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k(Unky))

1. Preliminary observations, notation and statement of results.
The aim of this paper is to provide a framework to attack the following conjec-
ture:

(C) For all n € N, there is a polynomial f,,(z) € Z[z] such that

k(U (F,)) = fn(q) for all F,,.

If G is a group, k(G) denotes the cardinality of the set ccl(G) of conjugacy classes

of G. If F is a field, then GL,,(F) is a (B, N)—pair, and I set

U=U,(F), H=H(F*)= the diagonal matrices in GL,,(F),

(1.1) N = the monomial matrices in GL,,(F),

W = N/H, P = permutation matrices,

and I use the isomorphism

(1.2) n

The iota is often suppressed, and when context permits, S,,, P and W are
coalesced.

This notation is standard, and when it is helpful for reasons of clarity to specify
n,

I write U,,, H,,,... for U, H, ...



The group G x G acts on G by the rule

G x (GXG) -G
(1.3)
(9, (z,y)) — go(z,y) =2 gy

HIr<GxG, Xisal—set,and x € X, then I', denotes the stabilizer of x in I

Naturally, we make use of the diagonal map

§:G—GxG
(1.4)
g—94(9)=(9,9)-

Let U, (F') be the ring of strictly upper triangular n x n matrices over F, so
that 1 + U, (F) = U,(F). Since g~ (1 +u)g = 1 + g 'ug,U,(F) and U,,(F) are

isomorphic 0(U,, (F'))—sets, and U, (F') x U, (F) stabilizes U,,(F'). Since

n—1
(1'5) Mn(F) = U ud,n(F)u
d=0

where Uy, (F') is the set of elements of U, (F') of rank d, and since Uy ,(F') = {0},

we get
(1.6) UL F) =14 Y agn(a)
d=1

where ag4,,(q) is the number of orbits of §(U,(Fy)) in Uy n(F,). It is the aqn(q)

which are studied in this paper. If f: X — Y is a map, set

(L.7) D(f)=X, R()=Y. im(f)=f(X).

If m,n € Z, set

(1.8) [m,n] ={z € Zm < z < n}.
3



Set
(1.9) Apn1={(z1...,2n) €EZ" 21 + 22+ + 2, = 0}
and let > =5, be the corresponding root system:

(1.10) > ={ei—ejli # 4}

where {e;} is the standard basis for Z™, and by abuse, is the standard basis for
R"™ for every commutative ring R with 1. The set Z+ of positive roots is {r =
ei—ejli < j}and 37 = — 3.7, (The positive elements of R™ are those whose first
nonzero coordinate is positive). If S C [1,n]?, RT(S) denotes the set of positive
roots e; —e; such that (7, 5) € S, and R™(S) denotes the set of negative roots e; —e;
such that (i,j) € S.

If R C ) we say that
R is closed if and only of (R+ R) N Z CR.

When R is a closed, set

(1.11) Un(R,F) = (X,(F)|r € R).
Here

(1.12) To(t) =1+te;ifr=e;—e; €Y
and

(1.13) X, (F) = (z,(t)|t € F).



If RC ", then we adopt the convention that
+
(1.14) R’ is the complement of R in Z .

Ifwisin S,, P or W, set
+
(1.15) R,={re Z | rw <0},

and let wg be the unique element (of S, P, or W, as the case may be) such that

(1.16) Ry, = Z+.

Thus, iwg = n+ 1 —i for all i € [1,n] and if I € P4([1,n]), then since [1,n] =
Two U I'wy, it follows that (I')wo = (Iwg)’ where ' now denotes complementation in
[1,n]. Set

Unw(F)=Uy(F) = (X,(F)|r € R,).

(1.18) U(F) = Uy(F) - Upeoy (F), Uns(F) N U, (F) = 1.

We next record that

. / . +
if R, R" are complementary sets of roots in Z
(1.19) and both are closed, then there is w € W such that

R=R,.
This easily proved fact is helpful in this paper.

The set of all d—element subsets of the set S is denoted by P;(S). If I,J €

P4([1,n]), then

(1.20) A(I,J) is the unique order-preserving map from I to J,
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(1.21) A7 (1,J) is the unique order-reversing map from I to J,

with the convention that A\~ (I, J) = A(I,J) if d = 1. Also w([) is defined:

7(I) is the unique element of S,, which agrees with A(I,[1,d]) on I and

(1.22)
agrees with A\(I', [d + 1,n]) on I'.

And p(I) is defined as the unique element of S,, which agrees with

A" (I,[n—d+1,n]) on I and agrees with A\~ (I’,[1,n —d]) on I’. A picture of p(I)

might look something like

I I
0 X X X X0 X X
(1.23) o(l)
X X 0 X X X X0
[1,n —d] [n —d+1,n]
We check directly that
(1.24) URT(I xI'),F) = Uy (F),

with analogous equalities for other subsets [1,n]? which have suitable box-like prop-
erties.

We embed S, in S, in the usual way by extending each o in S; to the element
of S,, which agrees with o on [1,d] and fixes every element of [d + 1,n]. Similarly,

we embed GL4(F') in GL,(F), sending g in GL4(F') to
g O
0 1n—d ‘

Cn(I,J) = {w € Sqli <in(Iwn(J)™*

If I,J € Py[1,n], set

(1.25)
for all i € I}



(1.26) P,(1,J) =Awi|lw e C,(1,J)}.

Cy(1,J) is often empty, but we study carefully the set of triples (I, J,w), where

I,J € Py([1,n]) and w € C,,(I,J). Suppose (I, J,w) is such a triple. Write
(127) ]:{ila"wid} J:{j17--'7jd}

i1 < dg < - < dg, j1 < Jo < -+ < jqg. Hence, for m € [1,d], ipn(l) =
m,mm(J)™t = jm, and so iy,7(Dwr(J)™! = (mw)r(J)™! = jme and so (1.25)

yields
(1.28) im < Jmw, m € [1,d].
I continue to examine (I, J,w). Since [1,n] =1 U I’, we have
J=InJurnj,

and similarly,

I=INJUul'nJ,

Sod=|J|=[InNJ+|I'nJ,d=|I|=|INnJ|+|INJ|, so
1'nJ=|InJ|.
Since ig < jaw < jda, we get jq ¢ I, and so I # J. Since |I| = |J|, this forces

(1.29) I'ni#£e¢, INJ ¢
7



Let A = A(Z,J) be the set of all maps A with D(\) C I'NJ,R(\) =INJ’, such

that

(1) X:D(M\) — INJ is an injection.
(1.30)

(17) a < aX for all a € D(N).

I adopt the convention that the empty map is in A. This is the map A\ with
D(A\) = ¢, R(\) =1InJ. If for example, ig < ji, then A consists only of the
empty map. We shall, however, meet some large A.

It is extremely helpful to observe that

(1.31) D(\) Cc I' N J for all X € A.

For if D(A) = I' N J, then A is a bijection between I’ N J and I N J’, and since

A is increasing by (1.30. ii), we get

Za<Zb,

acl’'ng belInJ’
and so
E a < E b.
acJ bel
But

berl me(l,d] me(l,d] me(l,d] acJ
So (1.31) holds.
We next consider a 4-tuple (I, J,w, \), where w € C,,(I,J),\ € A(I,J). For each
field F', T define a subgroup I' = I'(1, J, \, F') of Uy(F) x Uy(F), by giving a set G

of generators. Set

A=D(\), C=TInNJ\A,
(1.32) B=D\)\, D=InJ\B,

m =n(l), me=m(J).
8



We take G to be the set of displayed elements.

(1.33) (Uy(RY (D7 x [1,d)), F), 1).

(1.34) (1,U4(RT([1,d] x Cms), F)).

(miTH,j?U (t)7xi7r2,jﬂ2 (t))vt € F?

(1.35)
e;—e; ERT(INJT xINJ).
(xa/\wl,a’)ﬂrl (t)7$aﬂ'2,a/ﬂ'2 (t))at € F7
(1.36)
a,a’ € A,a<a,a\ < a )\
(xCL)\lejﬂ'l (t)’xaﬁ2,jﬁz(t))7t S F7a € A,
(1.37)
jelnJal<i
(mjﬂ1,aAﬂ1 (t)7 Tirs,amy (t))at € F,
(1.38)

jelnd,ae A j<a.
This gives us I'(1, J,\, F'). Let

f(I, Jw, A, q) be the number of orbits of

(1.39)
LI, J,\Fy) on Uy(Fy)wiUg(Fy).

The appearance of ¢ in (1.39) makes clear that we are to examine Uy(F,)PiUq(Fy).
The Cartan subgroup has disappeared. It is to be understood that I' < GL4(F') X

GL4(F) and that Uy(F)wiUg(F) € GLg(F), so that (1.3) applies.
Theorem 1. If1 <d<n—1, then
agn(q) =Y (q— )P f(1,0,0,),q),

where the sum is over all 4-tuples (I, J,w, \) such that I, J € Py([1,n]),w € Cp(I,J),\ €

A(I,J).



Theorem 2. IfI,J € P;([1,n]) and X\ € A(I,J), then there are o1,09,T1,T2 € Syg
such that for all fields F', there are exact sequences

1 — U, (F) =TI, J\F) % U, (F) — 1,

1 - U, (F)—TU,J\F)2U,, (F) -1,

where p; is the projection of T to the i*® factor of Ug(F) x Ug(F).

One of the building blocks in the proofs of Theorems 1 and 2 is of independent

interest.

Theorem 3. Suppose I,J € Py([1,n]). For each non empty A € A(I,J), and each
field F, set

TAF) =< [[ Zea(taltac F* .
a€D(N)

T(I1,J,F)={1}u|JT(\ F),

where the union is over the non empty A € A(I,J). Then

UnF)= |J  Upon(F)gU,y(F).
geT(I1,J,F)

Theorem 3 gives an explicit description of the double coset space

Up(ar) (EN\U(F) /U1 (F),

for all pairs of d—element subsets of [1,n] and fields F. This space is the disjoint
union of copies of F' Xh, where h ranges over a multi set of non negative integers,
precisely one of which is zero.

The stabilizer of F in G x G.

Set G =GL,(F),T=GxG, E;=F= ieii, where 1 <d<n-1,and F

1=1

is a field. Denote by M, (F') the set of n x n matrices over F. The group I' acts
10



on M, (F), and so I' acts on 4M,, (F'), the set of elements of M, (F') of rank d. The

action is the usual one

M (F) x T — My (F)

(M, (9,9") = Mo (g,9) =g~ "My
Since T' acts transitively on 4M, (F'), and since E € 4M,(F), every element of

aM,,(F) is of the form P~ EQ, where (P, Q) € T'. The representation is not unique.

I propose to remedy this.

We examine (g,¢’') € I'g. Write

_ [« B r_ o
() - (20

where a, o/ € My(F). We have

SO
a=d,y=0,5 =0.

Since g and ¢’ are non singular, we get that o« € GLy4(F),

Set
a€ GLy(F),d € GLy—q(F),

B e Mgn—alF)},
) o € GLy(F),5 € GLy,_a(F),
N

c Mn—d,d(F)}
11



Thus,

I'e ={(g,9') € Py x P’|EgE = E¢'E}.

3. The coset structure of F, in G.
We study the action of G x Py on G x GG. I construct two sets of representatives

for the set {gPy|g € G} of cosets of Py in G. I call them Ty and T{. I begin with
M= (a;;) € G (G=GL,(F)).

For ¢ € [1,n], set

v; = (a1, iz, - . ., q) € F2

Set Vo =0,V; = > Fv;. This gives us a chain Vp C V; C--- C V,, of subspaces
j=1

of F4. Set r; = dim Vj, so that

O=r9<r <--- <y =d,

the equality holding since row and column rank coincide, and since M is non sin-
gular, so that its columns are linearly independent.

Since V; = V;_1 4+ Fv;, we get

rio1<ri<ri_1+1, 1€ [1,n].

n—1
Since d =1, = > (ri41 — 14), there is I € Py([1,n]) such that
i=0
Ti—1+ 1 if7el.
Ty =
Ti—1 ifiel.

From the construction of the v;, we get that for each j € I, there are ¢;; €

F,i e 1,i<j,such that

(31) v; = Zcijvi.
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Set I = I(M). We check that I(M) = I(Mg) for all g € Py. This equality
obviously holds if g € H,,(F*), while if g = z,5(t), and (o, ) € ([1,d] x [1,n]) U
([d+1,n] x [d+1,n]), the equality is easily checked, using once again that row rank
and column rank coincide. Indeed, if Mxz,p(t) = M’ = (a;;), then for all i € [1,n],

the matrices
/ !
ailr ... Qaiqg ay; ... Qg

Qi1 ... Qg a;il ceealy
have the same column rank. Since H,, (F*) and {z.g(t)|t € F,(a,3) € ([1,d] x
[1,n])U([d+1,n] x [d+ 1,n])} generate Py, I(M) is constant on M Py.
Set (M) = [[xji(—cij), where j € I')i € I,i < j, and where the ¢;; are given

in (3.1). The order of the product is immaterial, since U(R™ (I’ x I), F') is abelian.

