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Data is critical for ML training and inference
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Data processing is critical
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Some data processing can be done offline...
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e Convert data to binary format
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Some data processing must be done online...
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Some data processing must be done online...
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“Last mile” data processing

The Extract, Transform, Load Extract
input data pipeline that runs Data
Records :>

during ML training.
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/. Randomly augment data \
o Filter features
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Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

Train/tune model

Extract Transform Load

e

Y

14



Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

e For high performance and accelerator utilization, need RateI >= Rate, .
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Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

e For high performance and accelerator utilization, need RateI >= Rate, .
oad_data train_model

e e.g. removing input data bottlenecks can improve ResNet-50 training time by over 20x
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Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

2. Consumes significant compute resources in ML jobs
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Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

2. Consumes significant compute resources in ML jobs
o On average, 30% of total ML training compute time is spent on last mile data processing
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tf.data: framework for input data processing

Framework for building and executing efficient input data processing for ML jobs.
tf.data API provides generic operators that can be composed and parameterized:
e Consists of stateless datasets (to define pipeline) and stateful iterators (to produce elements)

tf.data runtime efficiently executes input pipelines by applying:

e Parallelism, software pipelining, prefetching
e Static optimizations (e.g., operator fusion)
e Dynamic optimizations (autotuning the degree of parallelism and prefetch buffer sizes)
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Impact of tf.data performance optimizations

Up to 22x speedup on MLPerf training with tf.data optimizations vs. baseline tf.data
with no parallelism or optimizations
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More about tf.data in our paper

tf.data: A Machine Learning Data Processing

Framework
Derek G. Murray* Jiti Simsa
Microsoft Google
Ana Klimovic* Thor Indyk
ETH Zurich Google
Abstract Pa
Training machine learning models requires feeding input Sos
data for models to ingest. Input pipelines for machine learn- $osl
ing jobs are often challenging to implement efficiently as g
they require reading large volumes of data, applying complex £°4
formations, and ferring data to hard lera- ém
tors while overlapping putation and ication to 3
achieve optimal performance. We present tf.data, a frame- 00 10

work for building and executing efficient input pipelines for
machine learning jobs. The tf.data API provides operators
which can be parameterized with user-defined computation,
composed, and reused across different machine learning do-
mains. These abstractions allow users to focus on the ap-
plication logic of data processing, while tf.data’s runtime
ensures that pipelines run efficiently.

We d ate that input pipeline performance is critical
to the end-to-end training time of state-of-the-art machine
learning models. tf.data delivers the high performance
required, while avoiding the need for manual tuning of per-
formance knobs. We show that tf . data features, such as par-
allelism, caching, static optimizations, and non-deterministic
execution are essential for high performance. Finally, we
characterize machine learning input pipelines for millions of
jobs that ran in Google’s fleet, showing that input data pro-
cessing is highly diverse and consumes a significant fraction
of job resources. Our analysis motivates future research direc-
tions, such as sharing computation across jobs and pushing
data projection to the storage layer.

02 o4 06 0.8
Fraction of job compute time spent In input pipeline

Figure 1. CDF showing the fraction of compute time that
millions of ML training jobs executed in our fleet over one
month spend in the input pipeline. 20% of jobs spend more
than a third of their compute time ingesting data.

such as a CPU or an accelerator core - scaled by the com-
pute capability of that resource. The marked point shows
that 20% of jobs spend more than a third of their compute
time in the input pipeline. When taking into account the
total compute time from all jobs in our analysis (§ 5), we find
that 30% of the total compute time is spent ingesting data.
A complementary study of ML model training with public
datasets found that preprocessing data accounts for up to
65% of epoch time [42]. This shows that input data pipelines
consume a significant fraction of ML job resources and are
important to optimize.

Input pipelines of machine learning jobs are often chal-
lenging to implement efficiently as they typically need to

https://arxiv.org/pdf/2101.12127.pdf

25


https://arxiv.org/pdf/2101.12127.pdf

What can we learn from Google’s ML input pipelines?

Fleetwide analysis of millions of tf.data jobs during one month in 2020 at Google.
Our goals:
e Characterize last mile input data processing
o How much input data do ML jobs ingest?
o How does last mile data processing affect data volume?

o What is the opportunity to reuse computation in the last mile?

e |dentify opportunities to further optimize input data processing
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How much input data do jobs read?

Takeaway: for a significant fraction of jobs, input data does not fit in memory.
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How does last mile processing affect data volume?

