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Precise Physics of Simple Atoms
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Abstract. We give a review of experimental and theoretical results on the precision
study of hydrogen–like atoms with low value of the nuclear charge Z.

The simplicity of “simple” atoms has been for a while a challenge to precision
theory and experiment. Are the hydrogen–like atomic systems simple enough to
be calculated with an accuracy, appropriate to compete with the best experimental
results? That is a question, that theorists have tried to answer. The simplest atoms
are different two–body bound systems with a low value of the nuclear charge: Z = 1
(hydrogen, deuterium, muonium and positronium) and Z = 2 (ions of helium–3 and
helium–4) etc. We do not try to review theoretical calculations (if necessary details
can be found in Ref. [1]), but present state of art in physics of simple atoms and
discuss in detail the theoretical and experimental status of studying such atoms.

LOW-ENERGY TESTS OF QED

The precise physics of simple atom is the most interesting part of the so-called
low-energy tests of Quantum Electrodynamics (QED). Low energy tests of QED
offer a number of different options:

• A study with free particles provides the possibility of testing the QED La-
grangian for free particles. The most accurate data arise from anomalous
magnetic moments of the electron (Kinoshita†2) and the muon [2].

• However, one knows that the bound problem makes all calculations more com-
plicated. Bound state QED is not a well–established theory. It involves dif-
ferent effective approaches to solve a two–body problem. These approaches
can be essentially checked with low Z atomic systems like for e. g. hydrogen
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and deuterium (Hänsch†), neutral helium (Drake†) and helium ions, muonium
(Jungmann†), positronium (Conti†), muonic hydrogen and helium etc. We
consider here most of the low–Z atoms.

• Study of high–Z ions (Myers†, Stölker†) cannot further the test of the bound
state QED because of large contributions due to the nuclear structure. Rather
such an investigation is useful for trying different nuclear models. However,
in some particular cases, atomic systems with a not too high Z can give some
important information on higher order terms of the QED Zα expansion.

• There are some other two–body atoms under investigation. They contain a
hadron as an orbiting particle. Different antiprotonic (Yamazaki†) and pionic
(Nemenov†) atoms provide a unique opportunity to study particle property
with spectroscopic means with a high precision. In some sense it is not possible
to have low precision: if a signal is detected the accuracy is granted.

The precision study of the simple atoms is not only limited by experiments with
simple atoms. The theory is not able to predict anything to be comparable to the
experimental data. What theory can do is to express a measurable quantity in
terms of fundamental constants and particle (or nuclear) properties.
First of all we need to determine somehow the Rydberg constant (R∞), the fine

structure constant (α) and the electron mass in some appropriate units (e. g. in
atomic units or in terms of the proton mass (me/mp)). Uncertainties arising from
these constants are sometimes compatible with other items of the uncertainty bud-
get or they are even sometimes the most important source of inaccuracy. One should
remember that the electron is the most fundamental particle for physics, chem-
istry, and metrology and the constants associated with its properties go through
any atomic spectroscopic effects and any quantum electromagnetic effects. Due
to that a number of different studies, which are very far from the spectroscopy of
simple atoms (like e. g. Watt balance experiment (see Mohr† for detail)), are really
strongly connected with the precision physics of simple atoms.
However, a knowledge of the universal fundamental constants is not enough for

precision theoretical predictions and we need to learn also some more specific con-
stants like for e. g. the muon mass or the proton electric charge radius. The former
is important for the muonium hyperfine structure, while the latter is for calculating
the hydrogen Lamb shift.

SPECTRA OF SIMPLE ATOMS

Let us discuss the spectrum of simple atoms in more detail. The gross structure
of atomic levels in a hydrogen–like atom comes from the Schödinger equation with
the Coulomb potential and the result is well–known3 En = −(Zα)2me. There are
a number of different corrections: the relativistic ones (one can find them from