El,ij =0 forall ¢ € I/,j S [1,d]

This tells us that 7(I)~'M € Py. It would be more accurate to write (m(I)¢)~*

in place of w(I)~1, but by abuse, I omit the iota. So

(3.2) M e UR (I' x I), F)r(I)F,.

Set

(3.3) o= |J U@ T xI),F)=().
IePy([1,n])

Since I(M) = I(My) for all M € G, f € Py, it is straightforward to check that

TyPy = G, Ty 'T{ N Py = {1}.
13



Set
T ='1T}
the set of transposes of elements of Tj. Since 'Py = P, and since tw(I) = 7(I)™?,

and since *U(R™(I' x I),F) = U(R*(I x I'), F), it follows that

(3.4) °= |J #)T'URTIXTI),F),
ITePy([1,n])

(3.5) PT° =G, P°NnT°T°' ={1}.

We start again. Set Wy = 0, W1 = Flu,,

Then Wy C Wy C --- C W, and if we set s;, = dimW;, then 0 = 55 < 51 < --- <

Sn = d. So there is J € Py(n) such that

{1 if j e J.
TN Lo ifje .

Thus, we get, for j € J/,
vj = Zc;-kvk
where c;-k € F, and the sum is over k € I,k > j. Set

M =axM = (dij);

where z = z(M) = [[ x;r(—c],), where the sum is over j € I’k € I, j < k. Thus

a;; =0 forallie J, jell,d.
14



Hence, n(J)"'M € Py, or equivalently,
M € x(M) tn(J)Py.

Set

T,= |J URNJT xJ),F)n(J).
JEPg[1,n]

Then we have shown that

(3.6) ToPy =G, Ty'Ton Py ={1}.
Putting these pieces together, we conclude that

(3.7) Every X € 4M,,(F) has a representation as

X =toEgEt° tg € Ty, t* € T°, g € GL4(F).

In addition, we get that if X = t{Eg EtY, where t, € To,tY, g’ € GL4(F), then
to =t5,t" =tY g = ¢’. T call (3.7) the normal form of X. Note also that if to € T,
then tg = xy7(l1), 21 € URT (I} x ), F), I; € Py[1,n], and if ty = zo7([2), where
1o € U(RY(IL x 1), F), Iy € Py([1,n]), then 21 = xo, [} = I5, and similarly for ¢°.

Thus, if X € 4M,(F), and
X =an(I)EgEn(J)™ 'y,

where z € U(RT(I' X I),F),y € URT(J x J'),F),g € GL4(F), then the 5-tuple
(x,1,9,J,y) is uniquely determined by X.

If g € GL4(F), then

g = urhwug, uy,us € Ug(F),h € Hy(F™),w € Py,
15



and so

X = on(I)Buihwuy En(J) ™ y.

Note that
7(I)EU4(F) = U, (R (I x I), F)x(I)E,
and
Ugy(F)En(J)™' = En(J) U, (RT(J x J), F).
Thus
X € U, (F)n(I)EhwEn(J) " U, (F),
whence

X €Ugn(F) & n(I)EhwEr(J)™" € Ugn(F).

If we note that for all i € I,
ein(n =0,
we conclude that
(3.8) X €Ugn(F) & i <in(I)wn(J) ! forallie .
By (1.25), we conclude that
(3.9) Ugn(F) = JUn(F)r(I) Ehwr Ex(J) " Uy (F),

where the union is over all 4-tuples (I, J,w,h),I,J € Py([1,n]),w € Cy(I,J),h €
Hy(FX).

4. (I, J,w).
16



I examine the process whereby an element of

Un(F)rn(I)EhwEr(J)~ U, (F)

is put in normal form. If u € U,,(F'), then by (1.18) and (1.24),

u=xi,r € URT(I' xI),F),

w e URT(IxURT([1,n|xI"),F),sou=tz,t c URT(IXI),F),z € URT(Ix
I'),F). Then zn(I)E = n(I)- 2™ E = n(I)E, whence un(I)E = xtn(I)E =
er(I)Et™ | with t7) € Uy(F). A similar argument with Ex(.J)~1U, (F) leads to
the normal form of the element being examined. There are 4 relevant subgroups of

U, (F) which are involved in this process:

URT(I' xI),F),URT(IxI)UR"([1,n] x I'), F) for n(I),

URY(J' % [Ln]) URT(J x J), F),U(RT(J x J'), F) for x(J)~".

Since

RY(IxI)UR™(1,n] x I') = Ry(p,

and

RY(J x [1,n])) URT(J x J) = Ry,

the (U, ) (F), Uy (F)) double cosets in Uy, (F') begin to emerge.

Pick u,u’ € U, (F') and consider the §(U,(F')) orbit O which contains

un(I)EhwEm(J) /.
17



Let

O’ = {X € O] the normal form for X is
L W(I)EQET‘—(J)_lyay € Up(J’)wo (F)7
g € Ug(F)hwUy(F)}.

Note that U, (), (F) is just another name for U(R*(J x J'), F'). Obviously,
O’ # ¢, since

urn (I EhwEn(J) ' 0 6(u) € O'.

Next we observe that if Y € O',x € U,(F) and Y o §(z) € O, then 27! €

U

p

(ny(F), in which case O" = O’ o 6(x). So

S(Uy(ny(F)) is the stabilizer of O’ in

6(Un(F)),

and O is a 6(U

p(I) (F))—orbit. Let

L(I,J, h,w)={w € U, (F)r(I)EhwExn(J)" U, (F)|

the normal form for w is
1-w()EgEm(J) 'y, y € Up(ryw, (F),
g € Uy(F)hwUy(F).}.

We have just shown that there is a bijection between the (U, (F')) orbits on

Un(F)n(I)EhwEn(J) U, (F) and the 6(U,(F)) orbits on L£(I,J, h,w). Note
18



that since Fg = gE = EgF for all g € GL4(F'), we can dispense with one of the

E’s in EgFE, and write Fg. Next, we prove that
if g,9' € GLa(F),y,y" € Up(yyw, (F) and
n(I)Egn(J) 'y and n(I)Eg'n(J) 'y
are in the same §(U), ) (F'))—orbit, then
Up(ary(EVYUp(n) (F) = Up(ry (E)Y Up(r) (F)-
For suppose that
n(DEg'n(J)"y' =n(I)Egn(J) "'y o d(u),

where u € Up,)(F). Write u™! = w - w', where w’ € U(RT([1,n] x I'), F),w €

URH(I xI),F), set uy =w™ ) € Uy(F), and get
m(Egn(J)™ Yy = n(I)Buygn(J) 'yu.

Write yu = 2y1, where 2 € Uy (F), 51 € Upyryw,(F). Then write z =
221,72 € URY(J % [1,n]),F),z1 € URT(J x J), F), set uy = 2] € Uy(F),

and get
m(I) Burgn(J) ™ tyu = n(IurgEm(J) ™ 20210

= n(lurgEr(J) 21
= W(I)ulgquﬂ(J)*lyl

and so by uniqueness of the normal form,

9/ = ui1gu2, y’ = Y1
19



Hence ' = y1 = 27 yu € U,yyr)(F)yU,r)(F), and our assertion is proved.

To continue the discussion, I assume for the remainder of this section that The-
orem 3 is available. By that theorem and by what we have just shown there is
T € T(I,J, F) such that every element 7(I) Egr(J) 'y of O, with g € GL4(F),y €
Up(')wo (F), has the property that y € U, (F)TU,(F). We now observe that
T,J,F) C Uy, (F), a remark which could have been made earlier and is
hardly surprising, but nevertheless needs to be mentioned since it means that
n(I)Egr(J)~'T is in normal form for all ¢ € GLy(F),T € T(I,J,F). So we
are led to

Ug (I, J h,w, T, F) =
{(Z €Uy (F)|
Z =n(I)Egrn(J)™'T, g€ Ug(F)hwUq(F)}.

We need to decide when two elements of this set are in the same 0(U,,(F'))—orbit,
since Theorem 3 tells us that every orbit of §(U,, (F")) on Uy ,(F') has a nonempty in-
tersection with Uy, (I, J, h,w, T, F) for a uniquely determined 5-tuple (1, J, h,w,T’)
where I, J € Py([L,n]),w € Co(I, J),h € Hy(F¥),T € T(I, ], F).

Suppose (1) Egin(J) T, 7(I)Egam(J) YT € Uy (I, J, hyw, T, F) and u € U, (F)
satisfy

7(I)Egan(J)™'T = (I)Egyr(J) ™' T 0 5(u).

As we have already seen, this forces u € U,()(F), which in turn guarantees that

u”'n(I)Egy = n(I)Buig:
20



for some u; € Uy(F). So we get

(1) Egon(J) T = n(I)Buygim(J) ' Tw.

This in turn forces

Tu=vT, veU,n(F),
and so (v,u) € (U (F) X Upry(F))r. Thus
(I Egon(J) T =

7(I)Burgym(J) T = 7n(I)Buygrupn(J)™'T

for some uy € Ug(F). So g2 = wuigiue. Conversely, if (v,u) € (U,y)(F) x

Uyry(F))r and uy,up are defined by

wn(I)E = n(I)Euy,

En(J) v = usEr(J) 1,

then 7(I)Egym(J)™ T and w(I)Euigiusn(J) 1T are in the same (U, (F))—orbit.

It remains to identify (uj,us) from

(v, u) € (Up(ay(F) X Up(r)(F)) -

We need to find generators for (U, (F) x U,y(F))r. Having done so, we need

to examine closely the process which converts (v,u) to (uq,us). We have



where A € A(I,J) and each t, € F'*. As h € Hy(F*), there are elements &7, ... €

F* such that

h = diag(é.la SR 7£d) = h(£17 s 7£d>‘

Set

A=D(\), C=I'nJ\A,
(4.1)
B=D\\, D=InJ\B, m=]|A|.
In case m = 0 so that 7" = 1 and A is the empty map, some of the following

discussion is not needed, but I carry the argument out for all '€ T'(1, J, F).

LetA:{al...,am},al <ag < --- <am.Iffl,...,fd,tal,...,tam GFX,set
X(I7J7w7>‘7€17"'7£d7ta1,"'7tam7F) =

T(I)EU4(F)h(&1,. .., Ea)wUa(F)m(J) " - H%iai/\(tai)-

Set
(Up(an) (F) x Up(ry (F))a =
QU,J,\tay,.. . ta, ), where
L= Hajaiai)\(tai)
i=1
Set

X(I,J,w,\F) =

U xT 1w N&, o atays o ta,, F).
(FX)d+TrL

5. The action of H,(F*) on X(I,J,w,\, F).
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Fix i € [1,n] and for each ¢ € F*, set

n
hZ(C) = Zejj + C€Ei;,
=1
i#i
the diagonal matrix with ¢ in position ¢, 1 elsewhere. If ny,...,n, € F*, set

h(ni,...,mn) = > mieq. Pick X € x(I, J,w, A\, F), and write

=1
X =n(I)Buih(&, ..., E)wuam(J) - H Taja;n(ta;)
i=1

We examine closely Y = h;(c)" Xh;(c). We have
hi(c) "t (I) = w(I)hirr(c)

For j € [1,m)]
Ta;,a;\(ta; ) hi(c) =
hi(€)Ta, 0,0 (c ta,),
where
f=[fli,a;) = —6ia; + dia;x,

and where ¢ is that of Kronecker.

Hence

7-‘-(‘])71 H La;,a;x (taj)hi (C) -
j=1

hz’w(J)(C)ﬂ'('])_l ’ H xaj»ajk(cf(i’aj)t%)-
j=1

Case 1. iel'jie J.
Here

hiﬂ.(])(c)_lE =F



E = EhiTr(J) (C)

Case 2. 1€ 1I',ie J

Here

hin(r)(¢)"'E = E,
hin(1)(€)E = Ehiz(5y(c), in(J) € [1,d].

