
BBR Congestion Control Work at Google

IETF 102 Update
Neal Cardwell, Yuchung Cheng,

C. Stephen Gunn, Soheil Hassas Yeganeh

Ian Swett, Jana Iyengar*, Victor Vasiliev

Priyaranjan Jha, Yousuk Seung, Kevin Yang, Matt Mathis

Van Jacobson

https://groups.google.com/d/forum/bbr-dev

1IETF 102: Montreal, Jul 2018 *Fastly

https://groups.google.com/d/forum/bbr-dev

- Overview and status of BBR congestion control
- BBR v2 research update

- Research goals and focus areas
- Design rationale
- Illustrative lab results from BBR v2 research pre-release code

- Conclusion and ongoing work on BBR

2

Outline

BBR v1: overview and status

- BBR milestones already mentioned at the IETF:
- BBR is used for TCP and QUIC on Google.com, YouTube
- All Google/YouTube servers and datacenter WAN backbone connections use BBR

- Better performance than CUBIC for web, video, RPC traffic
- Code is available as open source in Linux TCP (dual GPLv2/BSD), QUIC (BSD)
- Active work under way for BBR in FreeBSD TCP @ NetFlix
- BBR Internet Drafts are out and ready for review/comments:

- Delivery rate estimation: draft-cheng-iccrg-delivery-rate-estimation
- BBR congestion control: draft-cardwell-iccrg-bbr-congestion-control

- IETF presentations: IETF 97 | IETF 98 | IETF 99 | IETF 100 | IETF 101
- Overview in Feb 2017 CACM

3

http://git.kernel.org/cgit/linux/kernel/git/davem/net-next.git/commit/?id=0f8782ea14974ce992618b55f0c041ef43ed0b78
https://chromium.googlesource.com/chromium/src/net/+/master/quic/core/congestion_control/bbr_sender.cc
https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf
https://www.ietf.org/proceedings/98/slides/slides-98-iccrg-an-update-on-bbr-congestion-control-00.pdf
https://www.ietf.org/proceedings/99/slides/slides-99-iccrg-iccrg-presentation-2-00.pdf
https://datatracker.ietf.org/meeting/100/materials/slides-100-iccrg-a-quick-bbr-update-bbr-in-shallow-buffers
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://cacm.acm.org/magazines/2017/2/212428-bbr-congestion-based-congestion-control/fulltext

BBR v2: current research focus

- Improving coexistence/fairness with loss-based CC
- Adapting BBR bandwidth-probing time scale to coexist with Reno/CUBIC

- Reducing queue pressure (packet loss, queueing delay)
- Using loss and ECN signals for:

- New model for safe range for in-flight data
- New estimators for exiting STARTUP faster

- Speeding up min_rtt convergence
- Making PROBE_RTT more frequent

- Reducing throughput variance
- Making PROBE_RTT less drastic

4

BBR v2 design principles in a nutshell

- Leave headroom: leave space for entering flows to grab
- React quickly: using loss/ECN, adapt to delivery process now to maintain flow balance
- Don't overreact: don't do a multiplicative decrease on every round trip with loss/ECN
- Probe deferentially: probe on a time scale to allow coexistence with Reno/CUBIC
- Probe robustly: try to probe beyond estimated max bw, max volume before we cut est.
- Avoid overshooting: start probing at an inflight measured to be tolerable
- Grow scalably: start probing at 1 extra packet; grow exponentially to use free capacity

(bold = new in v2)

5

Key in v2: new model for safe range for in-flight

All of these new design principles need an explicit, independent, tight bound on in-flight data

BBR v2 model:

- Mostly cruise at an operating point that maintains flow balance and leaves headroom
- inflight_lo: conservative in-flight bound based on recent loss/ECN signals

- Periodically probe beyond flow balance to probe robustly for higher volume, bandwidth
- inflight_hi: max volume flow had in flight before signals of congestion (loss, ECN)

- If probing higher inflight doesn't trigger loss/ECN signals , grow probing rapidly
- inflight_probe: incremental probe data beyond inflight_hi (during probing)

