
Complete Query Answering Over
Horn Ontologies Using a Triple Store

Yujiao Zhou, Yavor Nenov, Bernardo Cuenca Grau, and Ian Horrocks

Department of Computer Science, University of Oxford, UK

Abstract. In our previous work, we showed how a scalable OWL 2 RL
reasoner can be used to compute both lower and upper bound query an-
swers over very large datasets and arbitrary OWL 2 ontologies. However,
when these bounds do not coincide, there still remain a number of possi-
ble answer tuples whose status is not determined. In this paper, we show
how in the case of Horn ontologies one can exploit the lower and upper
bounds computed by the RL reasoner to efficiently identify a subset of
the data and ontology that is large enough to resolve the status of these
tuples, yet small enough so that the status can be computed using a fully-
fledged OWL 2 reasoner. The resulting hybrid approach has enabled us
to compute exact answers to queries over datasets and ontologies where
previously only approximate query answering was possible.

1 Introduction

An increasing number of applications rely on RDF and SPARQL for storing and
querying semistructured data. The functionality of many such applications is
enhanced by an OWL 2 ontology, which is used to (i) unambiguously specify the
meaning of data in the application, (ii) provide the vocabulary and background
knowledge needed for users to formulate accurate queries, and (iii) enrich query
answers with information not explicitly represented in the dataset.

However, the appealing benefits of using an OWL 2 ontology come at the
cost of scalability, since answering queries over OWL 2 ontologies is of very high
computational complexity. Despite intensive efforts at optimisation, fully-fledged
OWL 2 reasoners, such as HermiT [16], Pellet [23] and Racer [9], still fall far
short of meeting the scalability demands of applications that require efficient
management of large-scale RDF datasets.

To achieve more favourable scalability, a common approach is to delegate
reasoning and query answering tasks to a rule-based RDF triple store. State-
of-the-art triple stores such as OWLim [3], Oracle’s RDF Semantic Graph [26]
and RDFox1 provide robust and scalable query answering support for ontologies
in the OWL 2 RL profile [17] and datasets containing millions, or even billions,
of triples. However, such triple stores are intrinsically limited in their reasoning
capabilities, as they ignore (parts of) axioms in the application’s ontology that

1 http://www.cs.ox.ac.uk/isg/tools/RDFox/

http://www.cs.ox.ac.uk/isg/tools/RDFox/

aren’t captured by OWL 2 RL. As a result, they are incomplete: for some com-
binations of ontology, query and data, they will fail to return all query answers.

In this paper, we propose a novel approach to query answering that addresses
the scalability challenge for ontology languages beyond OWL 2 RL without giv-
ing up completeness of query answers. The key idea is to employ a hybrid tech-
nique that combines an OWL 2 RL reasoner based on a highly scalable RDF
triple store (RL reasoner for short) with a fully-fledged OWL 2 reasoner (OWL
reasoner for short) such that most of the computational workload can be del-
egated to the RL reasoner, and the OWL reasoner is used only as necessary
to ensure completeness. The difficulty in realising this approach is to efficiently
determine when and where fully-fledged reasoning is needed.

Our hybrid query answering technique builds on previous work [27], where
we showed how an RL reasoner can be exploited to efficiently compute lower
and upper bound query answers over very large datasets and arbitrary OWL 2
ontologies. When the two bounds coincide (which was often the case in the
experiments reported in [27]), the query has been fully answered. When the two
bounds do not coincide, however, there may still remain a significant number
of possible answer tuples whose status is undetermined. In theory, the status
of these tuples can be determined using an OWL reasoner, but for large-scale
datasets, even checking single tuples is often infeasible in practice.

The main contribution of this paper is a technique for identifying a (typically
small) subset of the dataset and ontology that is sufficient for determining the
status of a possible answer tuple. The basic idea is that, starting from a query
Q and a possible answer tuple ~a, we use backward chaining with axioms from
the upper-bound ontology to identify those axioms and data triples from the
input ontology and dataset that might contribute to a proof that ~a is an answer
to Q. An OWL reasoner is then used to check if the identified axioms and data
triples entail that ~a is an answer to Q. Currently, our technique is only known
to be applicable to Horn ontologies (i.e., ontologies that can be translated to
first-order Horn clauses). However, many OWL 2 ontologies are Horn [6], as are
all the profiles. Moreover, we conjecture that the approach can be extended to
arbitrary OWL 2 ontologies; verifying this conjecture is left for future work.

Our new technique also addresses an important limitation with the approach
presented in [27]: if the upper-bound ontology and dataset is unsatisfiable, then it
is necessary to check the satisfiability of the input ontology and dataset, but this
was impractical with large datasets. Now, we can simply use our new technique
to compute the answer to the query owl:Nothing(x), with the ontology and
dataset being satisfiable iff the answer is empty.