3) We use the relativistic units in which h̄ = c = 1.
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FIGURE 1. Scheme of the lowest excited levels (n = 2) in different simple atoms

the Dirac equation), the hyperfine structure (due to the nuclear magnetic moment)
and the QED ones. A structure of levels with the same value of the principal
quantum number n is a signature of any atomic system. In Fig. 1 we present
three different spectra of the structure at n = 2. The first one is realized in
“normal” (electronic) hydrogen–like atoms (hydrogen, deuterium, helium ions etc).
The muonium spectrum is the same. The largest splitting, of order (Zα)4me, is
the fine structure (i. e. the splitting between levels with a different value of the
electron angular momentum j), the Lamb shift arising from the electron self–energy
effects is of order α(Zα)4me ln (1/(Zα)) and it splits the levels with the same j and
different values of the electron orbital momentum l. Some nuclei are spinless (like e.
g. in 4He), while others have a non–zero spin (in hydrogen, deuterium, muonium,
helium–3). In the latter case, the nuclear spin splits levels with the same electronic
quantum number. The splitting are of order (Zα)4m2

e/M or α(Zα)3m2
e/mp, where

M is the nuclear mass, and the structure depends on the value of the nuclear spin.
The scheme in Fig. 1 is for nuclear spin 1/2 (hydrogen).

The structure of levels in positronium and muonic atoms is different because
some other effects enter into consideration. For positronium, an important feature
is a real (into two and three photons) and virtual (into one photon) annihilation.
The former is responsible for the decay of the s-states, while the latter shifts triplet
levels (and 23s1 in particular). The shift is of the order of α4me. Contributions of
the same order arise from relativistic effects and hyperfine interactions. As a result
the positronium level structure at n = 2 has no hierarchy (Fig. 1).

Another situation is that for the muonic atoms. A difference comes from a
contribution due to the vacuum polarization effect (the Uehling potential). Effects
of electronic vacuum polarization shift all levels to the order of α(Zα)2mµ. This
shift is a nonrelativistic one and it splits 2s and 2p levels. The fine and hyperfine
structures are of the same form as for the normal atoms (i. e. (Zα)4mµ and
(Zα)4m2

µ/M respectively) and at low Z the Lamb shift is a dominant correction to
the energy levels.
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HYDROGEN LAMB SHIFT

A number of different splittings have been precisely studied for about a century.
Bound state QED and maybe even QED itself was essentially established after a
study of the Lamb shift and the fine and hyperfine structures in hydrogen, deu-
terium and helium ions. In the last decades, progress with such measurements was
quite slow. The results of the last twenty years are presented in Fig 2 (Lamb shift)
and 3 (fine structure recalculated in terms of the Lamb shift), while the older exper-
iments are averaged (see Ref. [3] for references). To reach the Lamb shift from the
fine structure (2p3/2–2s1/2) measurement we need to use a value of the 2p3/2–2p1/2

splitting which was found theoretically. The most direct results of the Lamb shift
need no QED theory. A result claimed to be the most accurate one (Sokolov†) has
an uncertainty of about 2 ppm. It is corrected because of a recalculation of the
lifetime of the 2p1/2 state [4]:

τ−1(2p1/2) =
210π

38
α3R∞

mR

m

{

1 + ln
(

9

8

)

(Zα)2 +
α(Zα)2

π
(8.045...) ln

1

(Zα)2

}

.

There is some criticism by E. Hinds [5] and it is not clear if this result is as accurate
as claimed. We wish to note, however, that common opinion on the direct Lamb
shift measurement contains two contradicting statements. Firstly, it is generally
believed that a Lamb splitting of 2s1/2 and 2p1/2 (about 1 GHz), with a decay
width of 2p being 0.1 GHz, cannot be measured better than 10 ppm. This means
that the statistic error should be larger than 10 ppm. Secondly, it is believed that
Sokolov’s experiment is incorrect only because of a possible systematic error claimed
by Hinds. However, nobody insists that the statistical treatment of Sokolov’s data
was incorrect and we can hope that traditional methods can go far beyond 10 ppm
level. Measurement of the deuterium Lamb shift within the Sokolov scheme will
provide a chance to test some systematics of his experiment.



Essential progress in study of the hydrogen Lamb shift comes recently from the
optical two–photon Doppler–free experiments (see Hänsch† and Schwob et al.† fort
detail). The Doppler–free measurement offers a determination of some transition
frequency in the gross structure with a accuracy high enough to use the results to
find the Lamb shift. However, two problems arise due to these experiments.
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FIGURE 4. Optical determination of the

lamb shift in the hydrogen atom. The ref-
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FIGURE 5. Comparison of experiment

and theory for the hydrogen Lamb shift.

The references can be found in Ref. [3].