Case 3. ic1l,icJ.
Here

hiW(I)(C)_lE = Ehiﬂ([)(c)_lv Zﬂ-(I) S [Ld]
E = Ehwr(J)(C)

Case 4. 1 € 1,7 € J. Here
hiw([)(c)_lE = Ehzﬁr([)(C)_la ZW(I) < [17d]7

hiTr(J)(C)E = Eh’wr(]) (C)’ “T(J) € []‘ad]

This tells us that

Y = (D) Euh(E, ..., &pwusm(J) ™.

m
H xajaa‘j)\(t;j)7
j=1

where uf, u € Ug(F),

= Cf(i,aj)taj’ jel,ml,

aj

fllﬁ = Cg(i’k)&w ke [17d]7
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where
g(i,k)=—1ifk=1in(I) and i € I,

=1ifk=ir(J)w tandicJ

= 0if k # {ir(I),in(J)w™'}.
Here I am using crucially the fact that im(I) # in(J)w™?! for all 4 € I N J, which is
a consequence of w € P, (I,J).

Note too that since D(A) N D(A)A = ¢, it follows that f(i,a;) € {0,1,—1}, and
for each i € [1,n],{j € [1,n]|f(i,a;) # 0} is either empty or has precisely one
element. We build a matrix M, indexed by [1,n] x [1,d + m] whose (i, ) entry is
mip, and

mq = g(i,¢) if £ € [1,d],

while

Mid4] = f(i,al), ifd+1e [d—f— 1,d+ m]

I aim to prove

(i) M has Q —rank d 4+ m.
(5.1)
(74) All Z — elementary divisors of M are 1.

Before tackling this task, note that since H,,(F'*) normalizes U, (F), U,.;)(F)

and U, (F), we get

hi(C)_l ((UP(J/)(F) X Up([)(F)) m )h@(C) =

jl;Il maj ,aj A(taj)

(Upay(F) x Uyry(F)) [T a0 s (7600
1 Zaj.a;

that is, Q(I,J, A\, tay, - s ta,, )" = Q(I, A\t .., ), where B, = /()

aj’? A

j € [1,m]. Also, since Hgq(F*) normalizes Uy(F) and w normalizes Hy(F™),
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the orbits of Q(I,JJ,\,ta,,...,ta,,) on X(I,Jyw, N\, &1, .., &astayy---stay, F') and

the orbits of Q(I, J, A\t , ...ty Jon X (I, J,w, N\ &, ., 80t ...t , F) (where

ai) ay’ ?Vam?
£ = c9@I)¢; 5 € [1,d], are in 1-1 correspondence via h;(c). Thus if (5.1) holds, we

get that the number of orbits of U,;)(Fy) x Uy (Fy) on
X(I,J,w,\,F,) is (¢ — D)™ (1, J,w, \, q),
where f*(I, J,w, A, q) is the number of orbits of

(Upay(Fy) x Upry(Fy))

=3

x

La . 1
1 a]a]A( )

J

T(1EU(Fg)wUa(F)m ()™ - [ [ a0 (1)-

This result then leads on naturally to Theorem 1, so we first concentrate on proving
that (5.1) holds.

The matrix M is sparse, and for such matrices, it is worthwhile to introduce a
graph I'. The vertex set of I' is [1,n] x [1,d + m] and (4, j), (k,[) are connected by
an edge if and only if

dir + 050 = 1 and m;jmy # 0.

The connected components of I' are two types, types I and II. Type I compo-
nents are defined to be those which contain a vertex (7, ) with m;; # 0. Type II
components are all the remaining components. Each of them consists of a single
vertex (¢,7) and m;; = 0.

Consider a connected component I of type I. Choose (i,7) € T with m;; 7 0, and

suppose (k,l) € [. There is a path between (7,7) and (k,1), and by consideration
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of the length of the path, we conclude that my; # 0 for all (k,1) € I'. In the case
at hand, this means that my; = 1 or —1 for all (k,1) € T.
Set

I(I) = {k € [1,n]|(k,1) € T for some I € [1,d + m]},
J(T) ={l € [1,d+ m]|(k,1) € T for some k € [1,n]}.

Set
IT) = [1,n\I(T), J@) =[1,d+m]\J(T).

Then I argue that m;; = 0 for all (¢,j) € I(I')’ x J(I'). Suppose m;; # 0. By
definition of .J(T'), there is k € [1,n] such that (k,j) € I'. For this element of T, we
have my; # 0. But then (k,j) and (7, ) are connected in I', so (i,5) € T, against

(i,7) € I(T) x J(T). So my; = 0if (i,5) € I(T) x J(I), and similarly, m;; = 0 if

(i,7) € I(T) x J(I)".

Set r(I") = |[I(T)|,¢(T") = |J(I")|. I proceed to show that ¢(I') < (I"). To do this,

I partition J(T'") into J1(T') = J(I') N [1,d], and Jo(T') = J(T)N[d+ 1,d+m]. I

define a map

7 J(I) — I(I),
as follows: if j € Ji(T),j7 = jm;* € I C [1,n]. Then jr € I(I), since (j7,j) € T,
i.e., mjr; # 0. More precisely, m;,; = —1, since j = (j7)m. If j € Jo(I), say
j=d+1,set jr =a; € I'NJ. Then jr € I(I'), since (jr,j) € I'. More precisely

mjrj = —1, by definition of m;, ;. Now this gives us our map 7. The restriction

of 7 to J1(I') is an injection of J1(I') into I(I') N I, since m € S,,. The restriction

of 7 to Jo(I') is an injection of J5(I") into I’ N J, since the map from [1,m] to I'NJ
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given by [ +— q; is an injection. Since I N (I’ NJ) = ¢, 7 is indeed an injection of
J(T) into I(I"), and so ¢(T') < ().

The preceding discussion shows that [1, n] is partitioned into subsets A1, As, ..., A,
and [1,d + m] is partitioned into subsets By, ..., B,, with the following properties:
I' has precisely » — 1 connected components of type I. They are I'y,...,I',._1, and

() Ap = I(T'p), By = J(I'y), 1<p<r—1

(i) If i € A,, then m;; =0 for all j € [1,d + m].

(iii) If j € By, then m;; = 0 for all i € [1,n].

We admit the possibility that A, = ¢ and we admit the possibility that B, = ¢.

I first show that B, = ¢. For if j € [1,d] then M1 #0,and if j =d+ /(€
[d+1,d+ m]|, then m,, ; # 0. Thus, to complete the proof of (5.1), it is necessary
and sufficient to show that for all p € [1,7 — 1], the Q—rank of M, is ¢(J,) and all
Z—elementary divisors of M, are 1, where M, is the submatrix of M indexed by
I(T',) x J(T},). Denote by m;(p) the ith row of M,,i € I(T}).

I make use of (4.1), and show that
(5.2) I(T,)N(CuUD)#¢, Ypell,r—1].

Suppose false.

Let JT,)Nd+1,d+m] ={d+h,....,d+1ls},l1 < --- < ls. It may hap-
pen that s = 0, but I carry out discussion of all cases. Then {a;,,a,...,a;, } U
{ai, A, ..., a A} € I(T',). Moreover, if | € [1,m], and {a;, A} N I(T',) # ¢, then
le{ly,...,ls}. Thus

ANIT,) ={ay,...a},
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BNIT,) = {ay\...a, \}.

By assumption, CNI(I',) = ¢, DN I(I')) = ¢, and so

(I'nJ)ynI(T,) ={ay,...,a},
(INJ)NIT,) ={ay A ... ai A}
Since m;; = 0 for all (i,7) € I'NJ" x [1,d + m], we have
(I'nJHYNnI(T,) = ¢.
Thus,
I(Tp) ={ar,,..,a;, } U{ag A, .., e XY UIT,) N (I NJ).

Denote by c the largest element of I(I',); ¢ exists because I(I',) is a nonempty
set of positive integers. Suppose ¢ € {aj, ...,a;, } U{a; A, ..., a;,A}. Since A is
increasing, we get ¢ = a;, A for some pu. So c € I'NJ’, and mecr, # 0, whence
cm € [L,dNnJ(I,). Set e = emy. Then Mooy te # 0, so ewmy € I(T',). Since
e = cmy, we get cmwmy * € I(T,). But ¢ < emwm, !, against the maximality of
cin I(I'y). Soce I(I',) NI NJ. This also leads to a contradiction: since ¢ € I,
we get cmy € J(I'), and since emy € J(T,) N [1,d] we get cmwm, b € I(T',), and so
¢ < cmwmy t. This establishes (5.2).

Now suppose I(I')) € C' U D. In this case, each row of M, has precisely one
nonzero entry, which is 1 or —1, so every edge of I', is a vertical segment. This
implies that M), is a 2 x 1 matrix of Q—rank 1, whose unique Z—elementary divisor

is 1. Suppose I(I'y)) € CUD. Set

I(Ty) = I(Ty)\[(Tp) N (C U D),
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and consider the submatrix M(T,) of M, indexed by I(I',) x J(T}).

Now we view this setup in terms of integral lattices, by putting on Z¥*™ the
usual inner product: (z,2") = > 2z, if 2 = (21,.. ., Zaym), 2’ € (21, ..., 24,,,) Let
L(T',) be the lattice generated by the rows of M(T',). By Witt’s theorem, L(T',)
is the orthogonal sum of sublattices Li(I'y), ..., Ly(I'y), each of which is of type
A, D, or E. Since the Eg, F7, Eg lattices cannot be embedded isometrically in Z¥
for any N, each L;(I',) is of type A or D.

For each j =1,...,k, let J(j) = {i € [1,d + m], e; is not orthogonal to L,(T',)}.
First, suppose that the sets J(1),..., J(k) are pairwise disjoint. In this case, we get
a partition of I(I'y) N (C' U D). For i € I(I',) N (C' U D), there is a unique j € [1, k]
such that m;(p) is not orthogonal to L;(I',). This forces k = 1, and it is trivial to
check that Li(T,) +Zm;(p) = Z7T») where i € I(I',) N (CUD). Thus, in this case,
M, has Q—rank |J(I',)| = ¢(I',), and all Z—elementary divisors are 1.

It remains to treat the case where k > 2, and where J(1)NJ(2) # ¢. To exclude
this possibility, it is necessary to make use of the fact that for every i € I (I'p), the
two nonzero entries of m;(p) are of opposite sign. So if m;(p) € L1(I'y), m;(p) €
Ly(T'y), then on the one hand, (m;(p), m;(p)) = 0, whereas for suitable 1, j, there
is l € J(1) N J(2) with (m;(p),e;) # 0, (m;(p),e;) # 0. There are no solutions. It
was necessary to discuss this case, since Dy = A1 @ A;.

The isomorphism D3 = Ag, causes no difficulty, since if L;(I',) = Ds, it is to
be understood that |J(j)| = 3, and if L;(I'y) = As, it is to be understood that
|J(j)| = 4. So (5.1) holds.

6. (I, J,\, F) =T(I,J,\,F).
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I retain the earlier notation:

I,J € Py([l,n]), weCa(l,J), XeAd,J),

(6.1) A=D(\),B=DMA\C=I'NJ\A,D=1InJ\B,

1 =n(l), 73 =7(J),m = |D(\)],

T =[] za.ar(1).

acA

Set

X = 7(I)EUy(F)wUy(F)r(J)" T.

Note that X = X(I,J,w, A\, &1, ..., & tayy - - - La,,, F') is the special case & = - -

fd:tcu:"':tamzl-

If (’U,’LL) S (UP(-]')(F) X Up([)(F))T, then

(6.2) v Ty =T = vTu™ .

Pick X € X, so that

(6.3) X = n(I)Buywusn(J) " T, ug, up € Uy(F).

By (6.2), we have

X = 7(I)Buywuym(J) toTu™?,

SO

(6.4) X od(u) = u tr(Duywugm(J) 1T,
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We have
u=xox1,29 € URT([1,n] x I'),F), 21 € URT(I x I), F),
U =Y2Y1,Y2 € U(R+(‘]/ X [Ln])?F)ayl € U(R+(‘] X J)aF)
We have ordered ZJF by setting < s to mean 0 < s—r. This is a linear ordering

of 37 and so there is a bijection

(6.6) po:[LN] =3

such that po(1) < po(2) < --- < po(N), where N = | 3.7 |. Since 7 (I) agrees with
A(I,[1,d]) on I, it follows that if r,s € RT(I x I) and 7 < s, then rm; < smy,
and, of course, rmy,sm € RT([1,d] x [1,d]). A similar remark applies to 7(J) and
RY(J x J).

Write

{I:l = Hxaaﬂ(taaﬂ)’
el | E2RICANE

where the product for z1 runs over R* (I x I) in ascending order, and the product

(6.7)

for y; Tuns over R (J x J) in ascending order.

From (6.4), (6.5), (6.7), we get
X 06(u) = a7 oy 'n(I) Buywusn(J)  tyoyn T

= ZE1_17T(I>EU1(UU27T(J)_1y1T
(6.8)
- 7T(I)E‘{l_‘[ Loy, By (ta,ﬁ)}il'l,l/lu)U,Q.