We have developed a reasoner that integrates RDFox and the HermiT OWL
reasoner. A preliminary evaluation has shown very promising results. For in-
stance, we can compute in reasonable time the exact answers to a range of
queries over the LUBM(40) ontology and dataset—results that are far beyond
the capabilities of any other OWL reasoner known to us. Our technique appears
to be very effective in identifying small relevant subsets of the data and ontology:
for many queries, only 2% of the data and just a few axioms from the ontology

were necessary to determine the status of all unverified answer tuples. Moreover,
the effectiveness of our technique is not restricted to LUBM: we have obtained
encouraging results with the Fly Anatomy ontology—a biomedical ontology con-
taining more than 7,000 classes and 140,000 axioms—and its associated dataset.

2 Preliminaries

We adopt standard notions from first-order logic with equality, such as variables,
constants, terms, atoms, formulas, sentences, substitutions, entailment (written
|=), and (un)satisfiability. The equality atom between terms t and t′ is denoted
as t ≈ t′; we use the abbreviation t 6≈ t′ for ¬(t ≈ t′) (an inequality atom). The
falsum atom is denoted as ⊥ (equivalent to owl:Nothing), whereas the dual
universal truth atom is denoted as > (equivalent to owl:Thing).

OWL 2 Ontologies. We assume familiarity with the normative specifications
of OWL 2 and OWL 2 RL. We deviate slightly from the normative documents
only in that we make an explicit distinction between schema-level and data-level
axioms. We use ontology and dataset to refer to a set of schema-level and a set
of data-level axioms, respectively. W.l.o.g. we assume that data assertions are
given as facts (ground atoms), each of which corresponds to a single RDF triple.
Consider as our running example the following ontology Oex and dataset Dex.

Oex = {SubClassOf (Animal SomeValuesFrom(eats Thing)), (T1)

SubClassOf (Herbivore AllValuesFrom(eats Plant)), (T2)

DisjointClasses(Herbivore Carnivore), (T3)

SubClassOf (Carnivore MinCardinality(2 hasParent Thing)))} (T4)

Dex = {ClassAssertion(Animal lion), (A1)

ClassAssertion(Animal rabbit), (A2)

ClassAssertion(Herbivore rabbit), (A3)

ClassAssertion(Herbivore sheep), (A4)

PropertyAssertion(eats sheep grass), (A5)

ClassAssertion(Carnivore wolf)} (A6)

Queries. A conjunctive query (CQ) is a first-order formula in the form of Q(~x) =
∃~y(ϕ(~x, ~y)) with Q a distinguished query predicate and ϕ(~x, ~y) a conjunction of
atoms without inequalities. The variables in ~x are distinguished. The following
CQ with a distinguished variables x asks for all individuals that eat plants:

Qex(x) := ∃y(eats(x, y) ∧ Plant(y)).

A tuple of constants ~a is a certain answer to Q(~x) w.r.t. a set of first-order
sentences F and a set of facts D if F ∪D |= Q(~a). The set of all certain answers
to Q(~x) w.r.t. F and D is denoted as cert(Q,F ,D). For example, the individuals
sheep and rabbit are certain answers to Qex w.r.t. Oex and Dex. We omit the

distinguished variables ofQ(~x) and write justQ for brevity. SPARQL conjunctive
queries are CQs with only distinguished variables.2

Rule languages. Rule languages are widely-used knowledge representation for-
malisms that have strong connections with different fragments of OWL 2 [4].
Specifically, OWL 2 RL is strongly connected to datalog, whereas Horn ontolo-
gies are related to datalog±—an extension of datalog with existential quantifiers
allowed in rule heads. For instance, our example ontology Oex is equivalent to
the following datalog± rules in which all free variables are universally quantified.

∃y(eats(x, y))← Animal(x) (P1)

Plant(y)← eats(x, y) ∧ Herbivore(x) (P2)

⊥ ← Carnivore(x) ∧ Herbivore(x) (P3)

∃y1∃y2(hasParent(x, y1) ∧ hasParent(x, y2) ∧ y1 6≈ y2)← Carnivore(x) (P4)

Formally, a datalog± rule is a first-order sentence of the following form [5]:

∀~x(∃~y(C1 ∧ · · · ∧ Cm)← B1 ∧ · · · ∧Bn), (1)

where each Bj is an atom with variables in ~x that is neither ⊥ nor an inequality
atom, and either (i) m = 1 and C1 = ⊥, or (ii) m ≥ 1 and, for each 1 ≤ i ≤ m,
Ci is an atom different from ⊥ with free variables in ~x ∪ ~y. A datalog rule is a
rule of the form (1) with no existentially quantified variables.3 A datalog (resp.
datalog±) program is a set of datalog (resp. datalog±) rules.