The transition energy between different levels of the gross structure is mainly
determined by the Rydberg energy: −R∞/n2. To extract the Lamb shift we first
need to find a value of the Rydberg constant. There are two ways to manage this.
Following the first of them one has to measure two different frequencies within one
experiment with the ratio of the frequencies being an integer number. Obtaining
a beat frequency one can avoid the problem of determining the Rydberg constant.
Three experiments have been performed in this way: the Garching experiment
dealt with the 1s–2s transition and the 2s–4s (and 4d), at Yale 1s–2s frequency was
compared with the one–photon 2s-4p transition and that was the only precision
optical experiment with a one–photon transition. The recent Paris experiment
worked with 1s–3s and 2s–6s (and 6d). The values derived from these experiments
are collected in Fig. 4.
Another way to manage the problem with the Rydberg constant is to do two

independent absolute frequency measurements (i. e. measurements in respect to
the primary cesium standard) and to compare them afterwards, hence determining
both the Rydberg constant and the Lamb shift. Such an approach, combining
results from Garching (1s–2s) and from Paris (on 2s–8s, –8d, –12d), gave another
optical value (Fig. 4). Some of the optical experiments were also performed for
deuterium and that may improve the accuracy in the determination of the Rydberg
constant and, thence, of the hydrogen Lamb shift.
However, the values in Fig. 4 derived from the optical measurements need further

theoretical treatment. The experiments involved a number of levels (1s, 2s, 3s
etc) and with optical experimental data there was also a problem of an increasing



number of levels with an unknown Lamb shifts. The problem was solved with the
help of a specific difference [6]:

∆(n) = EL(1s)− n3 EL(ns)

=
α(Zα)4

π

m3
R

m2
×

{

−
4

3
ln

k0(1s)

k0(ns)

(

1 + Z
m

M

)2

+ CRec
Zm

M

+ (Zα)2
[

A61 ln
1

(Zα)2
+ AV P

60 (n) +GSE
n (Zα) +

α

π
ln2 1

(Zα)2
B62(n)

]}

, (1)

where the coefficients A61, A
V P
60 (n), CRec and B62(n) and a table for GSE

n (Zα) can
be found in Refs. [7,3]. The uncertainty was also discussed there. The difference
has a better established status than that for 1s (or 2s) Lamb shifts (see Table 1).
The uncertainty budget was improved recently after calculations of one–loop cor-
rections, exactly at Z = 1, (Jentschura et al.†) and leading three–loop contributions
(Melnikov and van Ritbergen†).
The theory of 2p3/2–2p1/2 splitting is also well established. Perhaps, we have to

clarify here the word “theoretical”. A value is a theoretical one if it is sensitive
to theoretical problems (like the problem of the proton radius and of higher–order
QED corrections for the Lamb shift). An insensitive, sterile value is not theoretical,
it is rather a mathematical one, and that is the case for the difference ∆(2) and the
2pj energy. Details of theoretical calculations can be found in the review [1].

TABLE 1. Theoretical unceratinty of the different cor-

rections for the Lamb shift in hydrogen. ∗ In case of

recoil term we present a value of contradiction between

different calculations. ⋆ We give an estimated uncerat-

inty of proper reevaluation of the most accurate data.

Contribution δE(2s) δ∆(2) δE(2p)

Two–loop 2 kHz 0.6 kHz 0.1 kHz

Recoil 0.9 kHz∗ - -.

Radiative-recoil 0.05 kHz 0.05 kHz 0.05 kHz

Nuclear structure ∼ 10 kHz⋆ - -

NUCLEAR STRUCTURE EFFECTS

Now we can compare theory and experiment for the 2s Lamb shift. We summarize
them in Fig. 5, where we present average values for the Lamb shift, fine structure
and optical beat frequency and comparison experiments. What is important is the
influence of the nuclear charge distribution on the energy levels



∆E(nl) =
2

3

(Zα)4

n3
m3 R2

N δl0 , (2)

where RN is a mean–squared nuclear charge radius. The position of theoretical
values depends on the accepted value for the proton charge radius. We label three
theoretical values with the proton radius (0.847 fm – Mainz dispersion analysis
paper, 0.805 fm – Stanford scattering experiment, 0.862 fm – Mainz scattering).
More values for the proton radius are collected in Fig. 7 (see [3] for references). To
discuss the discrepancy let us look at the most important data on electron–proton
elastic scattering presented in Fig. 8. One can see that the Mainz experiment is
more appropriate to precisely determine the proton radius containing more points at
lower momentum transfer and with a higher precision. Due to this any compilation
containing the Mainz data has to lead to a result close to the Mainz result, because
the Mainz scattering points must be statistically responsible for the final result
and, in particular, the dispersion analysis performed by Mainz theorists led to
such a result. However it (Rp = 0.847(9) fm) differs from the empirical value
(Rp = 0.862(12) fm). One problem in evaluating the data is their normalization.
One can write a low momentum expansion of the form factor

