ 1, l), d]ω ⊆ [ϕ(a, `) + 1, d]

for all {(a, l), (a+ 1, l)} ⊆ D(µ)},
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I, J have the property that

I = {i1, i2, . . . , id}, i1 < i2 < · · · < id,

J = {j1, j2 . . . , jd} j1 < j2 < · · · < jd,

and

Ω(ϕ) = {ω ∈ Sd|iσ < jσω for all σ ∈ [1, d]}.

Proof. Set

X (ϕ) = {(I, J, λ)| ϕ(I, J, λ) = ϕ}.

Among other things, we must prove that X (ϕ) 6= φ for all ϕ ∈ Φ(µ). I remark

that if (I, J, λ) ∈ X (ϕ), then by Lemma 8.5, it follows that

{ω ∈ Sd|iσ < jσω for all σ ∈ [1, d]} ⊆ Ω(ϕ).

Set

L(ϕ) := {(ϕ(a, α), ϕ(a+ 1, α))| {(a, α), (a+ 1, α)} ⊆ D(µ)},

Λ(ϕ) := {(x, y) ∈ L(ϕ)2|x = (i, j), y = (i′, j′)

and i′ < i < j < j′}.

If {x, y} ⊆ L(ϕ), set x <ϕ y if (x, y) ∈ Λ(ϕ). By inspection, (L(ϕ), <ϕ) is a

poset.

Set

Lmin(ϕ) := {x ∈ L(ϕ)|x is minimal under <ϕ}.

Set

(9.1) l := |Lmin(ϕ)|.
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Since ϕ is a bijection, it follows that if

(9.2) {(i, j), (i′, j′)} ⊆ L(ϕ) and (i, j) 6= (i′, j′), then i 6= i′ and j 6= j′.

From (9.1), it follows that

Lmin(ϕ) ={(µ1, ν1), . . . , (µl, ν`)},

µ1 ≤ µ2 ≤ · · · ≤ µ`.

Since (µh, νh) ∈ L(ϕ) for all h ∈ [1, `] and ϕ ∈ Φ(µ), it follows that

(9.3) µh < νh ∀h ∈ [1, `].

It follows from (9.2) that

(9.4) µ1 < µ2 < · · · < µ`,

and it also follows from (9.2) that νh 6= νh+1 ∀h ∈ [1, `− 1].

Suppose by way of contradiction that νh > νh+1 for some h ∈ [1, ` − 1]. Then

(9.3) and (9.4) yield µh < µh+1 < νh+1 < νh, whence (µh+1, νh+1) <ϕ (µh, νh),

against (µh, νh) ∈ Lmin(ϕ). So

(9.5) ν1 < ν2 < · · · < ν`.

Set

(9.6) µ0 := 0, µ`+1 := d, ν`+1 : d+ 1,

and set

(9.7)
c2h−1 := νh − h+ µh−1,

c2h := νh − h+ µh ∀h ∈ [1, `+ 1].
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Set

(9.8) I := [1, c1] ∪
⋃

h∈[1,`]

[c2h, c2h+1],

(9.9) J :=
⋃

h∈[1,`+1]

[c2h−1 + 1, c2h].

Lemma 9.1.
(i) c2h−1 < c2h ∀h ∈ [1, `].

(ii) c2`+1 < c2`+2.

(iii) c2h ≤ c2h+1 ∀h ∈ [1, `].

Proof. From (9.4) and (9.6), µh−1 < µh ∀h ∈ [1, ` − 1], so νh − h + µh−1 <

νh−h+µh. This is (i). Since µ` < ν` ≤ d, we get ν`+1−(`+1)+µ` < ν`+1−(`+1)+d.

This is (ii).

If h ∈ [1, `− 1], then νh < νh+1 by (9.5), so νh − h < νh+1 − h and so νh − h ≤

νh+1 − (h+ 1), so

νh − h+ µh ≤ νh+1 − (h+ 1) + µh.

