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- Overview and status of BBR congestion control
- BBR v2 research update

- Research goals and focus areas
- Design rationale
- Illustrative lab results from BBR v2 research pre-release code

- Conclusion and ongoing work on BBR
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BBR v1: overview and status

- BBR milestones already mentioned at the IETF: 
- BBR is used for TCP and QUIC on Google.com, YouTube
- All Google/YouTube servers and datacenter WAN backbone connections use BBR

- Better performance than CUBIC for web, video, RPC traffic
- Code is available as open source in Linux TCP (dual GPLv2/BSD), QUIC (BSD)
- Active work under way for BBR in FreeBSD TCP @ NetFlix
- BBR Internet Drafts are out and ready for review/comments:

- Delivery rate estimation:  draft-cheng-iccrg-delivery-rate-estimation
- BBR congestion control: draft-cardwell-iccrg-bbr-congestion-control

- IETF presentations: IETF 97  | IETF 98 | IETF 99 | IETF 100 | IETF 101
- Overview in Feb 2017 CACM
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http://git.kernel.org/cgit/linux/kernel/git/davem/net-next.git/commit/?id=0f8782ea14974ce992618b55f0c041ef43ed0b78
https://chromium.googlesource.com/chromium/src/net/+/master/quic/core/congestion_control/bbr_sender.cc
https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf
https://www.ietf.org/proceedings/98/slides/slides-98-iccrg-an-update-on-bbr-congestion-control-00.pdf
https://www.ietf.org/proceedings/99/slides/slides-99-iccrg-iccrg-presentation-2-00.pdf
https://datatracker.ietf.org/meeting/100/materials/slides-100-iccrg-a-quick-bbr-update-bbr-in-shallow-buffers
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://cacm.acm.org/magazines/2017/2/212428-bbr-congestion-based-congestion-control/fulltext


BBR v2: current research focus

- Improving coexistence/fairness with loss-based CC
- Adapting BBR bandwidth-probing time scale to coexist with Reno/CUBIC

- Reducing queue pressure (packet loss, queueing delay)
- Using loss and ECN signals for:

- New model for safe range for in-flight data
- New estimators for exiting STARTUP faster

- Speeding up min_rtt convergence
- Making PROBE_RTT more frequent

- Reducing throughput variance
- Making PROBE_RTT less drastic
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BBR v2 design principles in a nutshell

- Leave headroom: leave space for entering flows to grab
- React quickly: using loss/ECN, adapt to delivery process now to maintain flow balance
- Don't overreact: don't do a multiplicative decrease on every round trip with loss/ECN
- Probe deferentially: probe on a time scale to allow coexistence with Reno/CUBIC
- Probe robustly: try to probe beyond estimated max bw, max volume before we cut est.
- Avoid overshooting: start probing at an inflight measured to be tolerable
- Grow scalably: start probing at 1 extra packet; grow exponentially to use free capacity

(bold = new in v2)
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Key in v2: new model for safe range for in-flight

All of these new design principles need an explicit, independent, tight bound on in-flight data

BBR v2 model:

- Mostly cruise at an operating point that maintains flow balance and leaves headroom
- inflight_lo: conservative in-flight bound based on recent loss/ECN signals

- Periodically probe beyond flow balance to probe robustly for higher volume, bandwidth
- inflight_hi: max  volume flow had in flight before signals of congestion (loss, ECN)

- If probing higher inflight doesn't trigger loss/ECN signals , grow probing rapidly
- inflight_probe: incremental probe data beyond inflight_hi (during probing)
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BBR v2 flow life cycle
in

fli
gh

t

time

7

- At a high level, BBR v2 has the same state machine states as v1
- But many of the mechanism details are new

(bold = new in v2)



Confidential + Proprietary

BBR v2 flow life cycle

STARTUP
- Doubles sending rate and inflight
- Sets inflight_hi to estimated max safe in-flight volume if:

- Filtered loss rate is too high
- Filtered ECN rate signal is too high

- Exits when either:
- Bandwidth samples plateau
- inflight_hi is set

STARTUP
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DRAIN

BBR v2 flow life cycle

DRAIN
- Maintains low pacing rate to quickly drain excess in-flight
- Until inflight <= estimated BDP    ("drain to target")

inflight_hi
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inflight_hi

inflight_lo

PROBE_BW: CRUISE

BBR v2 flow life cycle

PROBE_BW "CRUISE" phase:
- Cruising operating point respecting several constraints
- Start inflight at estimated BDP

- inflight <= estimated_bdp 
- Leave headroom if last probe saw a hard ceiling at inflight_hi:

- inflight <= (1 - headroom) * inflight_hi       (headroom=0.15)
- Adapt inflight below inflight_lo using loss, ECN signals

- inflight <= inflight_lo
- On loss, respect packet conservation, maintain flow balance

- inflight_lo -= packets_lost
- On filtered ECN signals, cut inflight using EWMA mark rate α

- inflight_lo -= k * (α - hysteresis) * packets_delivered 10
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inflight_hiPROBE_BW: UP