G(q2) = a0 + a1q
2 + a2q

4 + . . . (3)

From a theoretical point of view G(0) = 1 indeed. However, the normalization
measurement was accurate not enough (an in particular in the Mainz case it is
about 0.5%) and that means that a value tabulated from the data, as being the
form factor, differed from it with some normalization. Three different fitting were
performed by Wong [8] (see Fig. 8). The free fittings of a0 led to a larger uncertainty
(Wong–Mainz value in Fig. 7). Even this result must be treated as a preliminary
value. It is necessary to take into account some higher–order corrections and that is
not possible because of the absence of any complete description of the experiment.
The reasonable estimate of the theory is presented in Fig. 5 as a filled area. All
experimental values are consistent with the theory exept the corrected value from
the Sokolov and Yakovlev experiment. The present status is that the computation
uncertainty is about 2 ppm, the measurement inaccuracy of the grand average value
is 3 ppm, while the uncertainty due to the proton size is about 10 ppm.
The problem of the nuclear size is not only a problem of the hydrogen Lamb shift:

a similar situation arises with the helium–4 ion Lamb shift, where uncertainties
resulting from the QED computation and the nuclear size are about the same. The
comparison of theory to experiment is presented in Fig. 9. The evolution of the
measured value has been due to a study of possible systematic sources (Drake and

van Wijngaarden†).

PROTON–FREE HYDROGEN PHYSICS

Amore difficult problem is that of the hyperfine structure, which is more sensitive
to the nuclear structure. While the experimental uncertainty is below 10−12, the
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theoretical inaccuracy is about 10 ppm. The main problem is a distribution of
the magnetic moment inside the proton. It seems the scattering cannot provide
accurate enough data and we need to discuss how to manage the problem of nuclear
structure by means of the atomic physics. We consider here three ways to do that:

• one is based on study of muonic atoms (the muon is a lepton with a lifetime
of about 2 µs and a mass of about 207me);

• another deals with the special difference ∆hfs = Ehfs(1s) − Ehfs(2s) (cf. in
Eq. (1)), which can be precisily measured;

• the third is for atoms without nuclear structure. In such an atom one must
substitute the proton by some more appropriate positive particle (muon or
positron).

A promising way is to determine the nuclear structure with muonic atoms and in
particular with muonic hydrogen. The muon orbit lies lower than the electron one.
Since mµ ≃ 207me the muon hydrogen Bohr radius is about 200 times smaller
than that in hydrogen and, hence, the former is more sensitive to nuclear effects. A
scheme of an experiment running now at PSI (Pohl et al†) is presented in Fig. 10.
The experiment consists of the following steps: creating a metastable 2s state, exit-
ing it to the 2p state by a laser, measuring the intensity of the X–ray decay 2p–1s.
A similar scheme was used for muonic helium [9], however a recent experiment by
PSI [10] showed no appropriate signal (Fig. 11). A study of the helium experiment
revealed a crucial point: the creation of a metastable state, which can be destroyed
by collisions. The collision rate is proportional to the target gas density as well as
the rate of creating the muonic atom, and so the density cannot be varied arbi-
trarily. The slow muon beam at PSI allow one to use a low density gas target and
creation of the 2s state has been detected. In case of success, the PSI experiment
will give us the charge radius of the proton and the so–called Zemach correction
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FIGURE 8. Fitting the electric form factor of the proton from the Mainz experimental data.

The references can be found in Ref. [3].

to the 2s state of muonic hydrogen. Comparison of the muonic hydrogen hfs and
hydrogen hfs will allow us to go farther with the study of the proton structure.

