Embedding Operations in Deep Learning Recommendation Models

Jongsoo Park, Research Scientist, Facebook Al System Co-design w/ Jianyu Huang, Andrew Tulloch, Xing Liu, Jie (Amy) Yang, Mustafa Ozdal, Dheevatsa Mudigere, and other contributors

Mar 2021

Outline

- Deep Learning Recommendation Models (DLRM)
- Deep Dive in DLRM Embedding Operations

Outline

Deep Learning Recommendation Models (DLRM)

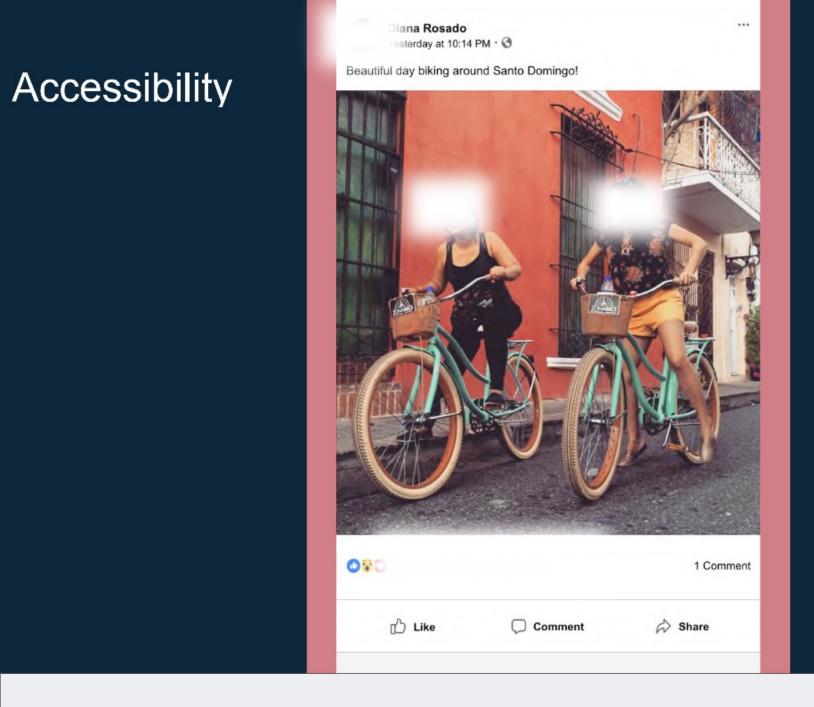
Deep Dive in DLRM Embedding Operations

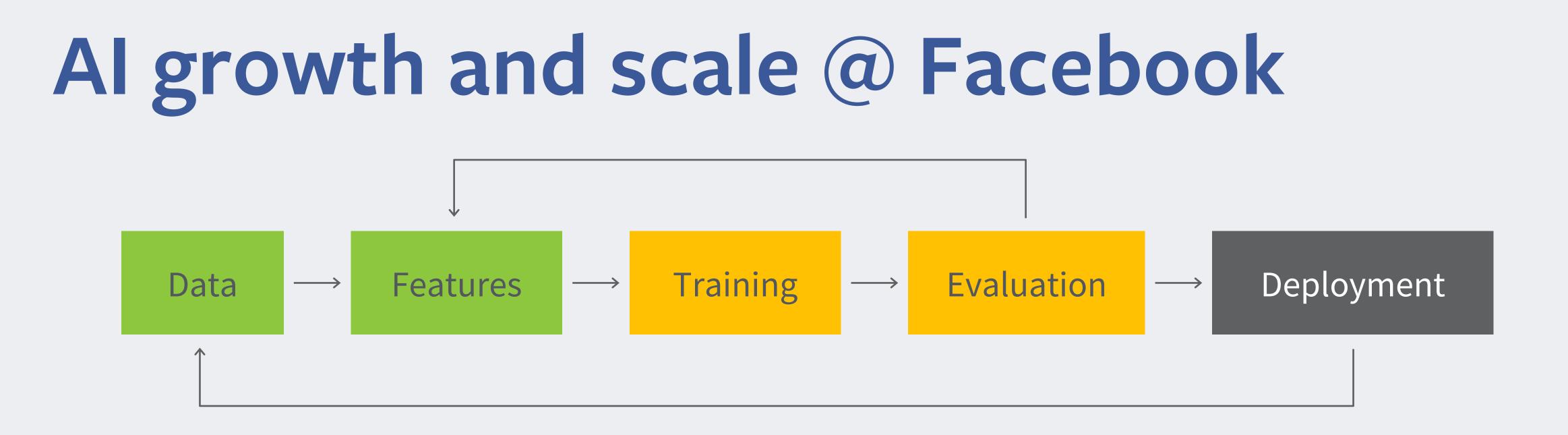
DLRM is a part of MLPerf