(H Toymg,oms (ts))T(J) 7T € X,

This gives us a map

X x (Up(J/)(F) X Up([)<F))T — X,
(6.9)
(X, (v,u)) — X od(u).
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As we have just seen, this map exists, and is given by (6.8). Since
(v1,u1) - (v2,u2) = (V1v2, urU2),
d(urug) = §(uy1)d(us2)
for all (vi,u1), (v2,u2) € (Upry(F) x Upy(F))r, (6.9) gives us an action of
(Upan)F) x Uyry(F))r on X.
Denote by I'*(I,J, A\, F') the subgroup of Uy(F) x Uy(F) generated by all the

elements

(6.10) (TLorsms (o) T rms om0

such that
(6.11) (ygyl, 232.%1) € (Up(J/)(F) X Up([) (F))T,
and
yo €U(RT(J x [1,n]), F),zo € (RT([1,n] x I'), F),
(6.12) 21 = [[2a.s(tas) € URT(I x I), F),

1 = [J vt 5) € UCRT(J x J), ).
The action (6.9) shows us that the set of orbits of (U, (#) x Uy (F))r on

X is in 1-1 correspondence with the set of orbits of I'* (I, J, A\, F') on Uy(F)wUy(F),

and so Theorem 1 is a consequence of
r“(L,J,\,F)=T(I,J,\ F),

an equality which will be proved in this section.
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Before attacking this problem directly, I make some comments about orderings.
Let Ord be the set of all bijections p : [1, N] — 3.7, and let Ord* consist of those

p such that
+ . . .
r,s,r+s€ g =r=p(i),r+s=p(j)and i < j.

Our given pq is in Ord*. For obvious reasons, elements of Ord are called orderings

of -1

If w e U(F) and u # 1, and

N
u = H L po (i) (tpo(i))a
=1

we define the leading pg—root of u to be po(i), where £, ;) # 0 and t,,(;y = 0 for
all j <i. We denote the leading po—root of u by r,,(u), and set r,,(1) = oo, with

the convention that 7 < oo for all r € 327
Lemma 6.1. If p € Ord, then to every u € U(F) is associated a unique map
St — F,r—t, such that

u = (1) (1)) - T (Ep(a))-

Proof. Let S,, be the set of all sequences

0= (o) (tp1))s Y15+ Tp(n) (Ep(N)) YN,

where
(1) L) € F, all i.

(13) vy, € U(F), alli.

(111)  w=xp1)(p))y1 - - Tpv) (Ep(v)) YN
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Then, S, # ¢, since, for example, (1,u,1,...,1) € S,. There are various
maps S, — 9, and various auxiliary sequences and integers associated to ele-
ments of S,. In particular, we set o(po) = (rpo(y1),---,7p,(yn)), and we set
r(o) = min{r,,(y1),..., 7, (yn)}, where min is computed in the py—ordering.

We first concentrate on showing that (o) = oo for some o € S,. Suppose false.
Choose ¢ such that (o) is maximal, and with this restriction, minimize the number
v(o) of i € [1, N] such that r,,(y;) = (o).

Pick 4 such that r,,(y;) = r(o), and set r = r(c). Write y; = z,(t)g;, with

T < 1po(Ui)- I p(i) = 7,86t 7 = (Tp)(tpny ) Y15+ Tp(im1)Ep(iz1))s Yi-1,
T i) (o) + 1), Tis Tpgit1) Ep(it1)) - -+ )

and observe that & € S,,, and that either r(¢) > r, or () = r and v(d) < v(0),
against our choice of 0. So we only need to rearrange o, preserving r(o) and v(o)
and reach the previous situation, to show that there is ¢ in S, with p(c) = oo.
This is easy to do, and the details are omitted.

If F is finite there is just one map for each u, since |U,(F)| = |F|Y, the total
number of maps from ZJF to F. If F' is infinite, we make use of an elementary
result. Namely, if R is any finitely generated subring of F,a € R and a # 0, then
there is a finite field Fy and a ring homomorphism ¢ : R — Fy such that ¢(a) # 0.
This yields Lemma 6.1.

Since Lemma 6.1 holds, we can now define r,(u) for all p € Ord,u € U(F),u # 1.
We write

N
w=[T2p0t0wm)
=1
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and set r,(u) = p() if £,;) # 0 and t,(;) = 0 for all j <i. And we set r,(1) = oo.

p(d

I also introduce the notation r < s to mean that r = p(i),s = p(j) and i < j.
p

This agrees with the definition of < for pg, that » < s if and only if r < s.
Po

We amplify Lemma 6.1. Suppose p; € Ord*. Let ®(p;1) be the set of all maps

(6.13) 0> xF — U(F)
such that
(i) @(r,0) =1 for all r € Z+ :
(13) @(r,t) = x.(t)y(r,t), where
T p<1 7o (y(r,t)), all (r,t).

Lemma 6.2. Suppose p € Ord,py € Ord*,u € U(F'). Then there is precisely one

map .7 — F,r — t, such that u = o(p(1),tp1)) - (p(N), to(ny)-

Proof. We proceed as in the proof of Lemma 6.1. We again examine sequences

g = (Qp(p(l)vtp(l))a Rlye-- 790(p(N)7tp(N))7ZN)v

where z; € U(F), and the product ¢(p(1),t,1))21--- = w. This time, when we

examine
p=0(p(i),tpi))zi (2 = x.(t)Z;, etc.)

= T(5) (Lp(e)) Y (P(2): tp(i) i
where p(i) = r,,(21) = (o), we cannot simply amalgamate as before, but rather,

write
P = 20 (i) + )y (p(0), Loy + 1)

{y(p(@), tp) + )" 2 (t) " y(p(i), o))z},
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and check that ) .
r=r(o) = p(i) <rp (Y(p(i) tou) +1)),

r < 1o (@ (1) T y(p(), togiy) 2 (1)),

r<rp (%)

The proof then carries on as in Lemma 6.1. At the end of the proof a finitely
generated subring of F' appears, since we only need to augment the previous R by

tossing into R all the elements of F' which appear in expressions

N
() toi) = T 2ot (wis)-
j=it1
So Lemma 6.2 holds.
There is yet another game to play. Define a graph I' whose vertex set is Ord,

and where p1, p2 are connected by and edge if and only of there is i € [1, N — 1]

such that . , . . , .
(1) p1(j) = p2(j) for all j ¢ [1,N],j € {i,i+ 1}.

(1) p1(i) = p2(i+ 1), p1(0 + 1) = p2(2).
+
(i) pr(i) +pr(i+1)¢> .
I argue that for all maps Z+ — Fre—t,,

N N
(6.14) 2060 toi) = T 202 tai)-
j=1 j=1

Namely, the two products agree term by term except for the i*" and (i +1)%! terms,

which are

s (i) Loy (1)) T 1 (i41) ps (141) ) T o () (L (1)) T o (i+1) (Epa (i1 )

respectively. Since
Zp1 () (Eor () T pr (1) (Fpa i41)) =

T s (i+1) (Epa (i41)) T (3) (Lpa () )

and since py (i) 4+ p1(i +1) ¢ 3.7, (6.14) follows.
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Lemma 6.3. Suppose p € Ord,p; € Ord*, Ry, Ry are non empty sets of positive

roots and ¢ : Ry — Ro has the following properties:

+ +

(1) r—l—gp(r)ez,allreRl andr—i—sg]ﬁz if s # ¢(r),r € R1,s € Rs.
Jr

(i)  For allrlez,

{(r,s) € Ry x Ra|r +s=r1}| < 1.

(tii) r* <r+4(r) forallr € Ry.
p1
(iv) r* =19+ p(r,) for some rg € Ry.

Suppose also that

T = H xr(tr),yz H xr(“?”)?

’I"GRl TGRQ

where both products are taken in ascending p—order, and where t,. # 0 for all

r € Ri,u, #0 for all v € Ry. Then v* =r,,([z,y]).
Proof. Define R, g for o, 3 € N by
Jr
Ry :{r+sez lr € Ry,s € Ry},

+
Rops1={r+s€)  [r€Rap, sE€Ry},

+
Rot1p={r+s¢ Z |r € R1,s € Ra 3}

Since Ry = {r + ¢(r)|r € Ry}, we get

r* <rforallre R,
P1

and since p; € Ord*, we get

r* <rforall r € Ryp and all o, f with a+ 3 > 2.
P1
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Now

[z,y] = H [z (tr), 25 (us)] - Z,

(T,S)ERl XR2

where r* < 7, (Z). Also
P1

H [r(tr), @s(us)] = H Trtip(r) (FlrUp(r))-

(r,s)ER1 X Ro r€Ry
The lemma follows.

Remark. It is easy to appreciate that in order to apply Lemma 6.3, very good
information about R;, R2 needs to be available. The hypotheses of Lemma 6.3 are
stringent.

Define 7 : [1, N] — 3.7 as follows: if r = e; —ej,s =ex —e; € 3.7, then r % s
if and only if one of the following holds:

(1) j<lI.
(ii) j=landi>k.

One checks easily that p € Ord*.
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as in the following list

i

1

10

11

12

13

14

15

16

17

18

19

20

S5(i)

I'nJ' xD

I'nJ' xinJ

CxIndJ

I'nJ' xB

{(a,@) e AxINJ|a\>a}
{(a,d') € Ax A | aX>d A}
B x B

CxA

B x D

BxInJ

{(a,0) e AxINJ|al<a}
{(a,a’) e Ax A|a\<d A} U {(a,a) | a € A}
I'nJ' x A

INgxIndJ

INJx A

INJxC

AxC

Bx A

BxC

CxC
40

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

I begin the study of T'*(I, J, A, F) by partitioning [1, n]? into 38 subsets S(1), ...

D x A
DxC
I'nJ xc
BxI'nJ
D x B
D x D
DxI'nJ
I'nJxrnJ
INJxB
INJxD
InJxI'nJ
AXx B
AxD
AxI'nJ
CxB
CxD

CxI'nJ

,5(38),



To verify that we have partitioned [1,n]2, note that [I,n] = INJUAUBUCU
DUI'NJ that S(5)US(11) = A x (INJ),S(6)US(12) = A x A, and that each
of the remaining X x Y, where X, Y € {INJ, A, B,C,D,I' N J'} occurs just once
as an S(i).

Next, I record that

€q — €q ; ear —€ar ifa,a’ € Aja < a',a) < a' X
(*) eg—ea§eg—eak,ifeeIﬂJ,aEA,€<a

€ax — €ar < €ax — €arn, if a,a’ € Ajal < d'.
P

I define ¢ € ®(p) as follows:

If r ¢ RT(S(12)) URT(S(13)) U RT(S(18)),
p(rt) = . (1).

Ifr=e, —es € R7(S(12)),

o(r,t) = 2. () (£), 7" = ear — €ara.
If r =e. —e, € RT(S(13)),

o(r,t) = z.(t)x(=t), 1" = e — eqr-

If r = eqan — eqr € RT(S(18)),

o(r,t) =z (t)xp (—1), 7" = ear — €arx-

From (*), we get ¢ € ®(p).
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We construct p € Ord. If r € RT(S(i)),s € RT(S(j)), we say r < s if and only
p
if one if the following holds:
(1) i<j.

(175) i=jandr <s.
13

By Lemma 6.2, with p in the role of p1,p in the role of p,y in the role of ¢, we

get that to each u € U(F) there is associated a unique map > — F,r — t,, such

that
N

(6.15) u= [T tsu).
i=1

Set

N; =|R*T(S(%))], i€]l1,38].

I examine the product (6.15) and in particular the contribution from the interval
Loin={N 1+ - +Nog+1,Ni+---+ N1 }.
Set Rip11 = RT(S(10)) U R*(S(11)). We observe that

+
(6.16) (Ri0,11 + Ri0,11) N Z = ¢,

and so the order of the product

[T #a().ts0)

i€110,11

is immaterial. Here I am using (6.13) and also using ¢(p(),%50:)) = 250 (t50)) for

all i € I1911. If i € Iip,11 and ¢ < Ny + -+ + Nyg, then p(i) = egr — e, for some
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a\ € B,a € INJ,a\ < a. Then e, — e, € RT(S(11)) and we have e, — e, = p(j)
for some j € I10,11, N1 + -+ Nip < j. We also have

50y (L)) - T (Eas)) =
(6.17)
250y (tay) — ta)) - Ta) (Lo T o) (Ea0))-

This gives rise to a map

i Z+ xF — U(F),

defined as follows:

2(r,t) = o(r,t) if r ¢ RT(S(11)),
2(r,t) = z,.()z, (t) if r € RT(S(11)),
r=eq— €n, = E€gr — €aq.