So (iii) holds for all h ∈ [1, ` − 1]. Since 2` + 1 = 2(` + 1) − 1, and ν` < ν`+1, we

get ν` − `+ µ` ≤ ν`+1 − (`+ 1) + µ`, so (iii) holds.

Lemma 9.2.
(i) cm ≤ cm+1, ∀m ∈ [1, 2`+ 1].

(ii) If h ∈ [1, `− 1], then

c2h = c2h+1 ⇐⇒ νh+1 = νh + 1.

(iii) c2` = c2`+1 ⇐⇒ ν` = d.

(iv) c2h < c2(h+1), ∀h ∈ [1, `].
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Proof. Lemma 9.1 implies (i). If h ∈ [1, `− 1], then by (i) c2h+1 − c2h ≥ 0. Since

c2h+1 − c2h = νh+1 − νh − 1,

(ii) follows. Since c2`+1 − c2` = d− ν`, (iii) follows.

Since µh < µh+1 and νh < νh+1 ∀h ∈ [1, `], (iv) follows.

Lemma 9.3. |I| = d.

Proof. Since 0 < µ1 < ν1, it follows that ν1 > 1, so c1 ≥ 1.

It follows from Lemma 9.1 and (9.8) that

|I| =c1 +
∑
h∈[1,`]

(c2h+1 − c2h + 1)

= `+ c1 +
∑
h∈[1,`]

(c2h+1 − c2h),

so this lemma follows from (9.6) and (9.7).

Lemma 9.4. |J | = d.

Proof. Since c2h−1 ≤ c2h, ∀h ∈ [1, `+ 1], it follows that

|[c2h−1 + 1, c2h]| = c2h − c2h−1.

Hence, by (9.9),

|J | =
∑

h∈[1,`+1]

(c2h − c2h−1),

so this lemma follows from (9.7).

Remarks. For future reference, I note that c2`+2 = 2d− `.

Lemma 9.5. (i)I ∪ J ⊇ [1, 2d− `].
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(ii)I ∩ J ⊇ {c2h|h ∈ [1, `]}.

Proof. Set X := I ∪ J . By construction, 1 ∈ X. Suppose m ∈ X and m < 2d− `.

Then m is in one of the following intervals:

(1)[1, c1].

(2)[c2h, c2h+1], h ∈ [1, `].

(3)[c2h−1 + 1, c2h], h ∈ [1, `].

(4)[c2`+1, c2`+2 − 1].

In each case, inspection shows that m+ 1 ∈ X, so by finite induction, (i) holds. By

(9.8) and (9.9), (ii) holds.

Lemma 9.6.
(i) I ∪ J = [1, 2d− `].

(ii) I ∩ J = {c2h|h ∈ [1, `]}.

Proof. By Boolean algebra

I ∪ J = (I r I ∩ J) ∪ (J r I ∩ J) ∪ I ∩ J

and so

|I ∪ J | = |I|+ |J | − |I ∩ J |.

By Lemmas (9.3)-(9.5), |I ∪ J | ≥ 2d− ` and |I ∩ J | ≥ `, so

2d = |I|+ |J | = |I ∩ J |+ |I ∪ J | ≥ `+ 2d− `.

Thus, the inequality is an equality, and the lemma follows.

Set

iµ = µλ([1, d], I), jµ = µλ([1, d], J),∀µ ∈ [1, d].
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Lemma 9.7.
(i) iνh = c2h,

(ii) jµh = c2h, ∀h ∈ [1, `].

Proof. If h ∈ [1, `], set

νh = |I ∩ [1, c2h]|.

Obviously, (9.8) implies that

(9.10) c2h = max I ∩ [1, c2h],

so c2h = iνh .

From (9.8), we get

I ∩ [1, c2h] =

 {c2h} ∪ [1, c1] if h = 1
{c2h} ∪ [1, c1] ∪

⋃
k∈[1,h−1]

[c2k, c2k+1] if h > 1.