	← Active now
Neural	Generation Sneakers (10.5) Marketplace
Machine	
Translations	
	iHola! ¿Está todavía en v
	+ 🖸 🗖
	q ¹ w ² e ³ r ⁴
	as df
	🛨 z x c
	?123 ,

Al @ Facebook

• Srinivas Narayanan, Going Beyond Fully Supervised





ML data growth	1-year trai
Usage in 2018: 30%	Ranking eng
Usage today: 50%	Workflows tr
Growth in one year: 3X	Compute co

Naumov and Mudiger, Recommendation Systems using DLRM, KDD PyTorch workshop, 2020

ining growth

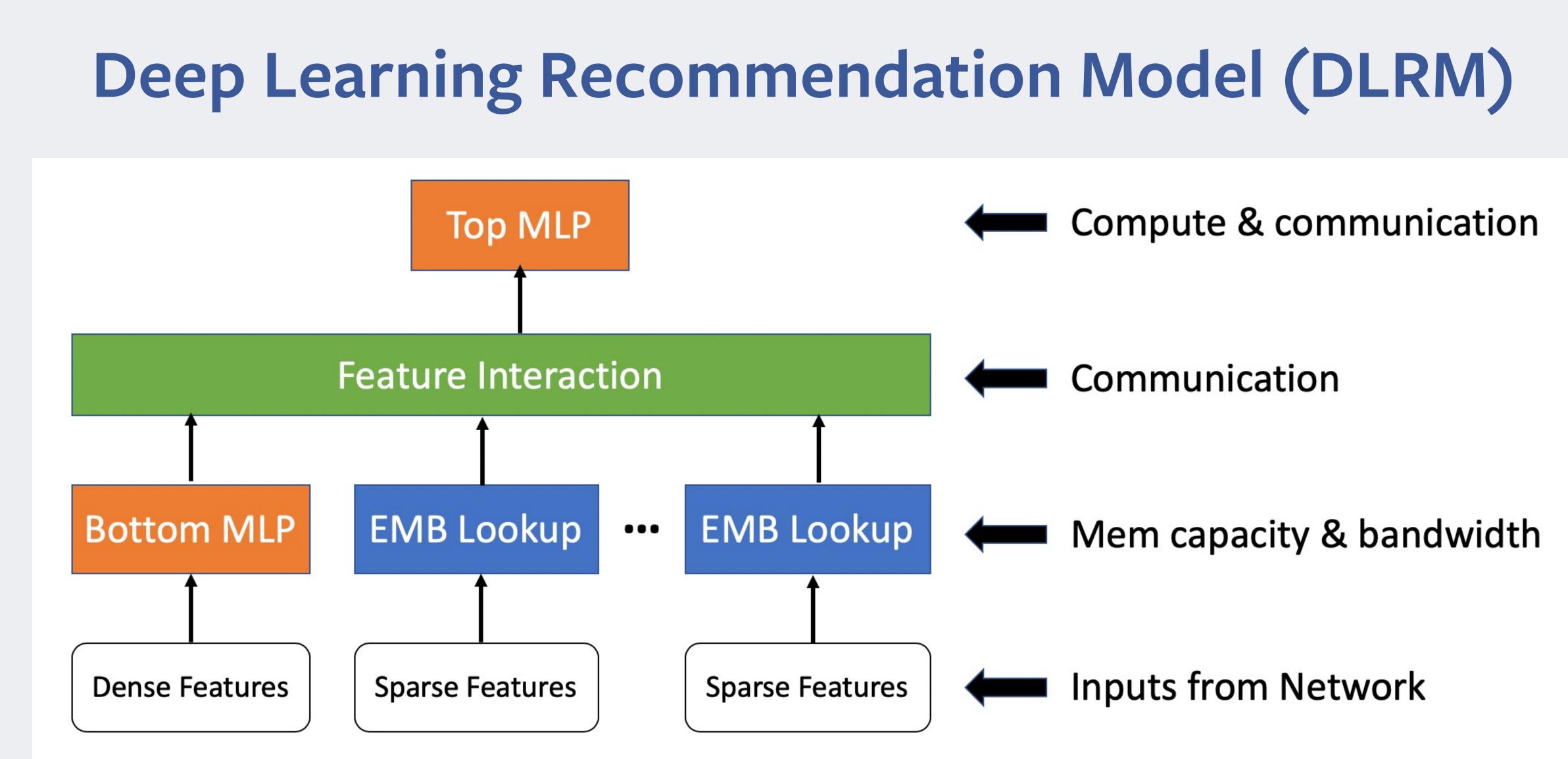
- gineers: 2X
- rained: **3X**
- nsumed: **3X**