Another way to manage the problem of nuclear structure is to compare the 1s
and 2s hfs. The experiments were performed for hydrogen (recently by Rothery

and Hessels†), deuterium and helium ion. The recent hydrogen experiment has
attracted our attention to the problem of ∆hfs and it was discovered (Karshenboim

and Sapirstein†) that the results (and primarily those for the helium ion) are quite
sensitive to higher order corrections. All value for the hfs used to be presented in
units of Fermi energy (νF ), which is the result of a nonrelativistic interaction of
the magnetic moment of an electron in the 1s state and the nucleus. The accuracy
of the difference allows one to detect the fourth order corrections, namely, α(Zα)3,
α2(Zα)2, α(Zα)2m/M , and (Zα)3m/M .

The same fourth order corrections are now a subject of study in the muonium
ground state hfs (see Table 2). A muonium atom is a kind of hydrogen without the
proton: instead the proton the nucleus is a positive muon. The present status of the
muonium hyperfine splitting is as follows: the experiment at LAMPF gave 4 463
302 765(53) Hz , while the theoretical prediction is consistent with the experiment
but less accurate. A computational part of the uncertainty is about 200 Hz, while
a hidden experimental uncertainty in the theory is about 500 Hz. It is due to a cal-
culation of the Fermi energy, which is proportional to the muon magnetic moment,
determined from the same LAMPF experiment. Possible progress is considered by
Jungmann†.

Another proton–free simple atom is positronium. Its lifetime is much shorter than
that of muonium, but it can be more easily produced. Different measurements in
positronium are summarized in Fig. 12–16. Energy levels in positronium can be
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FIGURE 13. Decay of parapositronium

(see Comti† for reference).

presented in the form

R∞ ×
{

C20 + C40α
2 + C50α

2 + (C61 ln(1/α) + C60)α
2 +

(

C72 ln
2(1/α) + . . .

)

α3
}

.

After two decades of intensive theoretical study we know the coefficients in the
above expression up to C60 ( [12], Czarnecki et al.†) and C72 ( [13,14]). The de-
cay width in positronium is known up to fractinal order α2 (Czarnecki et al.† for
parapositronium) (and for orthopositronium Adkins†) and α3 ln2 α [13]. Since the
Adkins’s result is a preliminary one we do not include it in Fig. 12. The Adkins’s
result led to a fractional correction about 4α2 and so the theory is in contradic-
tion to the Ann Arbor experiment. Some progress in the study of positronium is
expected in the near future (Conti†).



TABLE 2. Fourth order corrections to the muonium hyperfine structure.

Most of references can be found in Refs. [11] and [1].

Contribution Numerical result Reference

(Zα)4 0.03 kHz Breit

(Zα)2(m/M)2 ln(1/(Zα)) -0.11 kHz Lepage

Bodwin et al.

α2(Zα)(m/M) ln3(M/m) -0.05 kHz Eides and Shelyuto

α2(Zα)(m/M) ln2(M/m) 0.01 kHz Eides et al.

α(Zα)2(m/M) ln2(1/(Zα)) 0.34 kHz Karshenboim

(Zα)3(m/M) ln2(1/(Zα)) -0.04 kHz Karshenboim

(Zα)3(m/M) ln(M/m) ln(1/(Zα)) -0.21 kHz Karshenboim

Kinoshita and Nio

α2(Zα)2 ln2(1/(Zα)) -0.04 kHz Karshenboim

α(Zα)3 ln(1/(Zα)) -0.47 kHz Karshenboim

α(Zα)3+ (SE) -0.04 kHz Blundell et al.

α(Zα)3 (VP) 0.02 kHz Karshenboim et al.

α(Zα)(m/M)2 -0.04 Eides et al.

(Zα)2(m/M)2 0.01 Pachucki

THE STATUS OF BOUND STATE QED

After briefly reviewing the studies for hydrogen, muonium and positronium, let
us discuss a problem and current trend of bound state QED. First of all we need
to mention that, in our mind, the QED theory as a theory is well established. As
a pure theory it is absolutely correct and absolutely useless:

• The QED theory is a theory of interaction between leptons (electrons and
muons) and photons only. We need to include hadrons (such as proton) into
consideration. Even for the case of pure leptonic values (like for muonium) we
need to calculate a hadronic vacuum polarization contribution. So the QED
theory is incomplete.

• The QED theory cannot predict anything exactly, but only in terms of expan-
sion and the uncertainty can be presented in terms like O(α7m). It is necessary
to develop an effective approach to estimate uncalculated corrections quanti-
tively in Hz and eV.