Takeaway: input data processing can significantly reduce or expand data. Overall, it is more
common for input pipelines to produce less bytes than they read from sources.
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How frequently are input pipelines re-executed?

Takeaway: Input pipelines are frequently re-executed. There is a large opportunity to reuse
computation in the last mile within and across jobs.
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Insights from Google’s ML input data pipelines

e |nput data processing consumes significant compute resources

e Larger-than-memory datasets are common

e Data processing involves diverse transformations, however overall many
transformations reduce the data volume

e Many input data pipelines are repeatedly re-executed
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What are the implications for system design?

We can optimize last mile data processing by building an input data service with a
global view of data processing across jobs.
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What are the implications for system design?

We can optimize last mile data processing by building an input data service with a
global view of data processing across jobs.

The input data service should automatically:

e Scale distributed resources for data processing to eliminate input data bottlenecks
e Cache and reuse the outputs of “expensive” input data pipelines

e Execute parts of input data pipelines close to storage vs. close to accelerators
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tf.data service

Distribute input data processing across multiple CPU workers to avoid bottlenecks.

Client

Ongoing work by: tf.data team at Google
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tf.data service

Distribute input data processing across multiple CPU workers to avoid bottlenecks.

Client

Dispatcher }

Ongoing work by: tf.data team at Google
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tf.data service

Distribute input data processing across multiple CPU workers to avoid bottlenecks.
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tf.data service

Distribute input data processing across multiple CPU workers to avoid bottlenecks.
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Multi-tenant input data service

Elastically scale input data workers to eliminate input data bottlenecks
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Multi-tenant input data service

Elastically scale input data workers to eliminate input data bottlenecks and reuse
cached datasets within and across jobs
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Ongoing work by: Damien Aymon, Dan Graur, Tanguy Albrici, Julia Bazinska, Chandu Thekkath gemsoerm...



Why is reusing last mile computation challenging?

e Caching and reusing outputs removes randomness in the input data pipeline
= may negatively impact training accuracy.
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Why is reusing last mile computation challenging?

e Caching and reusing outputs removes randomness in the input data pipeline
= may negatively impact training accuracy.

e The cost-benefit analysis for caching vs. recomputing is non-trivial:

o O O O O

How compute-intensive is the input pipeline?

How frequently is the input pipeline executed within and across jobs?

Is this input pipeline a performance bottleneck in training jobs?

How large is the materialized dataset and how long does it take to read/deserialize?
How does reuse affect model training dynamics?
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Why is reusing last mile computation challenging?

e Caching and reusing outputs removes randomness in the input data pipeline
= may negatively impact training accuracy.

e The cost-benefit analysis for caching vs. recomputing is non-trivial:

How compute-intensive is the input pipeline?

How frequently is the input pipeline executed within and across jobs?

Is this input pipeline a performance bottleneck in training jobs?

How large is the materialized dataset and how long does it take to read/deserialize?
How does reuse affect model training dynamics?

o O O O O

e How to detect cache hit? = consider graph isomorphism, access control

e Considering sub-graphs leads to large search space = need to prune
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Other recent work optimizing last mile data processing...

Quiver: An Informed Storage Cache for Deep Learning

Abbhishek Vijaya Kumar
Microsoft Research India

Abstract

We introduce Quiver, an informed storage cache for deep
learning training (DLT) jobs in a cluster of GPUs. Quiver em-
ploys domain-specific intelligence within the caching layer, to
achieve much higher efficiency compared to a generic storage
cache. First, Quiver uses a secure hash-based addressing to
transparently reuse cached data across multiple jobs and even
multiple users operating on the same dataset. Second, by co-
designing with the deep learning framework (e.g., PyTorch),
Quiver employs a technique of substitutable cache hits to get
more value from the existing contents of the cache, thus avoid-
ing cache thrashing when cache capacity is much smaller
than the working set. Third, Quiver dynamically prioritizes
cache allocation to jobs that benefit the most from the caching.
With a prototype implementation in PyTorch, we show that
Quiver can significantly improve throughput of deep learning
workloads.

1 Introduction

The more you know, the less (cache) you need.

- Australian proverb

ingly powerful . such as faster

GPUs [33] and ASICs [17], have made the storage layer a

Muthian Sivathanu
Microsoft Research India

random order, placing significantly higher bandwidth d d
on the store.