Inference scale per day

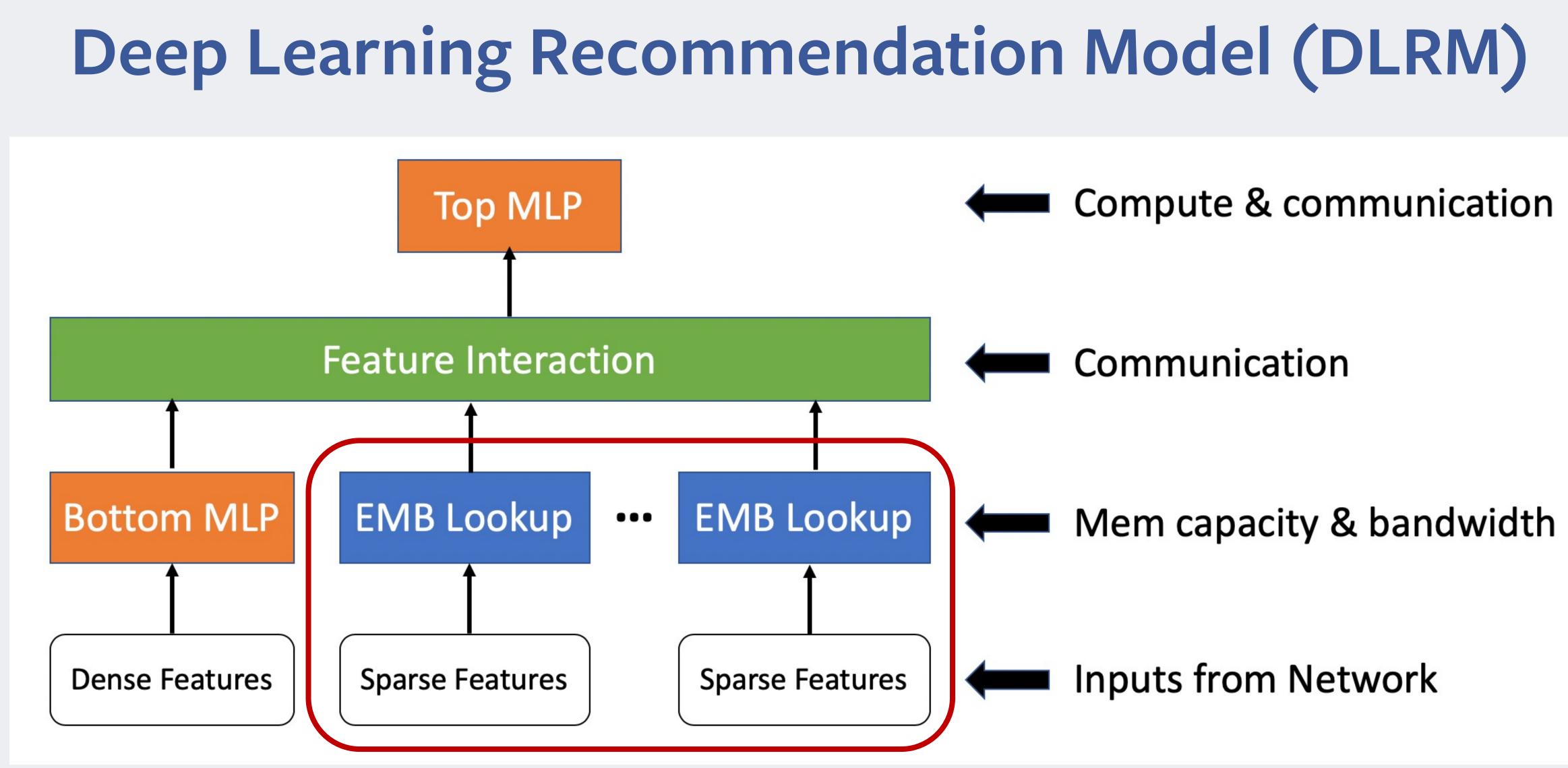
- # of predictions: 400T
- # of translations: 6.5B
- Fake accounts removed: 99%

What are the workloads?