• The QED deals rather with free particles and it is necessary to develop an
effective approach to solve a bound state problem for two bodies.
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in the ground state of the positronium atom.

The references can be found in Conti†.

FIGURE 15. 1s–2s transition in positron-

ium: comparison of experiment with theory.

The references can be found in Conti†.

These three problems lie beyond QED as a mathematical theory, but are an essential
part of any real QED calculations. A test of different effective approaches is a real
problem, as is evaluating of hadronic contributions needed for the precision theory
of simple atoms.
The bound state problem has mainly three small parameters: α (associated with

QED effects), Zα (due to binding effects) and m/M (the recoil parameter). Now,
for the first time, it is necessary to try to really study effects which involve essential
QED, two–body and binding effects simultaneously (the α(Zα)2m/M corrections).
That is a problem for the hyperfine structure of muonium, the 1s/2s hyperfine
structure in hydrogen, deuterium and He+ and for the positronium spectrum. An-
other crucial problem is that of the Lamb shift in hydrogen and light ions: this
is a higher order two–loop corrections (α2(Zα)6m) already known in part. We
summarize all crucial terms in Table 3.
The three parameters we mention generate different expansions and it is found

that all three kind of expansions are not free from problems.

• The QED expansion over α is an asymptotic one and the value of terms will
decrease to some nc and increase after it. Fortunately, that is not important
for n = 1− 3, which are only actual for the bound state QED.

• The Zα expansion involves another problem. One knows that high Z is a
bad limit (strong coupling) and it is believed that low Z is a good limit. The
latter is wrong. It is clear that at Z = 0 there is no bound system at all and
the behavior of any expansion in the limit of low Z is not an analytical one.
This eventually leads to logarithmic contributions. Even a cube of logarithm
(ln3(1/α) ∼ 120 at Z = 1) appears. The imaginary part of the logarithm is π
and the non–leading terms have often large coefficients because of this. There
is another mechanism for large coefficients. As it is well–known the Bethe
logarithm (ln (k0(ns)) ∼ 3) is a logarithm of an effective energy (in atomic
units) of an intermediate state in a calculation of the electron self–energy. A
logarithm equal to 3 corresponds to a quite relativistic intermediate p–state
(v/c ∼ 4.5(Zα)) and that also leads to large coefficients because of relativistic
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FIGURE 16. Positronium fine structure: theory and experiment. See Conti† for references.

corrections for intermediate states.

• The recoil effect with the m/M expansion also involves a non–analytical be-
havior. It is correct that the limit m1 = m2 (positronium) is rather compli-
cated for a calculation, however at the opposite limit (m/M → 0) there is no
bound state. Hopefully, often the logarithmic recoil corrections are not quite
important numerically. Since most of the recoil effects are relativistic ones,
the exchange loop generates the effective parameter (Zα)/π rather than Zα.

Due to the increasing number of logarithmic contributions we end up with a prob-
lem of large higher–order corrections. Some higher–order logarithmic terms are
compatible in comparison to a constant part of some lower–order terms.

• For the hydrogen 2s Lamb shift, non–logarithmic parts of the fifth order cor-
rections (in unit of the Rydberg contributions) lie from 164 kHz (α(Zα)6m)
and 37 kHz (α2(Zα)6m) to a few kHz for recoil terms. The leading logarithmic
term in the next order is α2(Zα)6 ln3(Zα), which contributs 3.6 kHz.

• The non–logarithmic parts of the third order correction (in unit of νF ) for the
ground state muonium hyperfine splitting varies from 8.8 kHz (α(Zα)2) to 2



TABLE 3. Crucial higher–order corrections in current studies of the simple atoms. For the g-

factor of an electron we recalculated the corrections in terms of corrections to the energy.

Value Order

hydrogen gross structure α(Zα)7m, α2(Zα)6m

hydrogen fine structure α(Zα)7m, α2(Zα)6m

hydrogen Lamb shift α(Zα)7m, α2(Zα)6m

He+ Lamb shift α(Zα)7m, α2(Zα)6m

nitrogen fine structure α(Zα)7m, α2(Zα)6m

3He+ hyperfine structure α(Zα)7m2/M , α2(Zα)6m2/M , α(Zα)6m3/M2, (Zα)7m3/M2

muonium hyperfine structure α(Zα)7m2/M , α(Zα)6m3/M2, (Zα)7m3/M2

positronium hyperfine structure α7m

positronium gross structure α7m

positronium fine structure α7m

parapositronium decay rate α7m

orthopositronium decay rate α8m

parapositronium 4γ decay α8m

orthopositronium 5γ decay α8m

g–factor of electron in 40Ca19+ α(Zα)7m, α2(Zα)6m

g–factor of free electron α8m

kHz for recoil and radiative recoil terms and to 0.4 kHz for α2(Zα). Three
leading logarithmic corrections are slightly below 1 kHz (see Table 2): α(Zα)3,
α(Zα)2(m/M) and (Zα)3(m/M).