Second, data sizes for input training data in deep learn-
ing jobs have been increasing at a rapid pace. While the IM
ImageNet corpus is hundreds of GB in size (the full corpus
is 14x larger), newer data sources that are gaining popular-
ity are much larger. For example, the youtube-8M dataset
used in video models, is about 1.53 TB for just frame-level
features [12], while the Google Openlmages dataset [10], a
subset of which is used in the Open Images Challenge [11],
has a total size of roughly 18 TB for the full data [10].

Third, the most common mode of running deep learning
jobs is by renting GPU VM:s on the cloud (partly because of
the high cost of GPUs); such VMs have limited local SSD
capacity (e.g., most Azure GPU series VMs have a local SSD
of 1.5 to 3TB). Further, local SSDs are “ephemeral” across
VM migrations. Pre-emptible VMs are provided by cloud
providers at a significantly lower cost (6-8x cheaper) com-
pared to dedicated VMs [1,22]; such VMs running DLT jobs
may be preempted at any time, and resume from a check-
point on a different VM [3], losing all local SSD state. As
a result, users keep input training data in reliable persistent
cloud storage (e.g., in a managed disk or a data blob) within
the same data center region, and access the store remotely
from GPU VMs that run the training job. Egress bandwidth
from the store to the compute VMs is usually a constrained
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Other recent work optimizing last mile data processing...

Quiver: An Informed Storage Cache for Deep Learning
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Analyzing and Mitigating Data Stalls in DNN Training

Jayashree Mohan*
University of Texas at Austin
jaya@cs.utexas.edu

Ashish Raniwala
Microsoft
ashish.raniwala@microsoft.com

ABSTRACT

Training Deep Neural Networks (DNNs) is resource-intensive and
time-consuming. While prior research has explored many different
ways of reducing DNN training time, the impact of input data
pipeline, i.e., fetching raw data items from storage and performing
data pre-processing in memory, has been relatively unexplored.
This paper makes the following contributions: (1) We present the
first comprehensive analysis of how the input data pipeline affects
the training time of widely-used computer vision and audio Deep
Neural Networks (DNNs), that typically involve complex data pre-
processing. We analyze nine different models across three tasks and
four datasets while varying factors such as the amount of memory,
number of CPU threads, storage device, GPU generation etc on
servers that are a part of a large production cluster at Microsoft.

Amar Phanishayee
Microsoft Research
amar@microsoft.com

Vijay Chidambaram
University of Texas at Austin & VMWare Research
vijay@cs.utexas.edu

1 INTRODUCTION

Data is the fuel powering machine learning [71]. Large training
datasets are empowering state-of-the-art accuracy for several ma-
chine learning tasks. Particularly, Deep Neural Networks (DNNs),
have gained prominence, as they allow us to tackle problems that
were previously intractable, such as image classification [44, 57, 83],
translation [90], speech recognition[41], video captioning [88], and
even predictive health-care [85].

Empowering DNNs to push state-of-the-art accuracy requires
the model to be trained with a large volume of data. During training,
the model predicts the output given training data; based on the
output, the model’s weights are tuned. This happens iteratively, in
many rounds called epochs.

However, DNN training is data-hungry, resource-intensive, and

We find that in many cases, DNN training time is domi d by
data stall time: time spent waiting for data to be fetched and pre-
processed. (2) We build a tool, DS-Analyzer to precisely measure
data stalls using a differential technique, and perform predictive
what-if analysis on data stalls. (3) Finally, based on the insights from
our analysis, we design and implement three simple but effective
techniques in a data-loading library, CoorDL, to mitigate data stalls.
Our experiments on a range of DNN tasks, models, datasets, and
hardware configs show that when PyTorch uses CoorDL instead of
the state-of-the-art DALI data loading library, DNN training time
is reduced significantly (by as much as 5x on a single server).

ti g. It involves the holistic use of all the resources in
a server from storage and CPU for fetching and pre-processing the
dataset to the GPUs that perform computation on the transformed
data. Researchers have tackled how to efficiently use these resources
to reduce DNN training time, such as reducing communication
overhead [43, 50, 63, 69, 92], GPU memory optimizations [29, 49, 77],
and compiler-based operator optimizations [28, 52, 87]. However,
the impact of storage systems, specifically the data pipeline, on
DNN training has been relatively unexplored.