- Ranking and recommendation
- Computer vision Image classification, object detection, and video understanding
- Language Translation, speech recognition, content understanding

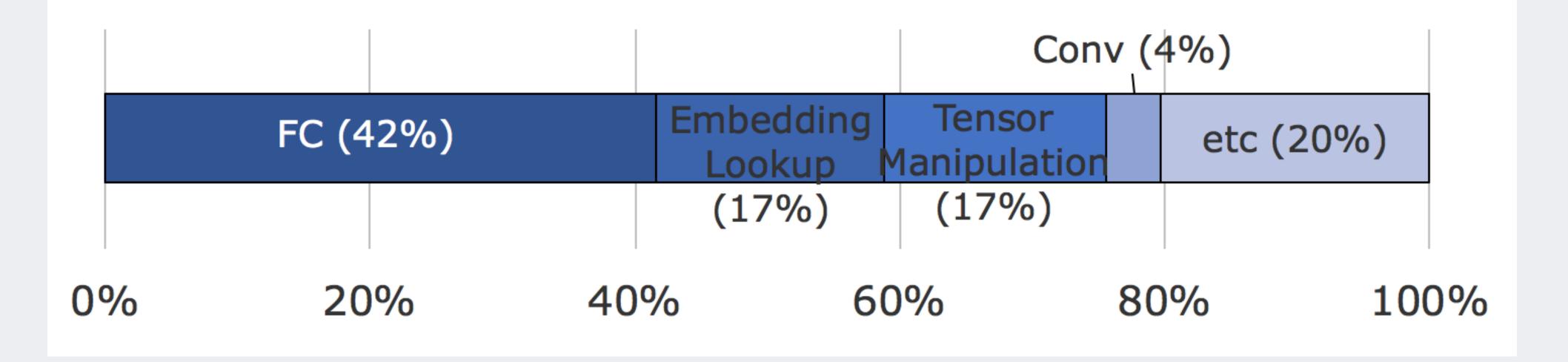


Deep Learning Recommendation Model for Personalization and Recommendation Systems, Naumov et al., 2019 7 https://github.com/facebookresearch/dIrm



Deep Learning Recommendation Model for Personalization and Recommendation Systems, Naumov et al., 2019 https://github.com/facebookresearch/dlrm

Fleet-wide DL inference execution time breakdown



 FC is the most time consuming followed by embedding (from recommendation models)

Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware Implications, Park et al., 2018