Horn ontologies (i.e., ontologies that can be normalised as a set of first-order
Horn clauses) can also be represented by datalog± programs. Furthermore, each
OWL 2 RL ontology can be represented by a datalog program. Axioms T2 and
T3 in our running example are in OWL 2 RL and can be represented by the
datalog rules P2 and P3, respectively; in contrast, T1 is outside OWL 2 RL and,
as such, is only expressible by a datalog± rule (in our case P1).

Datalog rules allow for easy and efficient computation of the dataset DΣ con-
sisting of all facts entailed by a datalog programΣ and a datasetD. The setDΣ is
called the materialisation of Σ w.r.t. D. The set of certain answers cert(Q,Σ,D)
for an arbitrary query Q coincides with cert(Q, ∅,DΣ). Consider, for example,
the set ΣL comprising the datalog rules P2 and P3. The materialisation of ΣL
w.r.t. Dex extends Dex with the single fact ClassAssertion(Plant grass); clearly,
sheep is an answer to the query Qex w.r.t. ΣL and Dex, but rabbit is not.

3 Our Approach in a Nutshell

In this paper, we propose a hybrid reasoning technique that combines an RL
reasoner based on a highly scalable RDF triple store with a fully-fledged OWL

2 In general, a SPARQL query can include non-distinguished variables; however, the
semantics of SPARQL means that this is equivalent to treating all variables as dis-
tinguished and then applying a suitable projection.

3 Our definition of datalog is slightly non-standard as it allows conjunction in rule
heads; such rules can be equivalently split into multiple rules with atomic heads.

OWL 2 RL Reasoner
Data

Ontology

Upper
Ontology

Lower Bound
Instance

Upper Bound
Instance

Fragm
ent Extraction

Data

Ontology

O
W

L 2 Reasoner

Answer

Query

Gap

Step 1 Step 2 Step 3

Lower
Bound

Fig. 1. Overview

reasoner. The key feature of our query answering technique is that it tries to
delegate most of the computational workload to the RL reasoner, thus minimis-
ing the use of the less scalable OWL reasoner. Given a Horn OWL 2 ontology
O, a dataset D, and a CQ Q, we compute the certain answers cert(Q,O,D) in
three steps, which we summarise next and schematically depict in Figure 1.

Step 1: Lower and upper bound query answers. Our first step is to
compute two OWL 2 RL ontologies OL (the lower bound ontology) and OU
(the upper bound ontology) satisfying the following property: cert(Q,OL,D) ⊆
cert(Q,O,D) ⊆ cert(Q,OU ,D). Since both OL and OU are OWL 2 RL ontolo-
gies, we can then use an RL reasoner to compute the lower bound cert(Q,OL,D)
and the upper bound cert(Q,OU ,D). If the setG = cert(Q,OU ,D)\cert(Q,OL,D)
of tuples in the “gap” between lower and upper bound is empty, then the set
of certain answers cert(Q,O,D) coincides with both lower and upper bounds, in
which case we don’t need to resort to the OWL reasoner. This step exploits the
techniques in our previous work [27], which we briefly recapitulate in Section 4.

Step 2: Computing ontology and dataset fragments. In the second step
we exploit the lower and upper bound ontologies and query answers to identify
(small) fragments Of of O and Df of D satisfying: O∪D |= Q(~a) iff Of ∪Df |=
Q(~a) for each ~a ∈ G. Thus, Of and Df are sufficient for determining whether
each tuple in G is indeed a certain answer to Q. The fragments Of and Df
depend on both the input query Q and the tuples in G. This novel technique is
the main contribution of our paper, and it is described in Section 5.

Step 3: Calling the OWL reasoner. In the final step we resort to the OWL
reasoner to verify whether Of ∪ Df |= Q(~a) for each tuple ~a ∈ G. We return
as certain answers the union of the lower bound and the verified tuples in G:
cert(Q,O,D) = cert(Q,OL,D) ∪ {~a ∈ G | Of ∪ Df |= Q(~a)}.

4 Lower and Upper Bound Query Answers

In our previous work [27] we showed how an RL reasoner can be used to efficiently
compute upper and lower bound query answers over arbitrary OWL 2 ontologies.

In this section, we recapitulate the techniques proposed there. Our description
will be rather informal, and we refer the interested reader to [27] for details.