• A number of positronium levels are under study. The non-logarithmic α6m
term (7.2 MHz) for the hyperfine structure is bigger than the logarithmic part
of the α7m contribution (0.9 MHz), while for the 1s-2s interval the situation
is different: the non-logarithmic α6m term is only 0.5 MHz and that is less
than 1.2 MHZ of the α7m.

These example show that an estimation of the higher order terms is extremely im-
portant and we hope that a calculation of leading logarithmic contributions provides
a reasonable way to estimate uncalculated terms. We estimate the non–leading
term within a half–value of the leading logarithmic contributions.
Estimation of uncalculated terms is a crucial problem in any QED calculations.

Let us now mention the case of moderate Z. Study of these ions provides a unique
possibility of measuring higher order corrections. In particular an experimental
study of helium (Drake†, Burrows et al.†) and nitrogen (Myers†) hydrogen–like
ions will allow us to extract information on higher–order two–loop contributions



with the help of a theoretical study of all other terms (Ivanov and Karshenboim†).
Moderate–Z few–electron atoms allow us to test our understanding of higher–order
electron–electron interactions which is important for high Z spectroscopy.
Large values of the higher–order terms imply a calculation without expansion.

This is only possible for one parameter, either Zα or m/M . For the simplest cor-
rections (like e. g. the vacuum polarization) it is possible to calculate analytically
to any order of Zα, otherwise only numerical results are possible. It is unlikely that
a complete exact calculation of the two-loop self-energy can be performed soon and
that means that expansion techniques is still the main approach in calculating the
higher-order terms, perhaps in combination with experiments.
A new opprortunity appears due to recent measurements of a bound electron g–

factor in a hydrogen–like atom (Häffner et al.†, [15]). A recent result on the carbon
ion is useful for indirect determination of the electron mass (Karshenboim†). Our
theoretical prediction

gb(e) = 2 · (1 + 520795(1) · 10−9) (4)

mainly based on [16] calculation has a smaller uncertainty in part because of taking
into account a known α2(Zα)2 term. Studies of the g–factor will be very different
from the Lamb shift and the hyperfine structure. In contrast to spectroscopic
studies it is possible to go through all Z and to determine some unknown coefficients
of the theoretical expansion if we can fix its shape (we call this weak theory in
contrast to a real theory which can give direct numerical predictions).

SUMMARY

Concluding the paper we wish to mention briefly different applications for the
study of simple atoms. These studies are important for different field of physics:

• Determination of fundamental constants (R∞, α, me/mp): some of these are
important for other application, like e. g. the fine structure constant is nec-
essary to reproduce the value of the Ohm from the quantum Hall effect.

• Development of new optical standard and tool for same: like e. g. the new
frequency chain designed recently (see Diddam et al.†, Udem et al.† and [17]).

• New physics: a study of muonium-to-antimuonium conversion (Jungmann†)
and the exotic decay of positronium (Conti†) provide a possibility of looking
for new particles, while the antihydrogen project and some others are expected
to test some symmerties or possible variations of fundamental constants.

• Particle physics: a recent study of hydrogen is rather important to learn the
proton structure, than to test the bound state QED. The theoretical methods
developped recently are of use both for atoms and two-quark particles (mesons)
and QED is a good opprotunity to test the methods. Exotic atoms give us
accurate information on hadron-hadron interactions.



• Nuclear physics: the situation is similar to that for particles physics: a study of
light atoms offers information on structure of their nuclei. One the other hand,
two– and three–body atoms are an appropriate problem to testing different
effective methods before to applying them to light nuclei.

Most of these questions and a more broad range of problems in physics of simple
atoms were considered at a Satellite meeting to the ICAP (Hydrogen Atom, 2:
Precise Physics of Simple Atomic System). The Proceeding will be published by
Springer in 2001.
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