Outline

- Deep Learning Recommendation Models (DLRM)
- DLRM Embedding Operations

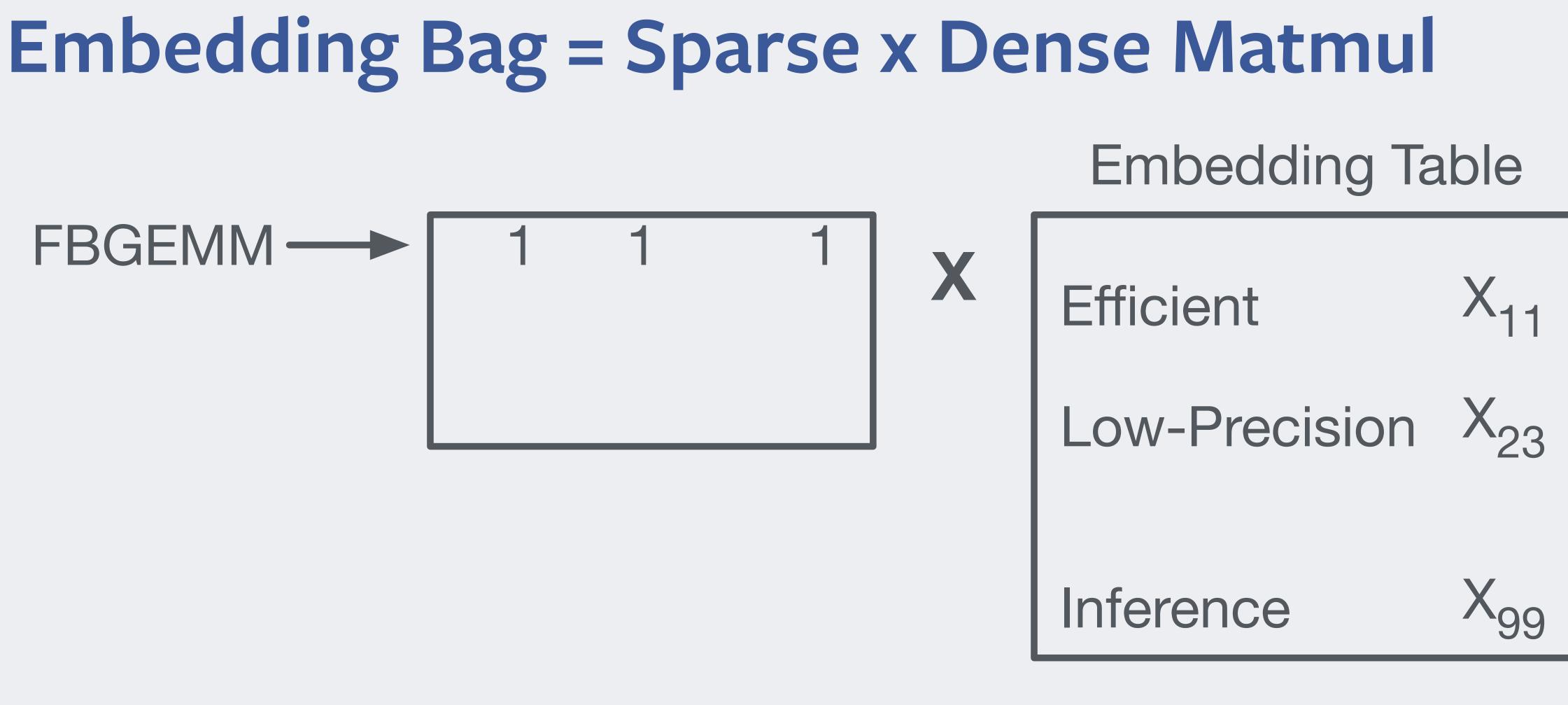
https://github.com/pytorch/FBGEMM

Don't worry about details! We open sourced actual implementation at

Types of embedding operations

- Caffe2
- EmbeddingBag bwd fused with sparse optimizers (AdaGrad, SGD, Adam, LAMB, ...)

Forward: EmbeddingBag in PyTorch, SparseLengthsSum in



FBGEMM's Embedding = $X_{11} + X_{23} + X_{99}$

Optimization goal priorities

Accuracy >> scalability and memory size > single device speed

Challenge 1. Memory capacity and BW demand

- ~100 GBs of model size
- Irregular accesses with high BW demand (1+ TB/s BW utilization in A100 GPU)

Memory Optimizations (today)

	Training	Inference
ID mapping	Direct-mapped hashing	Direct-mapped with row-wise pruned (~2x reduction)
Precision	fp16 + stochastic rounding (2x reduction) ^[1]	row-wise int4 quant (8x reduction)[2]
Optimizer	Row-wise sparse AdaGrad (2x)	N/A
Hierarchy	HBM + DRAM ^[3, 4]	LPDDR (accelerator) + DDR (host)

- [1] <u>Training with Low-precision Embedding Tables</u>, NeurIPS'18 systems for machine learning workshop
- [2] Post-training 4-bit Quantization on Embedding Tables, NeurIPS'19 systems for machine learning workshop
- [3] <u>Mixed-Precision Embedding Using a Cache</u>, arxiv
- [4] <u>FBGEMM_GPU HBM SW caching code</u>

s for machine learning workshop systems for machine learning workshop

Memory Optimizations (research)

- Tensor train compression^[1]
- HBM + DRAM + SSD hierarchy
- Your idea!

