
Input Data Processing 
for Machine Learning

Ana Klimovic  
Joint work with Jiri Simsa*, Derek Murray+, Ihor Indyk*

FastPath 2021
March 28, 2021

1

*



2

Data is critical for ML training and inference

Train/serve model



3

Raw 
Data

Collect 
training data

Data is critical for ML training

Train/tune model



4

Raw 
Data

Data processing is critical 

Train/tune model



5

Raw 
Data

Data 
Records

Some data processing can be done offline...

Train/tune model

Offline data 
processing



6

Raw 
Data

Data 
Records

Some data processing can be done offline...

Train/tune model

● Extract features 
● Clean data
● Validate data
● Normalize data
● Convert data to binary format

Offline data 
processing



7

Raw 
Data

Data 
Records

Some data processing can be done offline...

Train/tune model

● Extract features 
● Clean data
● Validate data
● Normalize data
● Convert data to binary format

Offline data 
processing



8

Raw 
Data

Data 
Records

Some data processing must be done online...

Train/tune model

Offline data 
processing

Online data 
processing



9

Data 
Records

Some data processing must be done online...

Train/tune model

During training: 

Iterate over data each epoch

Extract LoadTransform



“Last mile” data processing

10

Data 
Records

The Extract, Transform, Load 
input data pipeline that runs 
during ML training.

Train/tune model

Extract LoadTransform



“Last mile” data processing

11

Data 
Records

The Extract, Transform, Load 
input data pipeline that runs 
during ML training.

Train/tune model

● Randomly augment data 
● Filter features
● Sample elements
● Shuffle elements
● Batch elements, ...

Extract LoadTransform



“Last mile” data processing

12

Data 
Records

The Extract, Transform, Load 
input data pipeline that runs 
during ML training.

Train/tune model

● Randomly augment data 
● Filter features
● Sample elements
● Shuffle elements
● Batch elements, ...

Extract LoadTransform



“Last mile” data processing

13

Data 
Records

The Extract, Transform, Load 
input data pipeline that runs 
during ML training.

Train/tune model

● Randomly augment data 
● Filter features
● Sample elements
● Shuffle elements
● Batch elements, ...

Extract LoadTransform

Transformations that add randomness 
and/or that users want to tune at runtime 

 (e.g., batch size, feature selection)



Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

14

Data 
Records

Train/tune model

Extract LoadTransform



Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

● For high performance and accelerator utilization, need Rateload_data >= Ratetrain_model

15

Data 
Records

Train/tune model

Extract LoadTransform



Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

● For high performance and accelerator utilization, need Rateload_data >= Ratetrain_model

16

Data 
Records

Train/tune model

Extract LoadTransform

CPU AcceleratorDisk/SSD



Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

● For high performance and accelerator utilization, need Rateload_data >= Ratetrain_model

17

Data 
Records

Train/tune model

Moving target…
accelerator compute 
capabilities keep increasing

Extract LoadTransform

CPU AcceleratorDisk/SSD



Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

● For high performance and accelerator utilization, need Rateload_data >= Ratetrain_model

18

Data 
Records

Train/tune model

Performance Bottleneck

Extract LoadTransform

Moving target…
accelerator compute 
capabilities keep increasing



Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

● For high performance and accelerator utilization, need Rateload_data >= Ratetrain_model

● e.g., removing input data bottlenecks can improve ResNet-50 training time by over 20x

19

Data 
Records

Train/tune model

Extract LoadTransform

Moving target…
accelerator compute 
capabilities keep increasing



Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

2. Consumes significant compute resources in ML jobs

20



Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

2. Consumes significant compute resources in ML jobs
○ On average, 30% of total ML training compute time is spent on last mile data processing

21



Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

2. Consumes significant compute resources in ML jobs
○ On average, 30% of total ML training compute time is spent on last mile data processing

22



tf.data: framework for input data processing 

Framework for building and executing efficient input data processing for ML jobs.

tf.data API provides generic operators that can be composed and parameterized:

● Consists of stateless datasets (to define pipeline) and stateful iterators (to produce elements)

tf.data runtime efficiently executes input pipelines by applying:

● Parallelism, software pipelining, prefetching
● Static optimizations (e.g., operator fusion)
● Dynamic optimizations (autotuning the degree of parallelism and prefetch buffer sizes)

23



Impact of tf.data performance optimizations

Up to 22x speedup on MLPerf training with tf.data optimizations vs. baseline tf.data 
with no parallelism or optimizations

24



More about tf.data in our paper 

https://arxiv.org/pdf/2101.12127.pdf 

25

https://arxiv.org/pdf/2101.12127.pdf


What can we learn from Google’s ML input pipelines?

Fleetwide analysis of millions of tf.data jobs during one month in 2020 at Google.

Our goals: 

● Characterize last mile input data processing 
○ How much input data do ML jobs ingest?
○ How does last mile data processing affect data volume?
○ What is the opportunity to reuse computation in the last mile?  

● Identify opportunities to further optimize input data processing

26



How much input data do jobs read?

Takeaway: for a significant fraction of jobs, input data does not fit in memory.

27



How does last mile processing affect data volume?

Takeaway: input data processing can significantly reduce or expand data. Overall, it is more 
common for input pipelines to produce less bytes than they read from sources.

28



How frequently are input pipelines re-executed?

Takeaway: Input pipelines are frequently re-executed. There is a large opportunity to reuse 
computation in the last mile within and across jobs.