So

|I ∩ [1, c2h]| =


ν1 if h = 1

ν1 +
∑

k∈[1,h−1]

(c2k+1 − c2k + 1) if h > 1.

Since c2k+1 − c2k + 1 = νk+1 − (k + 1) + µk − νk + k − µk + 1 = νk+1 − νk, we get

νh = νh,∀h ∈ [1, `].

This is (i).

From (9.9), we get

|J ∩ [1, c2h]| =
∑

k∈[1,h]

(c2k − c2k−1).

Since c2k − c2k−1 = νk − k+ µk − νk + k− µk−1 = µk − µk−1, and since µ0 = 0, we

get

|J ∩ [1, c2h]| = µh, c2h = max J ∩ [1, c2h],

and (ii) follows.
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Lemma 9.8. If m ∈ [ν` + 1, d], then

im < jµ`+1.

Proof. Since ν` < m, it follows from Lemma 9.7 that

(9.11) c2` = iν` < im.

From (9.11) and (9.8), we get im ∈ [c2` + 1, c2`+1].

Since jµ`+1 > jµ` = c2`, (9.9) implies that jµ`+1 ∈ [c2`+1 + 1, c2`+2]. Since

c2`+1 < c2`+1 + 1, the lemma follows.

Lemma 9.9. If m ∈ [1, ν1 − 1], then im < j1.

Proof. This is obvious.

Lemma 9.10. If νh < m < νh+1 and h ∈ [1, `− 1], then im < jµh+1.

Proof. By Lemma 9.7, iνh = c2h < im < c2h+2.

Hence,

(9.12) im ∈ [c2h, c2h+1].

By Lemma 9.7, together with µh < νh, it follows that

(9.13) c2h < jµh+1 ≤ jµh+1 = c2h+2,

and so

(9.14) jµh+1 ∈ [c2h+1 + 1, c2h+2].
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The lemma follows from (9.12), (9.14).

If h ∈ [1, `], there is (ah, αh) ∈ D(µ) such that

µh = ϕ(ah, αh), νh = ϕ(ah + 1, αh).

Set
X(ϕ) := {(ah, αh)|h ∈ [1, `]},

Y (ϕ) := D(µ)rX(ϕ).

Let

Z(ϕ) := {(a, α) ∈ Y (ϕ)|(a+ 1, α) ∈ D(µ)}.

By construction, if (a, α) ∈ Z(ϕ), then there is h ∈ [1, `] such that

(9.15) ϕ(a, α) < ϕ(ah, αh) < ϕ(ah + 1, αh) < ϕ(a+ 1, α).

Set
A(ϕ) := {jϕ(a,α)|(a, α) ∈ Z(ϕ)}

B(ϕ) := {iϕ(a+1,α)|(a, α) ∈ Z(ϕ)},

and define λ by
λ :A(ϕ)→ B(ϕ)

jϕ(a,α) 7→ jϕ(a,α)λ = iϕ(a+1,α).

Obviously λ is a bijection.

It follows from (9.15) that

jϕ(a,α) < jϕ(ah,αh) = iϕ(ah+1,αh) < iϕ(a+1,α),

so

(9.16) a < aλ all a ∈ A(ϕ).
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Putting these pieces together, it follows that

ϕ(I, J, λ) = ϕ,

that is, (I, J, λ) ∈ X (ϕ).

Set
Ω∗(ϕ) := {ω ∈ Sd|

[ϕ(a+ 1, α), d]ω ⊆ [ϕ(a, α) + 1, d]

for all {(a, α), (a+ 1, α)} ⊆ D(µ)}.

It remains to prove that

im < jmω ∀ω ∈ Ω∗(ϕ), and ∀m ∈ [1, d].

Set

Ω∗∗(ϕ) = {ω ∈ Sd|[νh, d]ω ⊆ [µh + 1, d] ∀h ∈ [1, `]}.

If h ∈ [1, `], then

µh = ϕ(ah, αh), νh = ϕ(ah + 1, αh).

Hence

Ω∗(ϕ) ⊆ Ω∗∗(ϕ).