By (6.17), we see that to each u € U(F') there is associated a unique map

S — F,r— t, such that

N
(6.18) u= H 2(p(0), tpe0))-

The reason we cannot use Lemma 6.2 directly to get & is that in the p—ordering,

which is important here, we have
€ar — €a < €4 — €q.
I3

Were it not for (6.16), we would have an obstacle to getting (6.18). As it is,
we get (6.18) simply by using (6.15) and then use (6.17) in the abelian group
U(RT(S(10)) U RT(S(11)), F) for each relevant pair (5(z), p(5)). Now set

5 10
(6.19) K= N,L=)_ N,
=1 =1
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29

(6.20) Ryl =M =) "N
=1

(6.21) Hg = {ﬁi’(ﬁ(i)’tﬁ(i))}7
(6.22) I1 = { | f[ a%(ﬁ(z'),tﬁm)}
(6.23) 11, = { f[:?:(ﬁ(i),tﬁ(n)},

(624 IT,-{ I 4.t}

Here it is to be understood that in defining any one of the sets in (6.21)-(6.24), we

Il
e
>

range over all maps from 3°" to F. The point of this fussiness is that Hg, I, 1L
are subgroups of U,y (F), that [[, = Hg : H(l), Hg ﬂH(l) = {1}, U,un(F) =
I I IIoNII; = {1}. The verification of these assertions is time-consuming,
but utterly straightforward. The data have been arranged with considerable care,
and taken in the right spirit, the verifications are fun.

Now let
FO = HZ7F1 - Hf?

so that

UP(J,)(F)T =Ty -1, ToNTy = {1}.

The situation has been cooked up so that

(6.25) Iy C U, (F),
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yet another verification which is left to the reader. The reason the verification is so

easy is that the 2(p(i),15(;)) are very special elements, and that

and the commutators may be calculated easily since {e, — eqn|a € A} is a set of
pairwise orthogonal roots.
By (6.25), we get

Uy (E)' N U,y (F) =T1 - A,

where

A=T, ﬂUp(I)(F).

The final piece of the puzzle falls into place once we show that A = 1, so suppose
by way of contradiction that A # 1. Choose x € A,z # 1. Then there is y € [],

such that z = y”, and we have
(6.26) r# 1,z €Uy (F)z=y"ye HO.
Write y =y ... y10, where y; € U(RT(S(4)), F), and set
Y = y192y3yays, £ = Yeyrysyoyio-
Since U(RT(S()), F') C Cypy(T),1 < i <5, we get
T = yT =Y. -zZ7.
Since U(RT(S()), F) C U,y (F),6 < i < 10, we get

xZ~ ' € Uy (F),
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and

eZ V' =vZT 77 =Y, 771,

which we write as Y - [Z71,T]71. Since Hg = gT C Up(ryw, (F), we get

Z‘lgéHz.

Write Z~ ! = ZyZ,, 2, € H8,21 € Hé, so that Z; # 1 and

Zy = 1] =50 (ca0));

i€E
where E is a non empty subset of {K +1,..., L}, and c5;) # 0 for all i € E. Note

that
(6.27) (271, T) = (202, T) = [Z1,T]
as [Zo,T] = 1. Set
Ry = {p(i)|i € B},
Ry = {eq — ear|a € A}.

We check that for each r € Ry, there is precisely one s in Ry such that r+s € Z+ )

Define
+
¢: Ry — Ry byr+go(r)€2 :
So ¢ is well-defined. We next check that (R1, Ra, ) satisfies the hypotheses of

Lemma 6.3, with p in the role of p;1, p in the role of p. By (6.24) and Lemma 6.3,

there are p(i),i € E, and eq,—c, , = ©(p(i)) such that

ra([Z71 1170 = p(i) + (p(2).
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Yet another check reveals that

56)+ ¢(p(0)) ¢ | R (5(2).

and we conclude that

5
(Y1271 T)7) € (56) + (@)} u [ BH(S())

This is false, since
5
{5(0) + (i)} U [ RT(S(3) € Ryrywo-
i=1
All the pieces fit snugly and we have shown that
Uy (F)' NU, ) (F) =T.

Since

(Upay (F) X Upry (F)r = {(TuT ™", u)ju € T4},

the last check reveals that I'*(I, J,\, F) = T'(I, J, A\, F'), by appealing to (6.10),
(6.11), (6.12), (1.33)-(1.38).

As a help to the reader, and as evidence of the ease with which we check that
r*(I1,J,\, F)=T(I,J,\ F), I provide the necessary checks.

We have

II, = C I #0). ta)},

i=L+1

where we range over all maps from Z+ to F. Fix i with L +1 < i < M, and

consider the map which sends p(i) to ¢ and sends p(j) to 0 for all j # i. This shows
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that [[, contains #(p(i),t) for all i € {L+1,..., M} and all ¢ € F. We examine
all these special elements.

Case 1. p(i) =rand L+ 1 < i < L+ Ny;. Here we have r = e, — €4,a €
Aja e INJa < a,and 1’ = egx — eq,aX < o, (1, t) = z,.(t)x,(t). Here I have
used the property that A is increasing to conclude from aA < a that a < a. Thus,

(zr(t)x, (t))T = u € ;. Since
T = xa,a/\(l) : Tl = Tl ' xa,a)\(l)a

where T} centralizes x,.(t)x, (t), we get

u= (o (O (£)) 70
= (1) o ()72 )

=z, (t) - T () [21 (£), Za,an (1)].

Now z,/(t) = xax.a(t), and so
u =2 (t)xp (1) Tga(—t) =20 (1).

Alsoad €e INJ ;a € INJ, so (a\,a) € I x I. Thus, setting v = z,.(t)x, (t) =

TuT~', we have (v,u) € (Uyj)(F) X Uypy)r, and
U = T2T1,V = Y2Y1,
where xo = 1,21 = x,/(t). As for v, we havea e I'NJacInNJareInJ', so
r.(t) EURT(J x J),F), x.(t) € URT(J xJ),F),
and yo =z, (t),y1 = z-(t). S0 21 = Tara(t), Y1 = Ta,a(t), and

(xa)ﬂrl,aﬂl(t)?xaTFQ,ONQ(t)) € F*(L J7)\7F)-
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From (1.37), we get

(xa)\ﬂl,oml (t)a Lamy,amy (t)) € F(I, Ja >\7 F),

and this holds for all p(i) € e, — e, with L +1 < i < L 4 Nyy, that is, for all
r € RT(S(11)), and for all ¢t € F.
Case 2. L+ Ny; +1 <7< L+ Ny + Nips.
Here p(i) =r,r =e, —eq,a < a’',a,a’ € Ajal < d'A. Also
z(p(i), ) = @(p(i), 1)
= 2 ()20 (1), 7" = ear — €ara-
We need u = (z,(t)z, (1)), Now T = z4.ax(1)@ar ax(1)T1, where Ty centralizes
x,(t) and z,(t), so
U= Tqq(t)ToarTeax@) () Taar (D2 (1)
= Ta.ar (t)ma’,a/)\(l) '$a,\,a//\(t)$“'“(1)
= Za,ar(t)[Ta,ar (t), Tar a2 ()] Tar,a A () [Tar,ar 2 (); Ta,ax(1)]
= Ta,0 (t)Ta,aA(t) - Tar,a'A(t)Ta,arx(—1)

= .CCa’a/ (t)xak’a/)\(t) = U.

Thus,

(ma,a’(t)xaA,a’/\(t)axa,a’ (t)xak,a’A(t)) S (Up(J’)(F) X Up(I)(F))T'

We have a € I'NJ,a’ € I'NJ, 80 Z4,q (t) € URT(I'xI'),F); and aX € INJ',a'\ €
INJ, 80 zaraa(t) € URT(I X I),F). Hence x2 = g0/ (t), 21 = Taxarr ().
Also,

Tao(t) €URT(J x J), F),
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Ia)\,ao\(t) € U(R+(J/ X J’),F),
SO Y2 = Tan,a’A(t), Y1 = Tq,q/(t). Hence
T = xa)\,a’/\(t); Yy = xa,a’(t)a

and so

(wakm,a’km(t)axmrz,a’ﬂz (1) e I*(I, J,\ F).
From (1.36), we get
(xa)\ﬂl,a’kﬂl (t)a Larmgy,a'wo (t)) € F(I, Ja >\7 F),

for all t € F and all e, — e,r € RT(S(12)).
Case 3. ﬁ(’l.):’f’a.ndL+N11—|—N12—|—1§i§L+N11+N12+N13.

Here r = e, —e,, wheree € I'NJ', a€ A, e < a, and
2(r,t) = o(r,t) = () (—t), 1’ =ec— eaqn,

S0
u = (z,.(t)x. (1))
We have T' = 24 42 (1) - Th = T1 - Z4,ax(1), where T} centralizes z,(t) and x,/(—t),

SO
U= (Tea(t)Te,n(—t))"eer D

= xE,a(t) [xe,a(t)a xa,ak(l)] ) xe,aA(_t)
= we,a<t)$e,a/\(t)xe,a>\(_t) = aje,a(t)~

Now e —e, € RY(I' x I'), and e —a, € RT(J' X J),ec —eqrn € RT(J' x J'), so

To = Teqo(t),x1 =1, Y2 = Te o (V) Te ar(—1), y1 =1,
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so, 1 = 1,41 = 1, and the contribution to I'*(1, J, A, F') is (1,1).

Case 4. p(i) =r and r € RT(S(14)).

Here & (r,t) = ¢(r,t) = z.(t), and r = e; —ejr, 5,5’ € INJ,j < j,u=z.(t)T =
xp(t), so v = u = x,.(t), and o = 1,21 = z,(t),y2 = 1,y1 = x,(t), whence

(Cl;'jﬂl,jlﬂ-l (t),CL'j/ﬂ-l (t)) < F*(I, J,)\,F). By (1.33), we get
('Tjﬂ'l,j/ﬂ'17 (t)7$j71'2,j’772(t)) € F(Iv J,/\,F)

Case 5. p(i) =7 and r € RT(S(15)).
Here Z(r,t) = o(r,t) = x.(t),r = €; —eq,i € INJ,a € A,i < a,

u = xr(t)T = xi7a(t)m”*“*(l) = T q(t)xiax(t),

ei—eqa ERT(I XTI e;—eqn € RV (IXI), 50 22 =x;a(t), 21 = i ar(t);e; —€q €

R+(J X J)7 S0 Y2 = 17y1 = mi,a(t)a and X1 = xi,a/\(t)yyl = xi,a(t)v
(Timyarmy (1)), Timgamy (), € T (L, J, N F).
By(1.38)
(xiﬂl,akﬂl (t)a xiﬂ'g,aﬂ'g (t>) S F(I, J? /\7 F)

Case 6. p(i) = r € RY(S(16)),r = ej —ey,j € INJ,v € C. Also, &(r,t) =
o(r,t) = z,.(t),u = u.(£)T = x,.(t). Since C C I' N J, we get u € RT(I x I'), so

zy = (1), z1 = 1. Also, ,.(t) € RT(J x J), F,s0ys = 1L,y1 = z,(t) = xj4(t), and
(1’xj7f2>’77r2 (t)) € F*(I7 J7 >\7F)

By (1.34),

(1, Zjrpymy (1) € D(L, J, A\ F).
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Case 7. p(i) =r € RT(S(17)),r = eq —ey, a€ AyeCa<r, (rt)=
o(r,t) = z.(t),u = z,()T = 2,.(t),2,.(t) € RT(I' = xI'), so xa = z,(t), 1 = 1.
Since z,.(t) € RT(J x J), we have yo = 1,y; = z,(t), so

r1 = 1,y1 = Tay(1),
and
(1, Zamy ymy (t) €T (L, J, N\, F).
By (1.34), we have
(1, Tamy ymy (1) € T(L, J, A\ F).

