
Embedding Operations in
Deep Learning Recommendation Models

Jongsoo Park, Research Scientist, Facebook AI System Co-design
w/ Jianyu Huang, Andrew Tulloch, Xing Liu, Jie (Amy) Yang, Mustafa
Ozdal, Dheevatsa Mudigere, and other contributors

Mar 2021

Outline
• Deep Learning Recommendation Models (DLRM)
• Deep Dive in DLRM Embedding Operations

2

Outline
• Deep Learning Recommendation Models (DLRM)
• Deep Dive in DLRM Embedding Operations

DLRM is a part of MLPerf

3

AI @ Facebook

4

• Srinivas Narayanan, Going Beyond Fully Supervised

AI growth and scale @ Facebook

5

1-year training growth
Ranking engineers: 2X
Workflows trained: 3X
Compute consumed: 3X

Inference scale per day
of predictions: 400T
of translations: 6.5B
Fake accounts removed: 99%

Data Features DeploymentTraining Evaluation

ML data growth
Usage in 2018: 30%
Usage today: 50%
Growth in one year: 3X

Naumov and Mudiger, Recommendation Systems using DLRM, KDD PyTorch workshop, 2020

What are the workloads?
• Ranking and recommendation

• Computer vision
Image classification, object detection, and video understanding

• Language
Translation, speech recognition, content understanding

6

Deep Learning Recommendation Model (DLRM)

Deep Learning Recommendation Model for Personalization and Recommendation Systems, Naumov et al., 2019
https://github.com/facebookresearch/dlrm

7

https://github.com/facebookresearch/dlrm

Deep Learning Recommendation Model (DLRM)

Deep Learning Recommendation Model for Personalization and Recommendation Systems, Naumov et al., 2019
https://github.com/facebookresearch/dlrm

8

https://github.com/facebookresearch/dlrm

Fleet-wide DL inference execution time breakdown

• FC is the most time consuming followed by embedding (from
recommendation models)

Figure 3: Runtime roofline analysis of different ML models

varying on-chip memory capacity of a hypothetical accelerator

with 100 int8 Top/s compute and 100 GB/s DRAM bandwidth.

The importance of on-chip 1 TB/s (solid) and 10 TB/s (dashed)

bandwidth is showcased under a variety of workloads.

800⇥600 input images and ResNeXt-3D for videos). The
FC layers in recommendation and NMT models use small
batch sizes so performance is bound by off-chip memory band-
width unless parameters can fit on-chip. The batch size can
be increased while maintaining latency with higher compute
throughput of accelerators [34], but only up to a point due to
other application requirements. The number of operations per
weight in CV models are generally high, but the number of
operations per activation is not as high (some layers in the
ShuffleNet and ResNeXt-3D models are as low as 4 or 6).
This is why the performance of ShuffleNet and ResNeXt-3D
varies considerably depending on on-chip memory bandwidth
as shown in Figure 3. Had we only considered their minimum
2K operations per weight, we would expect that 1 TB/s of
on-chip memory is sufficient to saturate the peak 100 Top/s
compute throughput of the hypothetical accelerator. As the
application would be compute bound with 1 TB/s of on-chip
memory bandwidth, we would expect there to be no perfor-
mance difference between 1 TB/s and 10 TB/s.

Third, common primitive operations are not just canoni-
cal multiplications of square matrices, but often involve tall-
and-skinny matrices or vectors. These problem shapes arise
from group/depth-wise convolutions that have recently be-
come popular in CV, and from small batch sizes in Recommen-
dation/NMT models due to their latency constraints. There-
fore, it is desired to have a combination of 1) matrix-matrix
engines to execute the bulk of FLOPs from compute-intensive
models in an energy-efficient manner and 2) powerful enough
vector engines to handle the remaining of operations. More
details are described in the next section.

Figure 4: CPU time breakdown across data centers.

(a) Activation

(b) Weight

Figure 5: Common activation and weight matrix shapes. Here

4: FCs. ⇥: group convolutions with few channels per group

(depth-wise convolution is an extreme case with 1 channel per

group). �: all other operations.

2.3. Computation Kernels

Figure 4 shows the breakdown of operations across all data
centers. We count CPU operations because for inference we
often work with a small batch size in order to meet latency
constraints and therefore GPUs are not widely used (Table 1).
Notice that FCs are the most time consuming operation, fol-
lowed by tensor manipulations and embedding lookups.