Conversely, suppose ω ∈ Ω∗∗(ϕ) and {(a, α), (a+ 1, α)} ⊆ D(µ).

I argue that

(9.17) [ϕ(a+ 1, α), d]ω ⊆ [ϕ(a, α) + 1, d].

If (ϕ(a, α), ϕ(a+ 1, α)) ∈ Λmin(ϕ), then for some h ∈ [1, `], ϕ(a, α) = µh,

ϕ(a + 1, α) = νh and (17) holds. If (ϕ(a, α), ϕ(a + 1, α)) 6= Λmin(ϕ), then there is
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h ∈ [1, `] such that

ϕ(a, α) < ϕ(ah, αh) < ϕ(ah + 1, αh) < ϕ(a+ 1, α),

and so
[ϕ(a+ 1, α), d]ω ⊆ [ϕ(ah + 1, αh), d]ω

⊆ [ϕ(ah, αh) + 1, d]

⊆ [ϕ(a, α) + 1, d],

so (9.17) holds, whence Ω∗∗(ϕ) ⊆ Ω∗(ϕ); so

Ω∗(ϕ) = Ω∗∗(ϕ).

Pick m ∈ [1, d]. Then one of the following holds:

1. ν` < m.

2. m < ν1.

3. νh < m < νh+1 for some h ∈ [1, `− 1].

4. m ∈ {ν1, ν2, . . . , ν`}.

Suppose ν` < m. Then mω ≥ µ` + 1, as ω ∈ Ω∗∗(ϕ).

By Lemma 7, im < jµ`+1 ≤ jmω.

Similarly, if m < ν1, Lemma 9.9 applies, and if 3 holds, Lemma 9.10 applies.

Finally, suppose m = νh. Then im = iνh = jµh < jµh+1 ≤ jmω. The proof of the

Theorem is complete.

10. The partitions (1d) and (d)

Although I have been unsuccessful in proving that for all µ ` d, ϕ ∈ Φ(µ), ω ∈

Ω(ϕ), there are polynomials f(µ, ϕ, ω, λ) ∈ Z[x] such that for all finite fields Fq

(10.1) |Ud(Fq)ωUd(Fq)/G(ϕ,Fq)| = f(µ, ϕ, ω, q),
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I have proved this assertion for two particular partitions µ of d. Namely, in this

final section, I prove that (10.1) holds if

µ ∈ {(1d), (d)}

Case 1. µ = (1d).

In this case, Φ(µ) is the set of all bijections from D(µ) to [1, d], and Ω(ϕ) = Sd.

On the other hand, < GL >= Ud(F )× 1 and

< GR >= 1× Ud(F ), so that

G(ϕ, F ) = Ud(F )× Ud(F ),

whence

|Ud(Fq)ωUa(Fq)/G(ϕ,Fq)| = 1,

so we take f(µ, ϕ, ω, λ) = 1, and (10.1) holds.

Case 2. µ = (d).

In this case

D(µ) = {(x, 1)|1 ≤ x ≤ d},

and

|Φ(µ)| = 1.

The unique ϕ in Φ(µ) is defined by

ϕ(x, 1) = x, ∀x ∈ [1, d].

In this situation

< GL >=< x1i(t)|2 ≤ i ≤ d, t ∈ F >,

< GR >=< xid(t)|1 ≤ i ≤ d− 1, t ∈ F >,
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and
< GD >=< (xi+1,j+1(t),xi,j(t))|t ∈ F,

1 ≤ i ≤ j ≤ d− 1 > .

As for Ω(ϕ), we see that if ω ∈ Ω(ϕ), then for each i ∈ [1, d− 1],

[i+ 1, d]ω ⊆ [i+ 1, d],

and so

Ω(ϕ) = {1}.

From the structure of G(ϕ, F ), it follows trivially that

|Ud(Fq)/G(ϕ,+Fq)| = 1

and so we take f(µ, ϕ, 1, λ) = 1 and (10.1) again holds.
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