6

inflight_hi

inflight_lo

inflight_probe

Confidential + Proprietary

BBR v2 flow life cycle
in

fli
gh

t

time

7

- At a high level, BBR v2 has the same state machine states as v1
- But many of the mechanism details are new

(bold = new in v2)

Confidential + Proprietary

BBR v2 flow life cycle

STARTUP
- Doubles sending rate and inflight
- Sets inflight_hi to estimated max safe in-flight volume if:

- Filtered loss rate is too high
- Filtered ECN rate signal is too high

- Exits when either:
- Bandwidth samples plateau
- inflight_hi is set

STARTUP

8

in
fli

gh
t

time

Confidential + Proprietary

DRAIN

BBR v2 flow life cycle

DRAIN
- Maintains low pacing rate to quickly drain excess in-flight
- Until inflight <= estimated BDP ("drain to target")

inflight_hi

9

in
fli

gh
t

time

Confidential + Proprietary

inflight_hi

inflight_lo

PROBE_BW: CRUISE

BBR v2 flow life cycle

PROBE_BW "CRUISE" phase:
- Cruising operating point respecting several constraints
- Start inflight at estimated BDP

- inflight <= estimated_bdp
- Leave headroom if last probe saw a hard ceiling at inflight_hi:

- inflight <= (1 - headroom) * inflight_hi (headroom=0.15)
- Adapt inflight below inflight_lo using loss, ECN signals

- inflight <= inflight_lo
- On loss, respect packet conservation, maintain flow balance

- inflight_lo -= packets_lost
- On filtered ECN signals, cut inflight using EWMA mark rate α

- inflight_lo -= k * (α - hysteresis) * packets_delivered 10

in
fli

gh
t

time

Confidential + Proprietary

inflight_hiPROBE_BW: UP

BBR v2 flow life cycle

PROBE_BW "UP" phase:
- Probe for bandwidth and volumetric capacity
- Grow beyond inflight_hi slowly at first, then rapidly

- inflight_target = inflight_hi + inflight_probe
- inflight_probe grows exponentially per round trip:

- 1, 2, 4, 8... packets
- Set inflight_hi ceiling to estimated max safe in-flight volume if:

- Loss rate is too high: loss_rate > loss_ceiling (1%)
- Filtered ECN rate signal is too high

- Terminate probing upon any of:
- Estimated queue is too high (inflight > 1.25 * estimated_bdp)
- Hit inflight_hi loss or ECN ceiling

inflight_hi

11

in
fli

gh
t

time

Confidential + Proprietary

PROBE_BW: DOWN

BBR v2 flow life cycle

PROBE_BW "DOWN" phase:
- Maintains low pacing rate to quickly drain excess in-flight
- Until inflight <= estimated BDP ("drain to target")

(PROBE_BW "DOWN" phase may replace DRAIN phase in next rev)

inflight_hi

12

in
fli

gh
t

time

inflight_hi

BBR v2 life cycle example: shallow buffer

- Example: 6 BBR, 100M, 100ms, buffer = 5% of BDP (41 packets); t={0, 2, 4, 6, 8, 10} sec

13

bw retrans

BBR 1 23.6 M 2.0%

BBR 2 16.9 M 0.9%

BBR 3 15.3 M 0.8%

BBR 4 12.3 M 0.9%

BBR 5 14.2 M 0.8%

BBR 6 14.3 M 0.7%

Coexistence with loss-based congestion control

- Goal: ensure Reno, CUBIC can continue to work well in contexts where they do today:
- Intra-datacenter/LAN traffic: support 100M through 40G Ethernet
- Internet last mile traffic: support up to 25Mbps (4K Video) at RTT of 40ms

- Challenge: Reno/CUBIC need long periods of no loss to utilize high BDPs

14

Coexistence: design

- Strategy:
- 1: Estimate the bandwidth available to our flow
- 2: Adapt (within bounds) the frequency at which a BBR flow probes and knowingly

risks packet loss to allow Reno (and thus CUBIC) to reach our bandwidth
- Dual time scales, including bounded Reno pseudo-emulation (like CUBIC)