Case 8. p(i) =r € RT(S(18)),r = ear — €ar,a,a’ € Ayal < d, and Z(r,t) =
o(r,t) = 2. ()xm (=), 7" = ear—ear. Nowu = (2. () 2 ()T, T = 24, ax(1)Tar a2 (1)T1,

and Tj centralizes z,(t) and x, (—t), so

u = (2 (), (—t)) "o DFararnlh)
= Tona (1) DTaran@) gy (=) Zaer D)
= (Taxn.a' () [Tara’ (), Ta,ar (D] %o 2D oy wn (=) [Tan.ara(—1), Ta.ax(1)]
= (Tarar (a0 (8) (—1)) 22D 2y 0 (—8)Ta,arn (t)
= Zaxa’ (D)[Zar,a (1) Tar,ar A (1)] - Ta,0r (—1)[Ta,0 (—1), Tar,aa (1)]-
Zaxa'A(—t)Za,arr(t)
= Zaxa (1) Tarax(t)Ta,a (—8)Tar 0 A (—E)Tax oA (—1)Ta a2 (T)

fr— .’L'a)\’a/ (t)xa’a/ (—t)

Now Zoxne (t) € URT(I X I'),F), 24,0 (t) € URT(I' x I'), F), 0 u = 221,29 =

Taxa (O)Taa (), 21 =1, TuT ! =v=1y2y1 = Tax.a (1) Tax.a'x(t) Where 2,y o (t) €
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U(R+(JI><J),F),xa)\,ao\(—t) - U(R+(J/XJ/),F), SO Y = :L‘a)\@/(t)l’ak,a/)\(—t),yl =
1. Hence

1 = 1,y1 = 1,
and the I'*(I, J, A\, F')—contribution is (1,1).
Case 9. p(i) =1 € RT(5(19)),7 = eqr — ey,a € A,y € Cral < v, &(r,t) =

xr(t)a u = xr(t)T = ma)x,’y(t)wayak(l) = Cljaz\,’y(t) [xa)\,’y(t), wa,az\(l)] = xa/\,’y(t)xa,’y(_t)a

Tar(t) EURT(I x I'), F),
Tqq(—t) e URT(I' x I'), F),

SO U = ToT1, T2 = Tary(0)Taqy(—t),z1 = 1, and v = TuT ™! = z,.(t), zar 4 (t) €

URT(J x J),F), s0v=yay1,y2 = Tar~(t),y1 = 1, and

Ir1 = l,yl = 1,

and the I'*(I, J, A, F')—contribution is (1,1).

Case 10. p(i) = r € RT(5(20)),7r = ey —ey,v,7 € C;y < +,&(r,t) =
Ty (), u = @y (£) Ty 4/ (t). Since . (t) € URT(I' x I'),F), we have u =
TaZ1,T2 = Ty~ (t),z1 = 1. Since z,(t) € U(RYT(J x J),F), we have v =

Yoy1,Y2 = L, y1 = x4 (t). So x1 = 1,y1 = ., (t) and
(1’1.’7”2:7/”2 (t)) € F*([7 ']7 )‘7F)
By (1.34)

(1, Zymyyrmy (B) € D(L, J, A F).
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Case 11. p(i) = r € RT(S(21)),r =es—e;, 6 € D, jelInd, z(rt)=

z,(t),u =z, (t)" = z,(t). Since 5 ;(t) € URT(I x I), F'), we have
u = zox1, T2 = 1,21 = x5,;(t).
Since x5 ;(t) € U(RY(I x I), F), we have
TuT ! =v = yoyn, 42 = w5, (t),y1 =1,

1 =x5;(t), 1 =1,

and

(T5my,5my (£),1) € (L, 4, \, F).
By (1.31),

(T5my,4me, (1), 1) € D(L, J, A\ F).

Case 12. p(i) =r € RT(S(22)),r=es—eq, 60€D, a€cA, b6<a, z(rt)=
T5.a(t),u = 254,()T = x5a(t)xs5.ar(t). Since xs5,4(t) € URT(I x I'), F),z5a1(t) €
U(RT(I x I),F), we have u = x221,22 = x54(t),x1 = Ts5ax(t). Since z;5,(t) €

U(RT(J x J),F), we have

Tul ™" = v =254(t) = y2y1, 42 = 5.4(t), y1 = 1,

SO
Ty = Ts5ax(t), y1 = 1,
and
(T5my,anm (1), 1) € T*(IL, J, N F).
By (1.33),

(Tsry.anm, (1), 1) € T(I, J,\.F).
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Case 13. p(i) =r € R (S(23)),r =es—ey, 6€D, v€C, d<~, &(rt)=

T5(t),u = x5,(t)T = 5-(t). Since x5, (t) € URT(I x I'), F), we have
U= ToZy,Tp = X5~ (1), z1 = 1.
Since 5. (t) € U(RT(J' x J), F), we have
TyT ™" =v = yoy1,y2 = Ts4(t), y1 = 1,

SO

Tr1 = 1,y1 = 1,

and the I'*(I, J, A\, F')—contribution is (1, 1).

Case 14. p(i) = r € RY(S(24)),r = ec—ey, c€I'NJ, rve€C, €<
v, Z(r,t) =z (t),u =z (8)T = 22 4(t). Since z.,(t) € URT(I' x I'), F), we
have

U = Tox1,To = Te~(t),x1 = 1.

Since z. (t) € U(RT(J' x J), F), we have

xs,w(t) = YY1, Y2 = ﬂfa,v(t), y1 = 1,

so z1 = 1,51 = 1, and the I'*(I, J, A\, F')—contribution is (1, 1).

Case 15. p(i) = r € RT(S(25)),r = eqx —e,a € A, e € I'NJ, al<
g, &(rt) = zare(t),u = zor ()T = aca,\,g(t)%a“(l) = Zare(t)Tq,(—t). Since
Zare(t) EURT(I X I'),F),xq.(—t) e URT(I' x I'), F), we have u = xox1, 19 =
Zax,e(t)Tac(—t), 21 = 1. Since zax ((t) € U(RT(J' x J'), F), we have v = yay1,y2 =

ZTaxe(t),y1 = 1,80 1 = 1,y1 = 1 and the I'*(1, J, A\, F')—contribution is (1, 1).
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Case 16. p(i) = r € RT(S(26)),7 = es —ean, 0 € D, a € A, § <
aX, 2(r,t) = z5ax(t),u = T5.a0(t)T = 25a7(t). Since x5 (t) € URT(I x I), F),
we have u = zox1, 22 = 1,21 = 2542 (t); since x547(t) € URY(J x J'), F), we
have

TulT ™' =v = yoy1,y2 = T5.ax(t), 1 = 1,

s0 21 = 5an(t), Y1 =1,
(Tsry anm (), 1) € T (L, J, N, F).

By (1.33),

(Tory.anm, (£),1) €  T(I,J,\ F).

Case 17. p(i) = r € RT(S(27)),r = es — es,0,0' € D, & < 6,%(r,t) =
zs5(t),u = x55(t)7. Since z54(t) € U(RT(I x I),F), we have u = zox1, 22 =
1,21 = 5,5 (t); since x5 5 (t) € U(RT(J' xJ'), F), we have TuT ™' = v = yoy1,y2 =

x55(t), 1 =1, 80 1 = x56(t),y1 = 1, and

('r(sﬂ'lﬂslﬂ'l (t)7 1) € F* (I7 J7 >‘7 F)

By (1.33),

($57r1,5’7r1 (t), 1) S F(I, J, A, F)

Case 18. p(i) = r € RY(S(28)),r = es —e., 6 € D, e I'NJ, §<
g, 2(rt) = z5.(t), u = x5.(t)T = ws5.(t). Since w5.(t) € URT(I x I'), F),
we have TuT ™! = v = youn, Y2 = @s(t),y1 = 1, so 21 = 1,41 = 1, and the

'*(1, J, A\, F)—contribution is (1,1).
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Case 19. p(i) =r € RT(S(29)),r =e.—e e, €el'NJ, e<ée, z(rt)=
(), u = 2co ()T = 2o (t) € URT(I' x I')F)),u = xow1,T3 = Teer(t), 21 =
I, Tul '=v=vysy1, y2=xc(t), y1 =1, sothel*(I,J,\, F)—contribution
is (1, 1).

Thus, in each case, the I'*(1, J, A\, F')—contribution is contained in I'(I, J, A, F').
Conversely, we check that every element of G occurs as I'*(I, J, A\, F')—contribution.
Since U(R*([1,n] x I'), F) < U, (F), and U(R*(J" x [1,n]), F) <U,y)(F), and
since

U, (F) x Upny(F) == URN(I x T), F) x URT(J x J), F)

is a surjective homomorphism, where
(T221,y2y2) — (21", y1*)

the I'*(I, J, A, F')—contributions generate ['*(I, J, A\, F'), and so
T*(I, J,\, F) = (I, J,\, F).

This is Theorem 1.

Theorems 2 and 3.

Set > =), 1, and set
Elz(IﬂJ>7T1, FlZ(ImJ)ﬂ-Q,

(7.1) Ey = Bm, F,= Am,
E3 = Dmq, F5 =Crms.

Since I = I'N.JUBU D, and since 7, agrees with (I, [1,d]) on I, it follows that

(7.2) [1,d] = By U E, U Es.
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Similarly

(7.3) [1,d] = Fy UF, U Fs.

From (7.2) and (7.3), we conclude that [1, d] is partitioned into nine sets E;NF;,1 <

1,7 < 3, some of which may be empty. So

(7.4) [1,d)? is partitioned into 81 sets

EiﬂFjXEkﬂﬂ, 1§Z,j,k,l§3

These 81 sets are called cells, and much of the remaining discussion involves careful
examination of these cells.
Using (1.33)-(1.38), we check that

if (91792)7 <h17h2) € g7 then

(7.5)
(lg1, 1], [g2, ha]) € G;
(7.6) ifr,s e L te P, and (2,(t), 2, (1)) € G,
then (z4(t'),z.(t')) € G for all t’ € F;
(7.7) i, 85 €Y ot € P {rsh 0 {r, s} # 0

and (z4(t), z,(t)), (zs, (t1), 2, (t1)) € G, then r =71 and s = s1;
+
(7.8) ifr,rl,sez ,t,tp € F*, and

(xs(t), (1)), (1,2, (t1)) € G, then r # rq;
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(7.9)

+
if 7,5, 51 EZ , 4t € F*, and

(xs(t), 2, (1)), (zs,(t1),1) € G, then s # s1.

Coupling (1.33)-(1.38) with (7.5)-(7.9), we see that there is an exact sequence

where

(7.11)

(7.12)

(7.13)

1 - K —T{I,JANF)B L —1,

K, =U(R"([1,d] x F3), F),

L, =U(R",F),

R* = R"(E5 x [1,d]) U RT(E; x Eq)U
RT({(aAmy,a'Amy)|a,a’ € Aja < d'})U
RT({(a)my, jmi)|a € A,j € INJ})U

RY({(jm,adm)j € INJ,a € A, j <a}).

It is obvious that R ([1,d] x F3) is closed, and so is RT([1,d] x F3) = R ([1,d] x

(Fy U Fy)), so K1 = U, (F) for some 71 € Sg. By (7.13), R* is closed. To check

that R* is closed, we use the fact that

Hence,

[1,d)*> =(E, x E1) U (Ey x Ey) U (Ey x E3) U (Ey x Ey) U (Ey x Ey)U

(E2 X Eg) U (Eg X El) U (Eg X EQ) U (E3 X Eg)

R = R+(E1 X El) UR+({(OJ,ﬁ) € By x EQ‘O& :jﬂ'l,ﬁ = a)\7r1,
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jeINJd, a€A, j<a})UeuU
R™({(a,B) € By x Eila = aXmy, = jm, a<j}u
RT({(a, B) € By x By|la = a\my, 8 =ad' Ir,a,a’ € A,a < a'})U
pURT(E3 x E1)URY(E3 x E3) URT(E3 x E3),

and so
R =¢URY({(a, 8) € By X Bsla = jm,B=alm,j€INJ, a€A, j>a}U

RY(Ey x E3) URT({(a, B) € By X Er]la = almy, = jmi,a > j})U

R ({(a,B) € By x Esla = almy,f=ad'\ry, a,d € A,ja>ad'})u

RT(Ey x E3)U¢U ¢ U o,

and we check that R* is closed so that Ly = U,, (F) for some oy € Sg. A similar
argument produces 75 and oy. This is Theorem 2.

Theorem 3 will be shown to be a consequence of the following lemma.
Lemma. Suppose I,J € Py([1,n]) and INJ = ¢. Let
M,(I,J,F)={M € M, (F),M = (m;),
m;; = 0 ZfZ < I/,
m;; =01ifj€ J/,
Let P=U(RT(IxI),F), Q=U(R"(JxJ),F), Then PxQ acts on M,(I,J, F)

V1a

Mo(I, J,F) x (P x Q) — My,(I, J, F),

(M, (P,Q)) — PT'MQ.
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Then {0} U M(I,J,\F) is a set of representatives for the orbits of P x Q
AEA(I,T)

on My (I,J, F), where
M(I,J,\F) = { > taaarta € FX},
a€D(N)

and \ ranges over the nonempty maps in A(I,J).

The proof is omitted, being an exercise in row and column operations.

To be able to apply this lemma, we note that U, ;) (F) x U,r)(F) contains
SURTI'NIXxI'NJ),F))xdURTUINJT xInJ),F)).