The DNN Data Pipeline. During DNN training, the data pipeline
works as follows. Data items are first fetched from storage and then
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Faster Neural Network Training with Data Echoing

Dami Choi'? Alexandre Passos' Christopher J. Shallue' George E. Dahl’

Abstract

In the twilight of Moore’s law, GPUs and other
specialized hardware accelerators have dramati-
cally sped up neural network training. However,
carlier stages of the training pipeline, such as disk
1/0 and data preprocessing, do not run on acceler-
ators. As accelerators continue to improve, these
carlier stages will increasingly become the bot-
tleneck. In this paper, we introduce “data echo-
ing,” which reduces the total computation used
by earlier pipeline stages and speeds up training
whenever computation upstream from accelera-
tors dominates the training time. Data echoing
reuses (or “echoes™) intermediate outputs from
carlier pipeline stages in order to reclaim idle ca-
pacity. We investigate the behavior of different
data echoing algorithms on various workloads, for
various amounts of echoing, and for various batch
sizes. We find that in all settings, at least one
data echoing algorithm can match the baseline’s

the operations that run well on accelerators — a training
program may need to read and decompress training data,
shuffle it, batch it, and even transform or augment it. These
steps exercise multiple system components, including CPUs,
disks, network bandwidth, and memory bandwidth. It is
impractical to design specialized hardware for all these gen-
eral operations that involve so many different components.
Moreover, these operations are not simply executed once
at the start of the training program. Since many of today’s
datasets are too large” to fit into an accelerator’s memory
or even the host machine’s main memory, most large-scale
neural network training systems stream over the training
data, incrementally reading it from disk, pre-processing it in
main memory, and copying successive batches of training
examples to the accelerator, which runs the training algo-
rithm. Therefore, each training step involves a mixture of
operations that do and do not run on accelerators.

There are workloads where the code running on accelerators
consumes only a small portion of the overall wall time, and
this scenario will only become more common if accelerator
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Jointly Optimizing
Preprocessing and Inference for DNN-based Visual Analytics

Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter Bailis, Matei Zaharia
Stanford DAWN Project

ABSTRACT

While deep neural networks (DNNs) are an increasingly popular
way to query large corpora of data, their significant runtime remains
an active area of research. As a result, researchers have proposed
systems and optimizations to reduce these costs by allowing users
to trade off accuracy and speed. In this work, we examine end-to-end
DNN execution in visual analytics systems on modern accelerators.
Through a novel measurement study, we show that the preprocessing
of data (e.g., decoding, resizing) can be the bottleneck in many visual
analytics systems on modern hardware.

To address the bottleneck of preprocessing, we introduce two
optimizations for end-to-end visual analytics systems. First, we intro-
duce novel methods of achieving accuracy and throughput trade-offs
by using natively present, low-resolution visual data. Second, we
develop a runtime engine for efficient visual DNN inference. This
runtime engine a) efficiently pipelines preprocessing and DNN exe-
cution for inference, b) places preprocessing operations on the CPU

orders of magnitude cheaper to execute than their target DNNs and
are used to filter inputs so the target DNNs will be executed fewer
times [8, 34,37, 39, 43].

This prior work focuses solely on reducing DNN execution time.
These systems were built before recent DNN accelerators were
introduced and were thus benchmarked on older accelerators. In this
context, these systems correctly assume that DNN execution time
is the overwhelming bottleneck. For example, Tanoma benchmarks
on the NVIDIA K80 GPU, which executes ResNet-50 (a historically
expensive DNN [1, 20, 21]) at 159 images/second.

However, as accelerators and compilers have advanced, these
systems ignore a key bottleneck in end-to-end DNN inference: pre-
processing, or the process of decoding, transforming, and transfer-
ring image data to accelerators. In the first measurement study of its
kind, we show that preprocessing costs often dominate end-to-end
DNN inference when using advances in hardware accelerators and
compilers. For example, the historically expensive ResNet-50 [1,21]
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Conclusion

e Last mile input data processing is a common bottleneck in ML training
o Impacts end-to-end training performance and accelerator utilization ($)

e ML input data pipeline characterization at Google:
o Datasets often exceed the size of main memory
o Transformations can reduce or augment data, but overall often reduce
o Many identical input data pipelines are repeatedly re-executed

e Opportunities to optimize last mile data processing:
o Elastically scale data processing workers to eliminate input data bottlenecks
o Reuse last mile computation across jobs
o Run data reducing ops close to storage and data augmenting ops close to training node

tf.data design and fleetwide analysis paper: https://arxiv.org/pdf/2101.12127.pdf 47
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