- T_bbr: BBR-native time-scale: 2-5 secs, as an increasing log-like function of bw
- T_reno: Reno-coexistence time scale: min(BDP in packets, 50) * RTT
- Time between bandwidth probe phases (PROBE_BW "UP" phases):

- T_probe = min(T_bbr, T_reno)
- Bandwidth estimator filter window now simply covers last 2 PROBE_BW cycles

15

Coexistence with loss-based congestion control

- Example: 1 Reno, 1 BBR, 50M, 40ms, buffer = 1xBDP; start time {0, 2} secs

16

bw retrans

Reno 24.9 M 0.19%

BBR 23.1 M 0.09%

Improved fairness:

BBR v1: 92% of bw

BBR v2: 48% of bw

Coexistence with loss-based congestion control

- Example: 2 CUBIC, 2 BBR, 50M, 40ms, buffer = 1xBDP; start time {0, 2, 4, 6} secs

17

bw retrans

CUBIC 1 14.8 M 0.40%

CUBIC 2 12.4 M 0.12%

BBR 1 10.8 M 0.16%

BBR 2 10.9 M 0.21%

Improved fairness:

BBR v1: 94% of bw

BBR v2: 44% of bw

Exiting STARTUP faster: motivation

- BBR STARTUP
- Doubles sending rate each round trip (analogous to slow-start)
- Sending rate is up to 2x the delivery rate
- Inflight is up to 2x to 2.89x the BDP

- Staying in startup after the pipe and buffer are both full can cause sustained high loss
- And thereby drive loss-based CC down to low rates

- Thus exiting STARTUP quickly is important
- For reducing loss
- For fairness

18

Exiting STARTUP faster: using Loss, ECN signals

- BBR v1 STARTUP exit
- After 3 round trips where bw didn't increase by 25%, exit STARTUP, enter DRAIN

- V2 prototype: Loss-based STARTUP exit
- After entering fast recovery in STARTUP

- Enter packet conservation (match current delivery bw, avoid further losses)
- At end of each round trip in recovery:

- If loss_rate > loss_ceiling (1%) and num_loss_gaps > K (8) then
- Enter DRAIN and drain in-flight to estimated BDP

- Else
- Exit packet conservation and continue

- V2 prototype: ECN-based STARTUP exit
- At end of each round trip that saw ECE-marked packets:

- If ecn_mark_rate > target_ecn_mark_rate (50%) then
- Enter DRAIN and drain in-flight to estimated BDP

19

Example loss-based STARTUP exit:

First flow exits after first round of sustained losses (100Mbps)

100M link, 100ms RTT, buffer is 5% of BDP (41 packets)
3 flows starting at t={0, 2, 4} sec

20

Example loss-based STARTUP exit:

Third flow exits after first round of clear, sustained losses (30Mbps)

100M link, 100ms RTT, buffer is 5% of BDP (41 packets)
3 flows starting at t={0, 2, 4} sec

21

The problems:

- Slow min_rtt convergence because ProbeRTT is rare
- Slow convergence (20-30 secs), because PROBE_RTT is rare (every 10 secs)

- Risk of high tail latency because ProbeRTT is drastic
- Could cause high tail latency because PROBE_RTT cuts inflight low (4 packets)

Proposed approach for improving PROBE_RTT:

- Make it less drastic: e.g. inflight ~= 0.75x estimated_bdp
- Why 0.75x? 0.75 * 1.25 = 0.9375 (so our inflight should be less than real BDP)

- Make it more frequent: e.g. every 2.5 secs
- Why 2.5s? (0.2*0.75 + 2.5*1.0) / (0.2+2.5) = 98.1% (so our utilization should still meet our target)

Improving PROBE_RTT

22

Before (BBR v1): After (BBR v2):

RTT RTT

PROBE_RTT example: BBR vs BBR

23

Rates for 2 BBR flows Rates for 2 BBR flows

10M, 40ms, buffer = 10xBDP

Before (BBR v1): After (BBR v2):
Rates for 1 Cubic and 1 BBR

PROBE_RTT example: BBR vs CUBIC

RTT RTT

24

Rates for 1 Cubic and 1 BBR

10M, 40ms, buffer = 10xBDP

Conclusion

- Status of BBR v1
- Deployed widely at Google
- Open source for Linux TCP and QUIC
- Documented in IETF Internet Drafts

- Actively working on BBR v2
- Linux TCP and QUIC at Google; current focus areas:

- Packet loss and ECN signals
- Coexistence with loss-based congestion control

- Work under way for BBR in FreeBSD TCP @ NetFlix
- Always happy to see patches, hear test results, or look at packet traces...