Also, every orbit of U, ;) (F) XU,y (F) on U, (F') contains an element of U(R,(7)u,N
R (1w, F). Since R, (11w, N Ry(ryw, = RT(I'NJ xINJ'), we can bring the lemma

into play by using the isomorphism

(7.14) L URT(I'NJIxINJT), F) =
M, (I'NJ,INJ,F)
via z4,5(t) — teq, s,
where e, —eg € RT(I'NJ x InNJ'). Also,
SURFI'NJI xI'NJ),F)) x SURFINT x InJ),F))
(7.15)
~URTI'NIxI'NJ),F)xURT(INJ xInJ),F)
with the isomorphism being the deletion of §, and one checks that (7.1) and (7.2)
are compatible; conjugation action on U(RY(I'NJ x INJ'),F) by §(U(RT(I' N
JxI'NJ),F)) induces action on the left on M, (I'NJ,INJ’, F), and conjugation

actionon U(RT(I'NJ xINJ'),F) by (URT(INJ' xINJ'), F) induces action on
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the right on M,,(I'NJ,INJ', F). By the lemma, every orbit of U, ;) (F) x U, (F)
contains an element of the stated type.

Suppose A\, i € A(I,J),t, € F* for all a € D(A), wu, € F* for all a € D(u),

and

H xa,ak(ta)y H xa,au(ua)

a€D(A) a€D(p)

are in the same I'—orbit. We must show that A\ = p and that t, = u, for all
a € D(N). Suppose false for \, j,tq,a € D(N),uq,a € D(u). Set

Ry = {eq — eqr|la € D(N)},

Ry = {eq — eapla € D(p)},

R =Ry UR;.
Let ro be the smallest root in the (p—ordering) in R such that one of the following
holds:
(a) 1o ¢ RiN Ry, and either 7o = €4 — eq\ € Ry, with ¢, # 0,0r 79 = €q — €4, € Ro with u, # 0
(b) 1o € RN Ry and t,, # ug,, where
o= €ay — €agr, Qo € D(A)ND(u) and

Ao\ = agfl.

From the minimality of ry, we conclude that if s < rg and s € R, then
P

s€ RiNRy,s=e, —€qr =€q — Cau,tq = Uq. Set

T1: H xa,a)\<ta)aT2: H ma,au(“a%

a€D(A) a€D(p)

T = H ma,ax\(ta)u

where the product for T ranges over the s = e, — egx € D(A) with s < rg, so that
p

T,=T-T(1), T, =T-T(2),
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where, with no loss of generality, 7o = €4, — €qox € R1,a0 € D(N). Thus, by =
apX, a0 € I' N J,bg € INJ  ag < bg. Also

T(1) = aghy (tas) - || Fasar(ta),

T'(2) = Tag,p(C) - Hwa,au(uu);
where the product for T'(1) ranges over r = e, — egx € Ry with rg % r, and the
product for T'(2) ranges over r = e, — €4, € Ro with 7 % r, and where ¢ = 0 if

ro & Ro,c = ugq, if 79 € Ry. In all cases,

ta, 7 C.

At this point, I introduce the notion of retraction along a positive root r. Suppose

r=e;—e; €5, Set

(i)t ={s¢ Z+ s = ey —eyi <i < j' <j}
UG5, F) = (X:(F)ls € 3 (i.4)").
Then there is an idempotent endomorphism ¢, of Uy(F') which sends z,(t) to 1 if
s & > (i,7)", and which fixes zs(t) if s € >(z,5)",t € F. The existence of pr is
obvious, since $(i, )1 and (i, )1 are closed, and since 1, € 37,75 € S(4,5)F
and 71 + 7o € 3.7 imply that v +1r5 € 34, 5) 7.
We consider ¢ = ¢,,, and observe that

p(Up(s)(F)) € Uy (F),

e(Up(n) (F)) S Uy (F).
Set

P =¢(Th), P>=¢(Ty), P =),
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so that

P, = Pz, (ty,), P = Pz, (c),

where one of the following holds:
(i) c=0and ro ¢ Rs.
(i) ¢ = uq # ta.

By hypothesis, there are g1 € U,;)(F), g2 € Uy (F), such that gi Ty = Tags.

Set

9= ¢(g1), h = ¢(g2),
so that
(*) 9Pz, (ta,) = Pxy,(c)h.
Set

Uo = U(ao,bo,F); U1 = U(R*,F),

where R* = {e;y —ejrlag < i’ < j' < by} Thus P € Uy, and

Up = U1Us, Uy NU2 = {1},

where
U2 = U(R**vF)7
and
R** = {eao — ej‘a() <7< bo} U {ei - abo\ag <1< bo}
Note that

Us « Uo.
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We first treat a special case. Suppose P = 1. Here (*) becomes
9Ty (tay) = Tro(C)h.
Since X,,(F') is in the center of Uy, we get
gh™ =x,,(c —to,) = 2,y (b),b € F*.

Equivalently, g = x,,(b)h. This implies that either 7o € R,(;) or ro € R, ). Since

ap € I'NJ,bg € INJ', we get 1o & R,(1),70 & Ryr). We conclude that
P #1.
Since P € Uy, this forces ag + 1 < bg, and so
(U2, Us] = X (F).

Write

where §,h € Uy, wu,v € Uy. From (*), we get
guP = Phva,,(b).
Since P € Uy, this gives us two equations:
gP = Ph,u® = vz, (b),

’U/EUP(J/)(F)QUl, UEUp([)(F)ﬂUl.

Write

U= uUjuz,vV = UV1V2,
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where

bo—1 bo—1
ur =[] waoi(fi)s wa= T @i (f),
j:ao-I—]. j:a0+l
bo—1 bo—1
vi= | Zailes), va= ] wino(e)).
j=ap+1 j=aop+1

Here I am using ro ¢ R,(5),70 &€ Ry

Since P normalizes (X, ;(F)|ao < j < bo) and (Xp, (F')|ao, < j < bo), it follows

that
u = 111?12,
where
bo—1 bo—1
7 r ~ 1]
iy =[] waos(fi)s G2= [ @),
Jj=ao+1 Jj=ao+1

whence from u?” = vz, (b), we get b = 0. This contradiction shows that Theorem
3 holds.
8. Partitions and associated groups

In order to study the groups I'(Z, J, A, F'), I introduce a graph I' = T'(I, J, A).

I set
V(L) = [Ld],
E(T') = {(,v)| one of the following holds;

(2) ju€A, 1i,€Band

JuA =1, }.
Here I am using (1.27) and (1.32).
From (3.8), together with the definitions of (1) and 7 (J), we get

(8.1) iy < Juw for all p e [1,d].
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Lemma 8.1. i, < j, for all p € [1,d].

Proof. Fix p € [1,d]. Since

{rwlv € [pdl}[ = d—p+1and |[1, pl| = p,

It follows that

{rwlv € [ d]} N1, u] # ¢

Choose k € {vw|v € [u,d]} N[1, u]. Thus

k = kw < p for some K € [u,d).

It follows that
by <t < Jrw < Jps
and the lemma follows.
Lemma 8.2. If (u,v) € E(y), then u < v.
Proof. If (1) holds for (p,v), in (8.0), then j, = ,. By Lemma 8.1, i, < j,, and

S0 ju < ju, whence p < v. If (2) holds for (i, v) in (8.0), then

Ju € Aty € B and ju\ =i,.

By definition of A in (1.30 ii) we get

By Lemma 8.1, i, < j,,, and so j, < j,, whence pu < v.
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Lemma 8.3. If (u,v1) and (u,v2) are edges of I, then vy = vs.

Proof. Since A C I', if follows that if (1) holds for (u,v;), then (1) also holds for

(1, v3—;). The lemma follows.
Lemma 8.4. If (u1,v) and (u2,v) are edges of T', then py = uo.

Proof. Since B C .J', it follows that if (1) holds for (u;,v), then (1) holds for

(t3—4, V). The lemma follows.

It follows from Lemmas 8.1, 8.2 and 8.3 that if I is a connected component if
I', then

V(Fl):{a’].)aZ)"'aal} Cl1<a2<--~<al,

and

EI) ={(ai ait1)| i€ [1,1-1]}

Let I'y,...,T'x be the connected components of I', ordered so that |V (I';)| = u;

and

P > g = 2 .

Set u(L, J,\) = p=(p1,-.., ),

(8.2) V(Fl) = {CLM,CLQZ‘, - ,alm} a1y < agp < -0 < Ay,

(8.3) D() = {(2,y) € Ny € [1, K], € [1, ]}
I call D(u) the dot diagram of u, and define

(8.4) oI, J;\) =¢:D(u) — [1,d
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o(2,y) = Qgy.

Since [1,d] is the disjoint union of the V(I';), it follows that ¢ is a bijection.

From the map ¢, I construct a group G(p, F') for each field F', and as with

G(I,J,\ F), lgive G(p,F) by giving aset of generators. As with G(I, J, \, F'),

is a subgroup of U;(F) x Ug(F'). Here are generators:

{(zi5(t), V|t € Fri <,

(8.5)
i = p(1,y) for some y € [1, k|},
{(1,117”(t)‘t c F,Z < j,
(8.6)
J = ¢(py,y) for some y € [1, hl},
(87) {(l’i/7j/(t>,£8ij(t))|t el i< 7, i< j/

i=p(a,y), 7=, z),
-/

i'=pla+1,y),j =ph+1,2),

for some {(a,9), (a+1,), (b, 2), (b+1,2)} € D()}.
Theorem 8.1. For all (I,J,\), and all fields F

G(I,J,\,F) = G(p, F),

where

=0, JF).

Proof. We prove that each generator in any of (8.5), (8.6), (8.7) occurs in one of

(1.33)-(1.39), and conversely, that each of the elements appearing in (1.33)-(1.39)

is contained in G(¢, F').
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I start with (8.5). Supposet € F, 1< pu<wv <dand pu = ¢(1l,y) for some p.
From the definition of I', this implies that i, € J’ and in addition i, ¢ B. Thus,
i, € INJ — B, that is i, € D. By (1.32), m; = n(I), and by definition of = (I), we
get

LT = M.

Since p < v, it follows that e, — e, € RT(Dm; x [1,d]), and so

(2 (1), 1)

is one of the elements appearing in (1.33). The remaining assertions follow in a

similar manner.

Let ¢ = (I, J, \) as before, and set

Qp) = {w € Sal if {(a,1), (a+1),0)} € D(n),

then [p(a + 1,1),dJw C [¢(a,l) + 1,d]}.

Lemma 8.5. Ifw € Sy and

io < jow for all o € [1,d],

then w € Q(p).

Proof. Suppose i, < jo for all o € [1,d] and w ¢ Q(p). Then for some {(a,l), (a+

1,1)} € D(u) and some v/ > p(a+ 1,1), we have

V'w < p(a,l).
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Set
o=¢(a,l), o =plat+1,l).
By definition of I', one of the following holds:
(a’) jO' - Z'o”-

(b) jo € Ajtyr € B and joA = iyr.

In either case, we have

jo <'igr, and o < o’.

Namely, i,» < jos, by Lemma 8.2. Thus, if (a) holds, then j, = i,/, < j,/, so that
o < o’. If (b) holds, then since X is increasing, we get j, < i,/, and as i, < j, by
Lemma 8.2, we get j, < jo,r S0 0 < o’.

We are given p(a + 1,1) = o’ and v/ > o/, V' w < 0.

First, suppose that j, = i,.. Since v € [1,d], we have j, = i, < iy < jurw < Jo,
a contradiction.

Suppose that j, A = i,/, so that j, < i,/; now we get

ja < Z'a" S iIJI < jl/’w S ja,

a contradiction.
9. Constructing some (I, J, A) from labeled dot diagrams

In this section, I start with a partition p of d:

o= (H1, -y Hk)-

Set

(9.1) D(p) = {(z,y) € N*|y € [1,k],z € [1, ]},
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the dot diagram of . Set

®(u) ={¢ :D(n) — [1,d]| ¢ is a bijection and
(9.2)
p(z,y) < ez +1y) forall {(z,y), (z +1,y)} < D(u)}-

If p € ®(p) and F is a field, set

Gr = {zi;(t),1)|t € F,i < j, and i = p(1,y)

for some y € [1, k]},

Gr={(L ()|t € F,i <jand j = ¢(uy,y)
for some y € [1, k]},

GD = {xi/j/(t),xij(t)ﬂt c F,i < j, i’ < j/,
and
1= Sp(aayl)aj = (;O(ba ?J2)7

i/ = (p(a’ =+ 17y1)7j/ = QO(b + 17292)
for some {(a7yl)’ <b7 y2)a (a' + 17y1)v (b + 17y2)} g D(ﬂ)}

G(CP,F) =< G UGRrUGp >.