Figure 5 shows common matrix shapes encountered in our
DL inference workloads. For activation matrices in convo-
lution layers, we put dimensions of lowered (i.e. im2col’d)
matrices but it doesn’t necessarily mean lowering is used. That
is the reduction dimension is multiplied by the filter size (e.g.,
9 for 3⇥3 filters). In convolution layers, the number of rows
of activation matrices is batch_size⇥H_out⇥W_out, where
H_out⇥W_out is the size of each output channel. We call
this number of rows effective batch size or batch/spatial di-

5

Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware Implications, Park et al., 2018
9

Outline
• Deep Learning Recommendation Models (DLRM)
• DLRM Embedding Operations

Don’t worry about details! We open sourced actual implementation at
https://github.com/pytorch/FBGEMM

10

https://github.com/pytorch/FBGEMM

Types of embedding operations
• Forward: EmbeddingBag in PyTorch, SparseLengthsSum in

Caffe2
• EmbeddingBag bwd fused with sparse optimizers

(AdaGrad, SGD, Adam, LAMB, …)

11

Embedding Bag = Sparse x Dense Matmul

12

1 1 1FBGEMM X Efficient

Embedding Table

Low-Precision

Inference

X11

X23

X99

FBGEMM’s Embedding = X11 + X23 + X99

Optimization goal priorities
Accuracy
>> scalability and memory size
> single device speed

13

Challenge 1. Memory capacity and BW demand

• ~100 GBs of model size
• Irregular accesses with high BW demand (1+ TB/s BW

utilization in A100 GPU)

14

Memory Optimizations (today)

15

Training Inference

ID mapping Direct-mapped hashing
Direct-mapped

with row-wise pruned
(~2x reduction)

Precision fp16 + stochastic rounding
(2x reduction) [1]

row-wise int4 quant
(8x reduction)[2]

Optimizer Row-wise sparse AdaGrad
(2x) N/A

Hierarchy HBM + DRAM [3, 4] LPDDR (accelerator)
+ DDR (host)

[1] Training with Low-precision Embedding Tables, NeurIPS’18 systems for machine learning workshop
[2] Post-training 4-bit Quantization on Embedding Tables, NeurIPS’19 systems for machine learning workshop
[3] Mixed-Precision Embedding Using a Cache, arxiv
[4] FBGEMM_GPU HBM SW caching code

https://research.fb.com/publications/training-with-low-precision-embedding-tables/
https://arxiv.org/abs/1911.02079
https://arxiv.org/abs/2010.11305
https://github.com/pytorch/FBGEMM/blob/master/fbgemm_gpu/src/split_embeddings_cache_cuda.cu

Memory Optimizations (research)
• Tensor train compression[1]

• HBM + DRAM + SSD hierarchy
• Your idea!

[1] TT-Rec: Tensor Train Compression for Deep Learning Recommendation Models, MLSys 2021

16

https://arxiv.org/abs/2101.11714

Challenge 2. Exact sparse optimizer

17

Fwd op accesses input
sparse matrix row-wise

POOLED
EMBEDDING

Figure credit: Mustafa Ozdal

18

Bwd op accesses input
sparse matrix col-wise

• Approx. sparse optimizer: update each non-zero individually like Hogwild. Accuracy
loss with a large batch size

• Exact sparse optimizer: requires fast parallel sparse transpose

Challenge 3. Communication

19Zion: Facebook Next-Generation Large Memory Training Platform, Smelyanskiy et al., Hotchips’19

Data Parallel:
Partition across batch
dimension

Model Parallel:
Partition across
embedding tables

Flexible Embedding Table Partitioning

20

Note Index distribution Fwd Bwd
Table-wise Default all2all all2all all2all
Row-wise Massive tables bucketization + all2all reduce-scatter allgather

Column-wise To load balance allgather all2all all2all
Data parallel Small tables allreduce

• minimize comm + load imbalance
subject to memory capacity constraints
• Hierarchical: row/column-wise scale-up (e.g., NVLink) + table-wise

scale-out (e.g., RoCE, IB)

BW and latency optimizations
• BW
• Reduced precision (fp16/bf16/int8/int4) communication[1]

• Latency
• all2all transfers only 10s KBs between a pair of devices

[1] Training Deep Learning Recommendation Model with Quantized Collective Communications: https://dlp-
kdd.github.io/assets/pdf/a11-yang.pdf

21

https://dlp-kdd.github.io/assets/pdf/a11-yang.pdf

Summary
• DLRM stresses various aspect of system and embedding

operations are in its unique part
• We have done lots of optimizations, but this is just

beginning

22

Our open source projects
• Deep learning recommendation model reference

implementation: https://github.com/facebookresearch/dlrm
• Facebook GEMM: https://github.com/pytorch/FBGEMM
• The default reduced precision inference backend of PyTorch
•Optimized CPU/GPU kernels for DLRM

23

https://github.com/facebookresearch/dlrm
https://github.com/pytorch/FBGEMM

Q&A

24