29



Insights from Google’s ML input data pipelines

● Input data processing consumes significant compute resources

● Larger-than-memory datasets are common

● Data processing involves diverse transformations, however overall many 

transformations reduce the data volume

● Many input data pipelines are repeatedly re-executed

30



What are the implications for system design?

We can optimize last mile data processing by building an input data service with a 
global view of data processing across jobs.

31



What are the implications for system design?

We can optimize last mile data processing by building an input data service with a 
global view of data processing across jobs.

The input data service should automatically:

● Scale distributed resources for data processing to eliminate input data bottlenecks

● Cache and reuse the outputs of “expensive” input data pipelines

● Execute parts of input data pipelines close to storage vs. close to accelerators

32



tf.data service

Distribute input data processing across multiple CPU workers to avoid bottlenecks.

Ongoing work by: tf.data team at Google 33

Client
Training node

Client
Training node

...



tf.data service

Distribute input data processing across multiple CPU workers to avoid bottlenecks.

Ongoing work by: tf.data team at Google 34

Client
Training node

Client
Training node

Dispatcher...



tf.data service

Distribute input data processing across multiple CPU workers to avoid bottlenecks.

Ongoing work by: tf.data team at Google 35

Input data 
worker

Input data 
worker

Input data 
worker

Client
Training node

Client
Training node

...

Dispatcher...



tf.data service

Distribute input data processing across multiple CPU workers to avoid bottlenecks.

Ongoing work by: tf.data team at Google 36

Input data 
worker

Input data 
worker

Input data 
worker

Client
Training node

Client
Training node

...

Dispatcher...



Multi-tenant input data service

Elastically scale input data workers to eliminate input data bottlenecks

Ongoing work by: Damien Aymon, Dan Graur, Tanguy Albrici, Julia Bazinska, Chandu Thekkath 37

Input data 
worker

Input data 
worker

Input data 
worker

User A
Training node

User B
Training node

...

Dispatcher...

Input data 
worker

Input data 
worker

Input data 
worker

Input data 
worker

Input data 
worker

Input data 
worker



Multi-tenant input data service

Elastically scale input data workers to eliminate input data bottlenecks and reuse 
cached datasets within and across jobs

Ongoing work by: Damien Aymon, Dan Graur, Tanguy Albrici, Julia Bazinska, Chandu Thekkath 38

Input data 
worker

Input data 
worker

Input data 
worker

User A
Training node

User B
Training node

...

Dispatcher... Cached 
materialized 

datasets

Input data 
worker

Input data 
worker

Input data 
worker

Input data 
worker

Input data 
worker

Input data 
worker



Why is reusing last mile computation challenging?

● Caching and reusing outputs removes randomness in the input data pipeline                
→  may negatively impact training accuracy.

39



Why is reusing last mile computation challenging?

● Caching and reusing outputs removes randomness in the input data pipeline                
→  may negatively impact training accuracy.

● The cost-benefit analysis for caching vs. recomputing is non-trivial:

○ How compute-intensive is the input pipeline? 
○ How frequently is the input pipeline executed within and across jobs?
○ Is this input pipeline a performance bottleneck in training jobs?
○ How large is the materialized dataset and how long does it take to read/deserialize?
○ How does reuse affect model training dynamics?

40



Why is reusing last mile computation challenging?

● Caching and reusing outputs removes randomness in the input data pipeline                
→  may negatively impact training accuracy.

● The cost-benefit analysis for caching vs. recomputing is non-trivial:

○ How compute-intensive is the input pipeline? 
○ How frequently is the input pipeline executed within and across jobs?
○ Is this input pipeline a performance bottleneck in training jobs?
○ How large is the materialized dataset and how long does it take to read/deserialize?
○ How does reuse affect model training dynamics?

● How to detect cache hit? → consider graph isomorphism, access control

41



Why is reusing last mile computation challenging?

● Caching and reusing outputs removes randomness in the input data pipeline                
→  may negatively impact training accuracy.

● The cost-benefit analysis for caching vs. recomputing is non-trivial:

○ How compute-intensive is the input pipeline? 
○ How frequently is the input pipeline executed within and across jobs?
○ Is this input pipeline a performance bottleneck in training jobs?
○ How large is the materialized dataset and how long does it take to read/deserialize?
○ How does reuse affect model training dynamics?

● How to detect cache hit? → consider graph isomorphism, access control

● Considering sub-graphs leads to large search space → need to prune

42



Other recent work optimizing last mile data processing...

43



Other recent work optimizing last mile data processing...

44



Other recent work optimizing last mile data processing...

45



Other recent work optimizing last mile data processing...

46



Conclusion

● Last mile input data processing is a common bottleneck in ML training
○ Impacts end-to-end training performance and accelerator utilization ($)

● ML input data pipeline characterization at Google: 
○ Datasets often exceed the size of main memory
○ Transformations can reduce or augment data, but overall often reduce
○ Many identical input data pipelines are repeatedly re-executed

● Opportunities to optimize last mile data processing:
○ Elastically scale data processing workers to eliminate input data bottlenecks
○ Reuse last mile computation across jobs
○ Run data reducing ops close to storage and data augmenting ops close to training node

tf.data design and fleetwide analysis paper: https://arxiv.org/pdf/2101.12127.pdf 47

https://arxiv.org/pdf/2101.12127.pdf

