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Data is critical for ML training and inference
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Transformations that add randomness 
and/or that users want to tune at runtime 

 (e.g., batch size, feature selection)



Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)
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Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

● For high performance and accelerator utilization, need Rateload_data >= Ratetrain_model

● e.g., removing input data bottlenecks can improve ResNet-50 training time by over 20x
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Why care about last mile data processing?

1. Greatly impacts end-to-end training time and accelerator utilization ($$)

2. Consumes significant compute resources in ML jobs
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tf.data: framework for input data processing 

Framework for building and executing efficient input data processing for ML jobs.

tf.data API provides generic operators that can be composed and parameterized:

● Consists of stateless datasets (to define pipeline) and stateful iterators (to produce elements)

tf.data runtime efficiently executes input pipelines by applying:

● Parallelism, software pipelining, prefetching
● Static optimizations (e.g., operator fusion)
● Dynamic optimizations (autotuning the degree of parallelism and prefetch buffer sizes)
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Impact of tf.data performance optimizations

Up to 22x speedup on MLPerf training with tf.data optimizations vs. baseline tf.data 
with no parallelism or optimizations
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More about tf.data in our paper 

https://arxiv.org/pdf/2101.12127.pdf 
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What can we learn from Google’s ML input pipelines?

Fleetwide analysis of millions of tf.data jobs during one month in 2020 at Google.

Our goals: 

● Characterize last mile input data processing 
○ How much input data do ML jobs ingest?
○ How does last mile data processing affect data volume?
○ What is the opportunity to reuse computation in the last mile?  

● Identify opportunities to further optimize input data processing
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How much input data do jobs read?

Takeaway: for a significant fraction of jobs, input data does not fit in memory.
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How does last mile processing affect data volume?

Takeaway: input data processing can significantly reduce or expand data. Overall, it is more 
common for input pipelines to produce less bytes than they read from sources.
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How frequently are input pipelines re-executed?

Takeaway: Input pipelines are frequently re-executed. There is a large opportunity to reuse 
computation in the last mile within and across jobs.
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Insights from Google’s ML input data pipelines

● Input data processing consumes significant compute resources

● Larger-than-memory datasets are common

● Data processing involves diverse transformations, however overall many 

transformations reduce the data volume

● Many input data pipelines are repeatedly re-executed
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What are the implications for system design?

We can optimize last mile data processing by building an input data service with a 
global view of data processing across jobs.
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What are the implications for system design?

We can optimize last mile data processing by building an input data service with a 
global view of data processing across jobs.

The input data service should automatically:

● Scale distributed resources for data processing to eliminate input data bottlenecks

● Cache and reuse the outputs of “expensive” input data pipelines

● Execute parts of input data pipelines close to storage vs. close to accelerators
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tf.data service

Distribute input data processing across multiple CPU workers to avoid bottlenecks.

Ongoing work by: tf.data team at Google 33
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Multi-tenant input data service

Elastically scale input data workers to eliminate input data bottlenecks

Ongoing work by: Damien Aymon, Dan Graur, Tanguy Albrici, Julia Bazinska, Chandu Thekkath 37
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Multi-tenant input data service

Elastically scale input data workers to eliminate input data bottlenecks and reuse 
cached datasets within and across jobs

Ongoing work by: Damien Aymon, Dan Graur, Tanguy Albrici, Julia Bazinska, Chandu Thekkath 38
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Why is reusing last mile computation challenging?

● Caching and reusing outputs removes randomness in the input data pipeline                
→  may negatively impact training accuracy.
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● The cost-benefit analysis for caching vs. recomputing is non-trivial:

○ How compute-intensive is the input pipeline? 
○ How frequently is the input pipeline executed within and across jobs?
○ Is this input pipeline a performance bottleneck in training jobs?
○ How large is the materialized dataset and how long does it take to read/deserialize?
○ How does reuse affect model training dynamics?
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Why is reusing last mile computation challenging?

● Caching and reusing outputs removes randomness in the input data pipeline                
→  may negatively impact training accuracy.

● The cost-benefit analysis for caching vs. recomputing is non-trivial:

○ How compute-intensive is the input pipeline? 
○ How frequently is the input pipeline executed within and across jobs?
○ Is this input pipeline a performance bottleneck in training jobs?
○ How large is the materialized dataset and how long does it take to read/deserialize?
○ How does reuse affect model training dynamics?

● How to detect cache hit? → consider graph isomorphism, access control

● Considering sub-graphs leads to large search space → need to prune

42



Other recent work optimizing last mile data processing...
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Other recent work optimizing last mile data processing...
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Conclusion

● Last mile input data processing is a common bottleneck in ML training
○ Impacts end-to-end training performance and accelerator utilization ($)

● ML input data pipeline characterization at Google: 
○ Datasets often exceed the size of main memory
○ Transformations can reduce or augment data, but overall often reduce
○ Many identical input data pipelines are repeatedly re-executed

● Opportunities to optimize last mile data processing:
○ Elastically scale data processing workers to eliminate input data bottlenecks
○ Reuse last mile computation across jobs
○ Run data reducing ops close to storage and data augmenting ops close to training node

tf.data design and fleetwide analysis paper: https://arxiv.org/pdf/2101.12127.pdf 47
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