[1] TT-Rec: Tensor Train Compression for Deep Learning Recommendation Models, MLSys 2021

Challenge 2. Exact sparse optimizer

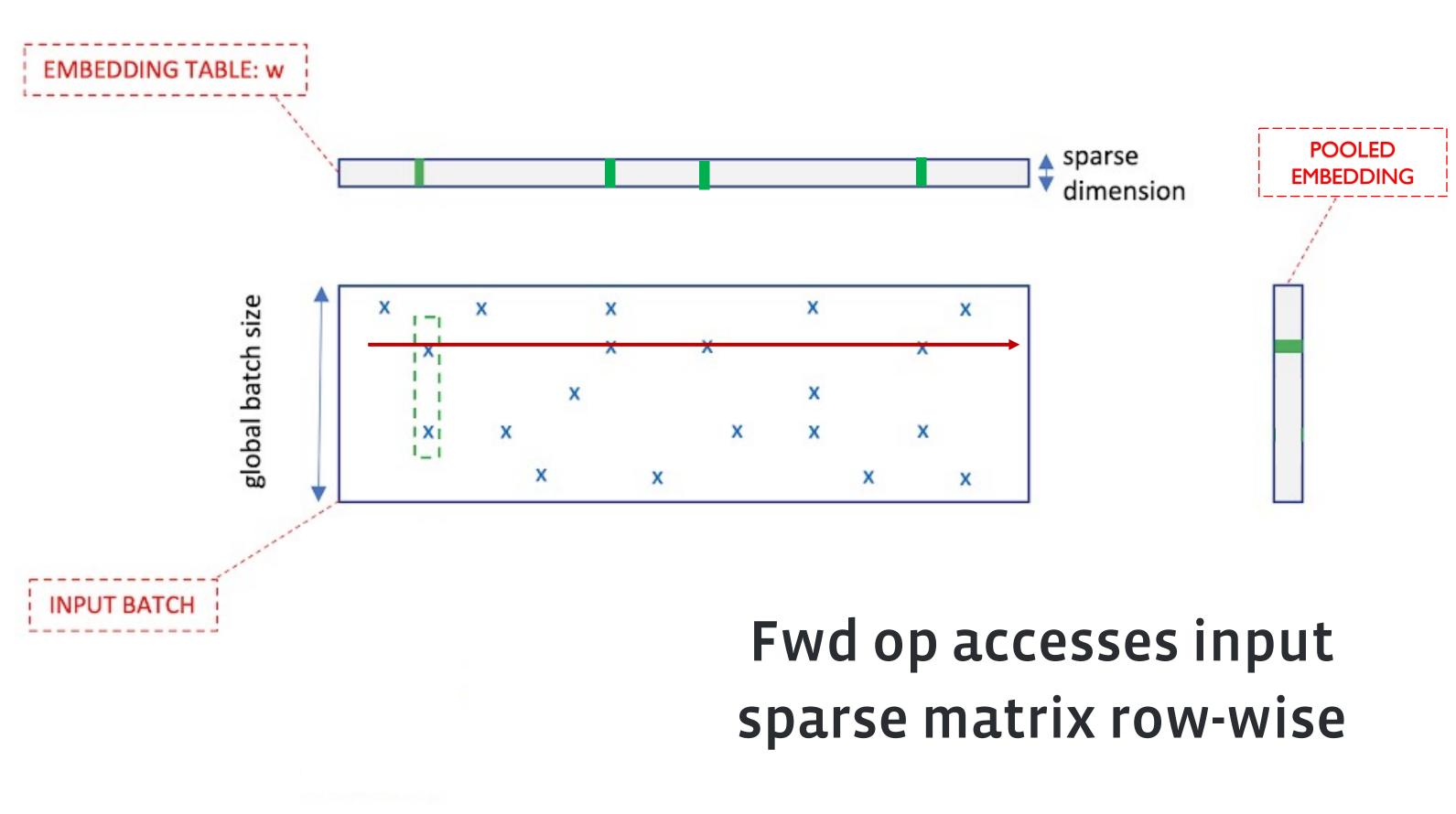
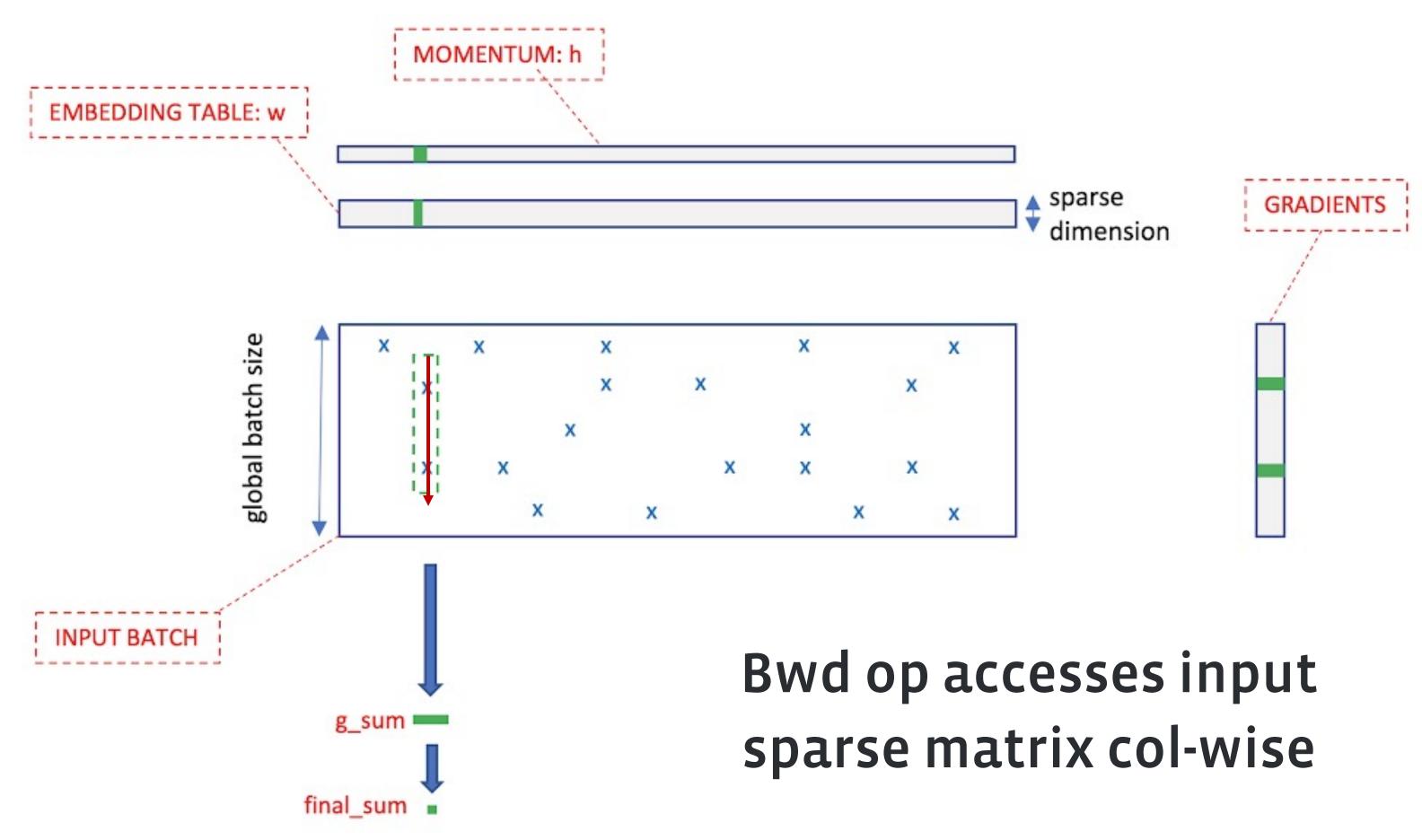