BBR v2 flow life cycle

PROBE_BW "UP" phase:
- Probe for bandwidth and volumetric capacity
- Grow beyond inflight_hi slowly at first, then rapidly

- inflight_target = inflight_hi + inflight_probe
- inflight_probe grows exponentially per round trip:

- 1, 2, 4, 8... packets
- Set inflight_hi ceiling to estimated max safe in-flight volume if:

- Loss rate is too high: loss_rate > loss_ceiling (1%)
- Filtered ECN rate signal is too high

- Terminate probing upon any of:
- Estimated queue is too high (inflight > 1.25 * estimated_bdp)
- Hit inflight_hi loss or ECN ceiling

inflight_hi
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PROBE_BW: DOWN

BBR v2 flow life cycle

PROBE_BW "DOWN" phase:
- Maintains low pacing rate to quickly drain excess in-flight
- Until inflight <= estimated BDP    ("drain to target")

(PROBE_BW "DOWN" phase may replace DRAIN phase in next rev)

inflight_hi
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BBR v2 life cycle example: shallow buffer 

- Example: 6 BBR, 100M, 100ms, buffer = 5% of BDP (41 packets); t={0, 2, 4, 6, 8, 10} sec
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bw retrans

BBR 1 23.6 M 2.0%

BBR 2 16.9 M 0.9%

BBR 3 15.3 M 0.8%

BBR 4 12.3 M 0.9%

BBR 5 14.2 M 0.8%

BBR 6 14.3 M 0.7%



Coexistence with loss-based congestion control

- Goal: ensure Reno, CUBIC can continue to work well in contexts where they do today:
- Intra-datacenter/LAN traffic: support 100M through 40G Ethernet
- Internet last mile traffic: support up to 25Mbps (4K Video) at RTT of 40ms

- Challenge: Reno/CUBIC need long periods of no loss to utilize high BDPs
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Coexistence: design

- Strategy:
- 1: Estimate the bandwidth available to our flow
- 2: Adapt (within bounds) the frequency at which a BBR flow probes and knowingly 

risks packet loss to allow Reno (and thus CUBIC) to reach our bandwidth
- Dual time scales, including bounded Reno pseudo-emulation (like CUBIC)

- T_bbr: BBR-native time-scale: 2-5 secs, as an increasing log-like function of bw
- T_reno: Reno-coexistence time scale: min(BDP in packets, 50) * RTT
- Time between bandwidth probe phases (PROBE_BW "UP" phases):

- T_probe = min(T_bbr, T_reno)
- Bandwidth estimator filter window now simply covers last 2 PROBE_BW cycles
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Coexistence with loss-based congestion control

- Example: 1 Reno, 1 BBR, 50M, 40ms, buffer = 1xBDP; start time {0, 2} secs
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bw retrans

Reno 24.9 M 0.19%

BBR 23.1 M 0.09%

Improved fairness: 

BBR v1: 92% of bw

BBR v2: 48% of bw



Coexistence with loss-based congestion control

- Example: 2 CUBIC, 2 BBR, 50M, 40ms, buffer = 1xBDP; start time {0, 2, 4, 6} secs

17

bw retrans

CUBIC 1 14.8 M 0.40%

CUBIC 2 12.4 M 0.12%

BBR 1 10.8 M 0.16%

BBR 2 10.9 M 0.21%

Improved fairness: 

BBR v1: 94% of bw

BBR v2: 44% of bw



Exiting STARTUP faster: motivation

- BBR STARTUP
- Doubles sending rate each round trip (analogous to slow-start)
- Sending rate is up to 2x the delivery rate
- Inflight is up to 2x to 2.89x the BDP

- Staying in startup after the pipe and buffer are both full can cause sustained high loss
- And thereby drive loss-based CC down to low rates

- Thus exiting STARTUP quickly is important
- For reducing loss
- For fairness
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Exiting STARTUP faster: using Loss, ECN signals

- BBR v1 STARTUP exit
- After 3 round trips where bw didn't increase by 25%, exit STARTUP, enter DRAIN

- V2 prototype: Loss-based STARTUP exit
- After entering fast recovery in STARTUP

- Enter packet conservation  (match current delivery bw, avoid further losses)
- At end of each round trip in recovery:

- If loss_rate > loss_ceiling (1%) and num_loss_gaps > K (8) then
- Enter DRAIN and drain in-flight to estimated BDP

- Else
- Exit packet conservation and continue

- V2 prototype: ECN-based STARTUP exit
- At end of each round trip that saw ECE-marked packets:

- If ecn_mark_rate > target_ecn_mark_rate (50%) then
- Enter DRAIN and drain in-flight to estimated BDP
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Example loss-based STARTUP exit:

First flow exits after first round of sustained losses (100Mbps)

100M link, 100ms RTT, buffer is 5% of BDP (41 packets)
3 flows starting at t={0, 2, 4} sec
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Example loss-based STARTUP exit:

Third flow exits after first round of clear, sustained losses (30Mbps)

100M link, 100ms RTT, buffer is 5% of BDP (41 packets)
3 flows starting at t={0, 2, 4} sec
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The problems:

- Slow min_rtt convergence because ProbeRTT is rare
- Slow convergence (20-30 secs), because PROBE_RTT is rare (every 10 secs)

- Risk of high tail latency because ProbeRTT is drastic
- Could cause high tail latency because PROBE_RTT cuts inflight low (4 packets)

Proposed approach for improving PROBE_RTT:

- Make it less drastic:  e.g. inflight ~= 0.75x estimated_bdp
- Why 0.75x? 0.75 * 1.25 = 0.9375  (so our inflight should be less than real BDP)

- Make it more frequent: e.g. every 2.5 secs
- Why 2.5s? (0.2*0.75 + 2.5*1.0) / (0.2+2.5) = 98.1%  (so our utilization should still meet our target)

Improving PROBE_RTT
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Before (BBR v1):       After (BBR v2):

RTT RTT

PROBE_RTT example: BBR vs BBR
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Rates for 2 BBR flows Rates for 2 BBR flows

10M, 40ms, buffer = 10xBDP



Before  (BBR v1):       After (BBR v2):
Rates for 1 Cubic and 1 BBR

PROBE_RTT example: BBR vs CUBIC

RTT RTT
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Rates for 1 Cubic and 1 BBR

10M, 40ms, buffer = 10xBDP



Conclusion

- Status of BBR v1
- Deployed widely at Google
- Open source for Linux TCP and QUIC
- Documented in IETF Internet Drafts

- Actively working on BBR v2
- Linux TCP and QUIC at Google; current focus areas:

- Packet loss and ECN signals
- Coexistence with loss-based congestion control

- Work under way for BBR in FreeBSD TCP @ NetFlix
- Always happy to see patches, hear test results, or look at packet traces...
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 Q & A

https://groups.google.com/d/forum/bbr-dev

Internet Drafts, paper, code, mailing list, talks, etc.

Special thanks to Eric Dumazet, Nandita Dukkipati, Pawel Jurczyk, Biren Roy, 
David Wetherall, Amin Vahdat,  Leonidas Kontothanassis, and 
{YouTube, google.com, SRE, BWE} teams.
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Backup slides...
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Reducing queue pressure

- To reduce queue pressure (and delay, loss) need an explicit, tight bound on in-flight 
data

- Building a robust model for a bound on in-flight data is challenging
- Challenges with signals:

- ECN: Few paths outside datacenters provide ECN
- Delay: Common to have no usable delay signal (policers, shallow WAN buffers)
- Loss: Not all packet loss means a bottleneck is full on a sustained basis
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- With shallow buffer (or zero buffer, like policers) CCs should aim to keep some 
fraction of slots free (in pipe and/or buffer)

- Operating point for in-flight data while cruising should leave some headroom
- Why leave headroom?

- To reduce queue: lower loss, delay
- To allow room for dynamic/intermittent cross traffic without excessive loss or delay
- To not starve loss-based CC (Reno/CUBIC)
- For faster, more scalable convergence toward a fair share

- Headroom accelerates fairness convergence dynamics
- Small flows can slow down big flows by claiming those free slots at a higher rate than big flows

Leaving headroom
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2 flows; same RTT; capacity = aggregate inflight beyond which all packets are dropped; used/free slots may be in queue or link

NOTE: Whichever flow probes first can claim the free slots and increase its share (as with Reno/CUBIC convergence)
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big green flow 
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blue makes
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(multiplicative) 
step more fair

small blue flow 
probes and sees 

more bw
(light blue) as 
available to it 

starting point

X -"high"
loss

    "high"
 X -  loss

Headroom and convergence toward fair share
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The bottleneck-probing dilemma

- The dilemma:
- Sometimes a flow should respect flow balance:

- If a path *is* full, traffic needs to adapt to restore flow balance
- Sometimes a flow should exceed flow balance:

- Any single loss or ECN mark is ambiguous
- So to tell if a bottleneck is full, traffic needs to eventually send faster to probe

- But if bottleneck *is* full and buffer is shallow, bandwidth probing causes loss
- Causes low throughput for loss-based CC
- Causes High tail latency due to loss recovery for any CC

- It's tricky to thread the needle...
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- Are there more free slots (pipe and/or buffer) available? 2 main cases:
- No:  There are not more free slots: here we need to grow gently at first

- We are filling buffer slots and causing higher delay and loss
- Need to grow slowly at first to control blast radius
- We don't want full multiplicative/exponential growth of inflight

- Yes: There are more free slots: here we need to grow scalably   (asymptotically very superlinear)
- If more bw becomes available (e.g. other flows leave) need to grow 1000x rapidly

- e.g. grow from 10Mbps to 10Gbps in a "usable" time scale
- Growth should be fast enough to avoid forcing users to open more connections
- Is a cubic curve as scalable as we'd like? Probably not:

- Cubic: need wait_time *= 10  to get bw *= 1000
- Ideally we want some exponential component:

- Exponential w/ k=2: wait_time += 10 to get bw *= 1024

- Implication: inflight_probe starts small, grows exponentially

BBR v2: probing growth rationale
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