Theorem 9.1. If p = d and p € ®(u), then for some n € N, there are subsets
I,J C[Lnl|I|=|J|=d, subsets ACI'NJ,BCINJ and a map A\ : A — B

such that X\ is a bijection and a < aX for all a € A, such that for all fields F,
G(I,J,\ F)=G(p, F).

In addition, setting

Q) = {w € Sallp(a+1,1),dlw C [p(a,£) +1,d]

for all {(a,1), (a +1,1)} € D(p)},
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1, J have the property that
I:{’il,ig,...,’id}, 1 < ig < - <lig,
J={j1,j2--,jda} g1 <je<--<ja,
and

Qp) ={w € Silic < jow for all o € [1,d]}.

Proof. Set

X(‘P) = {(L J, )‘)| 90(17 J, )‘) = 90}'

Among other things, we must prove that X' (¢) # ¢ for all ¢ € ®(u). I remark

that if (I, J, ) € X (), then by Lemma 8.5, it follows that

{w € S4lis < jou for all o € [1,d]} C Q(p).

Set

L) :={(p(a,a),p(a+1,a))| {(a,a),(a+1,0)} € D(p)},
Alp) = {(z,y) € L(¢)*]z = (i,5).y = (', 5)
and i’ <i<j<j'}

If {x,y} C L(y), set z <, y if (z,y) € A(p). By inspection, (L(p),<,) is a
poset.

Set

Lunin(¢) := {z € L(y)|z is minimal under <,}.

Set

(9.1) [ :=|Lmin(¥)].
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Since ¢ is a bijection, it follows that if

(9-2) {(i,5), (i",5")} € L(g) and (i, j) # (', j'), then i # i and j # j'.

From (9.1), it follows that
Lmin(go) :{(:ula V1)7 SRR (,ula V@)})
1S pro S < g
Since (up,vn) € L(p) for all h € [1,¢] and ¢ € ®(u), it follows that
(9.3) wp < Vp Vh € [l,f].

It follows from (9.2) that

(9.4) 1 < g < oo < g

and it also follows from (9.2) that v, # vp11  Vh € [1,0 —1].
Suppose by way of contradiction that vj, > vp41 for some h € [1,¢ — 1]. Then
(9.3) and (9.4) yield pp < ph41 < Vh41 < Vh, whence (ppy1,Vhi1) <e (Kn,Vn),

against (pp, vp) € Lmin(v). So

(9.5) v <y <o <y

Set
(9.6) po =0, proy1 :=dyveqr 1 d+ 1,
and set

Coh—1:=Vp —h+ pp_1,
(9.7)
Cop ‘= Vp — h+ﬂh Yh € [1,64— 1]
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Set

(9.8) I'=[1,a]u | leon, cantal,
he(l,4]
(99) J = U [Cgh_l + 1,Cgh].
heE[1,241]

Lemma 9.1.
(Z) Cop—1 < cap, Vh € [1,£]

(i7)  c2041 < C2pt2.

(191) cop < copy1  Vh € [1,4].
Proof. From (9.4) and (9.6), pup—1 < pp Vh € [1,£ — 1], so v, — h + pp—1 <
vp—h~+pp. Thisis (i). Since py < vy < d, we get vpy1—(0+1)+pe < voer1—(+1)+d.
This is (ii).

If h € [1,£ — 1], then vy < vp41 by (9.5), s0 v, —h < Vp41 —h and so vy, — h <
Vht1 — (h+ 1), so
vh —h+pp <vpgr — (h+1) + pp.

So (iii) holds for all h € [1,£ —1]. Since 20 +1 =2({+ 1) — 1, and vy < vp41, We

get vp — 0+ pp < vpr1 — (04 1) + e, so (iii) holds.

Lemma 9.2.
(1) cem <cmi1, Yme[l,20+1].

(13) If h € [1,€ — 1], then
Cop = Cop41 < Vp41 = Vp + 1.
(ZZ’L) Cop = Copyr1 < Uy = d.

(iv) con < cahg1), Vhe[L 4]
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Proof. Lemma 9.1 implies (i). If h € [1,£ — 1], then by (i) cap41 — co2pn > 0. Since
Coh41 — C2h = Vht1 — Vp — 1,

(ii) follows. Since cop41 — car = d — vy, (iii) follows.
Since pup < pp41 and vy, < vppr Vh € [1,4], (iv) follows.
Lemma 9.3. |I| =d.
Proof. Since 0 < puy < vq, it follows that 1 > 1, so ¢; > 1.
It follows from Lemma 9.1 and (9.8) that
[I| =c1 + Z (conht1 — cop + 1)

he(l,4]

=Clter+ Y (consr — Can),
he(l,4]

so this lemma follows from (9.6) and (9.7).
Lemma 9.4. |J| =d.

Proof. Since cop—1 < cop, Vh € [1,0+ 1], it follows that

l[can—1 + 1, can]| = can — can—1.

Hence, by (9.9),

J] = Z (can — can—1),

he(l,e+1]
so this lemma follows from (9.7).

Remarks. For future reference, I note that cop0 = 2d — £.

Lemma 9.5. (:)IUJ D [1,2d —/].
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(i) I N J 2 {can|h € [1,4]}.

Proof. Set X := 1 U J. By construction, 1 € X. Suppose m € X and m < 2d — /.

Then m is in one of the following intervals:

(D)1, cq].
(2)[c2n, cant1], b € [1, 4]
(3)[can—1 + 1, can], h € [1,4].

(4)[c2e41, c2e42 — 1].

In each case, inspection shows that m+1 € X, so by finite induction, (i) holds. By

(9.8) and (9.9), (ii) holds.

Lemma 9.6.
(1) TUJ=1I1,2d— 1.

(i) INJ={conlh € 1,4}
Proof. By Boolean algebra
IuJ=I~INnJyuJ~INnJHUInJ
and so
[TUJ|=|I|+|J]|—|InJ|.
By Lemmas (9.3)-(9.5), |[IUJ| >2d —¢and |[INJ| > ¥, so

2= I+ |J|=INJ|+[ITUJ|>{+2d—¢.

Thus, the inequality is an equality, and the lemma follows.
Set

Iy = pA([1,d], 1), Ju = pA([L, d], J), Ve € [1,d].
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Lemma 9.7.
(Z> Z.l/h - th)

(1) Jup = con, VYh€|[1,4].
Proof. If h € [1, 4], set

U = [IN[1,can]l-
Obviously, (9.8) implies that
(9.10) con = max I N [1, cop],

SO Cop, = Uy, -

From (9.8), we get
{Cgh} U [1, Cl] ifh=1

INn[Leml =9 feop}UlLe]U U [con, coner] if b > 1.
ke[1,h—1]

So
141 ifth=1
[T N[1,con]| =
v + Z (Cgk+1 — Cok + 1) if h > 1.

ke[l,h—1]

Since copy1 —Cop + 1 =vkp1 — (K + 1)+ pup —vp + k — pgg + 1 = v — vg, we get
Up =vp,Vh € [1,6].
This is (i).

From (9.9), we get

[T (L eanll = ) (cor — car—1)-
ke(1,h]

Since cop — Cop—1 = Vg — k+ pp — Vg +k — pg—1 = pg — pr—1, and since pg = 0, we
get

|J N [1, canl| = pn, cop = max J N [1, capl,

and (ii) follows.
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Lemma 9.8. If m € [vy + 1,d], then

im < jue-l—l-

Proof. Since vy < m, it follows from Lemma 9.7 that

(9.11) Cot = iy, < im.

From (9.11) and (9.8), we get iy, € [car + 1, cor41].
Since ju,4+1 > ju, = c2¢, (9.9) implies that j,,+1 € [cary1 + 1, c2042]. Since

corq1 < 2041 + 1, the lemma follows.

Lemma 9.9. If m € [1,v1 — 1], then i,, < ji.

Proof. This is obvious.

Lemma 9.10. Ifv, <m <wvp4q and h € [1,0 — 1], then i < ju,+1-
Proof. By Lemma 9.7, 7, = cap, < iy, < C2p42.

Hence,

(9.12) im € [CQh,CQh+1].

By Lemma 9.7, together with u; < vy, it follows that

and so
(9.14) Junt1 € [cang1 + 1, cangal.
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The lemma follows from (9.12), (9.14).

If h € [1,4], there is (ap,ap) € D(p) such that

pn = e(an, an), vy = olap + 1, ap).

Set
X(¢) == {(an,an)|h € [1,4]},

Y(p) = D(u) ~ X(p).
Let

Z(p) == A{(a,0) € Y(p)[(a+1,0) € D(p)}.

By construction, if (a,a) € Z(p), then there is h € [1, /] such that

(9.15) ola,a) < plap,an) < plap +1,ap) < pla+ 1, ).

Set
A(SO) = {jgo(a,oz)’(aﬂ O‘) € Z(QO)}

B(¢) == {ip(at1,0)l(a, @) € Z(p)},
and define A by
A A(p) — Bly)

Je(a,a) = Jp(a,a) A = p(at1,a)-

Obviously A is a bijection.

It follows from (9.15) that

Je(a,a) < Je(an,an) = lo(an+l,an) < lp(at+la);

SO

(9.16) a<alallaée A(p).
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Putting these pieces together, it follows that

QO(L J, )‘) = ¥,

that is, (I, J,\) € X(p).

Set i}
0" (p) :={w € 94|

[pla+1,a),dw C [p(a,a) +1,d]
for all {(a,),(a+1,)} € D(p)}.
It remains to prove that

im < Jmw VYw € Q%(p), and Vm € [1,d].

Set

Q" (p) = {w € Sqllvn, dlw C [un + 1,d] Vh € [1,]}.

If h € [1,/], then
pn = @(an, an), vy = @lap + 1, ap).
Hence

Q" (p) C Q™ (p).

Conversely, suppose w € Q**(p) and {(a, ), (a + 1,a)} C D(p).
I argue that

(9.17) [p(a+1,a),dw C [¢(a,a) + 1,d].

If (p(a,a),p(a+1,a)) € Amin(p), then for some h € [1,4], p(a, o) = up,

v(a+1,a) = vy and (17) holds. If (¢(a, @), p(a+1,a)) # Amin(p), then there is
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h € [1,4] such that

ola,a) < plap, an) < elap + 1,ap) < pla+ 1, a),

and so
[p(a+1,a),dw C [p(an + 1, a3), dlw

C [So(aha ah) +1, d]

C lp(a,a) +1,d],
so (9.17) holds, whence Q**(¢) C Q*(¢); so

Q" (p) = Q" (p).

Pick m € [1,d]. Then one of the following holds:

1. vy <m.

2. m <.

3. v <m < vpyq for some h € 1,0 —1].

4. m € {v1,va,..., v}

Suppose vy < m. Then mw > pp + 1, as w € Q**(p).

By Lemma 7, i, < Ju,41 < Jmew-

Similarly, if m < v;, Lemma 9.9 applies, and if 3 holds, Lemma 9.10 applies.
Finally, suppose m = vp,. Then i, = %, = ju, < Jun+1 < Jmw- The proof of the
Theorem is complete.

10. The partitions (1) and (d)
Although T have been unsuccessful in proving that for all u - d,p € ®(u), w €

(), there are polynomials f(u,p,w,A) € Z[z] such that for all finite fields F,

(101) ’Ud(FQ)wUd<Fq)/G(Qp’Fq)| = f(”? ¥, W, Q)7
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I have proved this assertion for two particular partitions p of d. Namely, in this

final section, I prove that (10.1) holds if

pe {9, ()}

Case 1. pu = (1%).
In this case, ®(u) is the set of all bijections from D(u) to [1,d], and Q(p) = Sy.

On the other hand, < G, >= Uy(F) x 1 and
< Gr >=1xUy(F), so that
G(p, F) = Ua(F) x Ua(F),
whence
Ua(Fg)wUa(Fy) /Gl Fg)| = 1,

so we take f(u,p,w,\) =1, and (10.1) holds.
Case 2. u = (d).
In this case
D) = {(@, )1 < 2 < d},
and

()| = 1.

The unique ¢ in ®(u) is defined by
o(x,1) =z, Vxel[l,d.

In this situation
<Gp>=<z;(t))2<i<dteF >,

<Gp>=<zy ()1 <i<d—-1,t € F >,
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and
< Gp >=< (@it1,j41(1),2i,5(1))[t € F,

1<i<j<d—1>.

As for Q(p), we see that if w € Q(yp), then for each i € [1,d — 1],

i+ 1,dw C[i+1,d],

and so
Q(p) = {1}.

From the structure of G(p, F), it follows trivially that

Ua(Fq) /G, +Fy)| = 1

and so we take f(u,p,1,A) =1 and (10.1) again holds.
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