25

 Q & A

https://groups.google.com/d/forum/bbr-dev

Internet Drafts, paper, code, mailing list, talks, etc.

Special thanks to Eric Dumazet, Nandita Dukkipati, Pawel Jurczyk, Biren Roy,
David Wetherall, Amin Vahdat, Leonidas Kontothanassis, and
{YouTube, google.com, SRE, BWE} teams.

26

https://groups.google.com/d/forum/bbr-dev

Backup slides...

27

Reducing queue pressure

- To reduce queue pressure (and delay, loss) need an explicit, tight bound on in-flight
data

- Building a robust model for a bound on in-flight data is challenging
- Challenges with signals:

- ECN: Few paths outside datacenters provide ECN
- Delay: Common to have no usable delay signal (policers, shallow WAN buffers)
- Loss: Not all packet loss means a bottleneck is full on a sustained basis

28

Confidential + Proprietary

- With shallow buffer (or zero buffer, like policers) CCs should aim to keep some
fraction of slots free (in pipe and/or buffer)

- Operating point for in-flight data while cruising should leave some headroom
- Why leave headroom?

- To reduce queue: lower loss, delay
- To allow room for dynamic/intermittent cross traffic without excessive loss or delay
- To not starve loss-based CC (Reno/CUBIC)
- For faster, more scalable convergence toward a fair share

- Headroom accelerates fairness convergence dynamics
- Small flows can slow down big flows by claiming those free slots at a higher rate than big flows

Leaving headroom

29

Confidential + Proprietary

2 flows; same RTT; capacity = aggregate inflight beyond which all packets are dropped; used/free slots may be in queue or link

NOTE: Whichever flow probes first can claim the free slots and increase its share (as with Reno/CUBIC convergence)

da
ta

 in
 fl

ig
ht

inflight
capacity

time

big green flow
probes and sees

less bw
(light green) as
available to it

blue makes
multiplicative

decrease
of inflight

green makes
multiplicative

decrease
of inflight

free slots one
(multiplicative)
step more fair

small blue flow
probes and sees

more bw
(light blue) as
available to it

starting point

X -"high"
loss

 "high"
 X - loss

Headroom and convergence toward fair share

30

The bottleneck-probing dilemma

- The dilemma:
- Sometimes a flow should respect flow balance:

- If a path *is* full, traffic needs to adapt to restore flow balance
- Sometimes a flow should exceed flow balance:

- Any single loss or ECN mark is ambiguous
- So to tell if a bottleneck is full, traffic needs to eventually send faster to probe

- But if bottleneck *is* full and buffer is shallow, bandwidth probing causes loss
- Causes low throughput for loss-based CC
- Causes High tail latency due to loss recovery for any CC

- It's tricky to thread the needle...

31

Confidential + Proprietary

- Are there more free slots (pipe and/or buffer) available? 2 main cases:
- No: There are not more free slots: here we need to grow gently at first

- We are filling buffer slots and causing higher delay and loss
- Need to grow slowly at first to control blast radius
- We don't want full multiplicative/exponential growth of inflight

- Yes: There are more free slots: here we need to grow scalably (asymptotically very superlinear)
- If more bw becomes available (e.g. other flows leave) need to grow 1000x rapidly

- e.g. grow from 10Mbps to 10Gbps in a "usable" time scale
- Growth should be fast enough to avoid forcing users to open more connections
- Is a cubic curve as scalable as we'd like? Probably not:

- Cubic: need wait_time *= 10 to get bw *= 1000
- Ideally we want some exponential component:

- Exponential w/ k=2: wait_time += 10 to get bw *= 1024

- Implication: inflight_probe starts small, grows exponentially

BBR v2: probing growth rationale

32