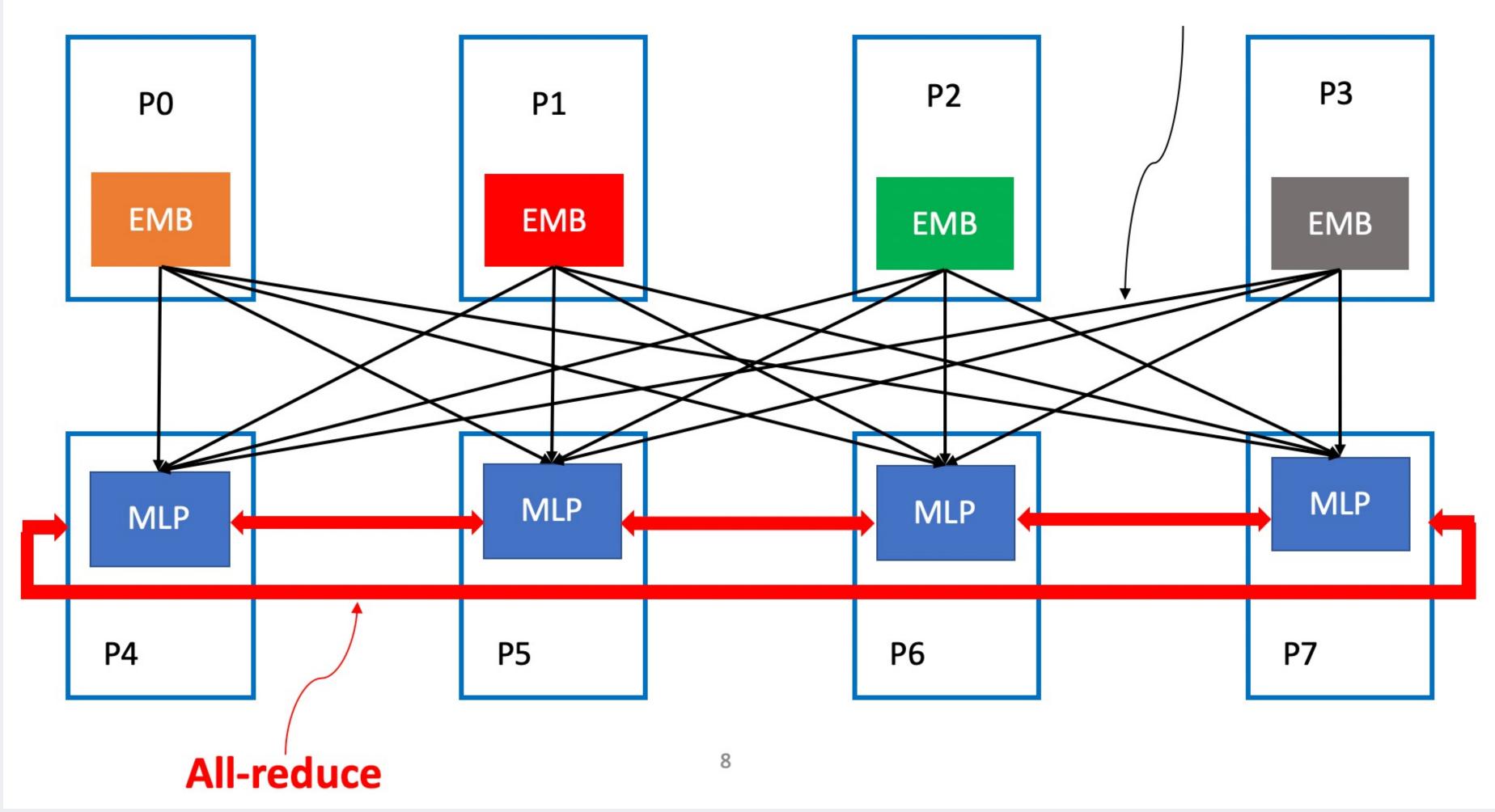
Figure credit: Mustafa Ozdal



- loss with a large batch size
- Exact sparse optimizer: requires fast parallel sparse transpose

• Approx. sparse optimizer: update each non-zero individually like Hogwild. Accuracy

Challenge 3. Communication



Zion: Facebook Next-Generation Large Memory Training Platform, Smelyanskiy et al., Hotchips'19

Model Parallel: Partition across embedding tables

Data Parallel: Partition across batch dimension

Flexible Embedding Table Partitioning

	Note	Index distribution	Fwd	Bwd
Table-wise	Default	all2all	all2all	all2all
Row-wise	Massive tables	bucketization + all2all	reduce-scatter	allgather
Column-wise	To load balance	allgather	all2all	all2all
Data parallel	Small tables			allreduce

- minimize comm + load imbalance subject to memory capacity constraints
- scale-out (e.g., RoCE, IB)

• Hierarchical: row/column-wise scale-up (e.g., NVLink) + table-wise

BW and latency optimizations

- BW
- Latency
 - all2all transfers only 10s KBs between a pair of devices

Training Deep Learning Recommendation Model with Quantized Collective Communications: https://dlp-| 1 | kdd.github.io/assets/pdf/a11-yang.pdf

Reduced precision (fp16/bf16/int8/int4) communication^[1]

Summary

- DLRM stresses various aspect of system and embedding operations are in its unique part
- We have done lots of optimizations, but this is just beginning

Our open source projects

- Deep learning recommendation model reference implementation: <u>https://github.com/facebookresearch/dlrm</u>
- Facebook GEMM: <u>https://github.com/pytorch/FBGEMM</u>

 - The default reduced precision inference backend of PyTorch • Optimized CPU/GPU kernels for DLRM