Lower bound answers. RL reasoners are flexible enough to process arbitrary
ontologies on a “best efforts” basis; that is, the reasoner ignores (parts of) the
axioms that are outside OWL 2 RL, thus effectively reasoning with a lower bound
ontology OL. RL reasoners are guaranteed to be sound (i.e., O |= OL), and hence
all the tuples they compute are indeed certain answers; we can therefore compute
lower bound answers simply by running the RL reasoner as a “black box” on the
input Q, O, and D. For instance, when given our example ontology Oex, dataset
Dex, and query Qex, a typical RL reasoner will reduce Oex to the OWL 2 RL
ontology OexL = {T2, T3}, and will compute cert(Qex,OexL ,Dex) = {sheep}.
Upper bound answers.We transform O into an OWL 2 RL ontology OU such
that OU |= O. First, O is normalised into a datalog± program Σ± using a variant
of the structural transformation of first-order logic (see [16,27]). For instance, our
example ontology Oex can be normalised into the datalog± program consisting
of rules P1-P4. The crucial second step is the transformation of the resulting
datalog± program into a (stronger) datalog program ΣU satisfying ΣU |= O;
roughly speaking, ΣU is obtained by Skolemising all existential quantifiers into
fresh constants. For example, the datalog± rules P1 and P4 get transformed into
the rules D1, D4 and D5 to give the following datalog program:

Σex
U = {eats(x, c)← Animal(x), (D1)

Plant(y)← eats(x, y) ∧ Herbivore(x), (D2)

⊥ ← Carnivore(x) ∧ Herbivore(x), (D3)

hasParent(x, c1) ∧ hasParent(x, c2)← Carnivore(x), (D4)

⊥ ← c1 ≈ c2}. (D5)

Finally, the datalog program ΣU is transformed into the upper bound OWL 2 RL
ontology OU , where OU |= ΣU ; roughly speaking, each rule in ΣU is transformed
into an OWL 2 RL axiom by “rolling up” the rule’s body and head into class
descriptions, while possibly introducing fresh predicates in order to satisfy the
syntactic restrictions of OWL 2 RL. For instance, the datalog rules D1–D5 in
our running example are transformed into the following OWL 2 RL axioms:

OexU = {SubClassOf (Animal HasValue(eats c)), (R1)

SubClassOf (Herbivore AllValuesFrom(eats Plant)), (R2)

DisjointClasses(Herbivore Carnivore), (R3)

SubClassOf (Carnivore HasValue(hasParent c1)), (R4.1)

SubClassOf (Carnivore HasValue(hasParent c2)), (R4.2)

DifferentFrom(c1 c2)}. (R4.3)

As a result, we obtain that OU |= O and hence cert(Q,O,D) ⊆ cert(Q,OU ,D).
Clearly, the transformation of O into the upper bound ontology OU will in gen-
eral introduce consequences that are not entailed by the original ontology O. To

see this, consider again our running example. The axioms R1, R2, A1 and A2 en-
tail ObjectPropertyAssertion(eats rabbit c), ObjectPropertyAssertion(eats lion c)
and ClassAssertion(Plant c). We thus get that (in addition to sheep) rabbit and
lion are also answers to Qex, i.e. cert(Qex,OexU ,Dex) = {sheep, rabbit, lion}.
However, we have that lion /∈ cert(Qex,Oex,Dex).

The final transformation from ΣU into OU is only required if the RL reasoner
to be used only accepts OWL 2 RL ontologies; our RL reasoner RDFox can
handle datalog rules natively, and this transformation can be dispensed with.

Dealing with unsatisfiability. An important limitation with the approach
presented in [27] is that, given an ontology O and a dataset D, if OL ∪ D
is satisfiable (i.e., cert(⊥(x),OL,D) = ∅) but OU ∪ D is unsatisfiable (i.e.,
cert(⊥(x),OU ,D) 6= ∅), we must check if O ∪ D is satisfiable; if O ∪ D is satis-
fiable, we can still use the above procedure to compute upper bound answers,
but if O∪D is not satisfiable, then everything is entailed and the (upper bound)
answer to any query is trivially the set of all tuples of the appropriate arity that
can be formed from individuals in D. The difficulty is that, when D is large, it
may be impractical to check the satisfiability of O ∪D using an OWL reasoner.

We can now address this issue by using our new hybrid query answering
technique: if cert(⊥(x),OL,D) = ∅, but cert(⊥(x),OU ,D) 6= ∅, then in Step 2
we will compute fragments Of and Df for ⊥(x), and in Step 3 we will use these
fragments with an OWL reasoner to compute cert(⊥(x),O,D). Clearly, O ∪ D
is satisfiable iff cert(⊥(x),O,D) = ∅.

5 Computing Ontology and Dataset Fragments

Given an input ontology O, a dataset D and a set of possible answer tuples G,
our goal is to compute an ontology Of ⊆ O and a dataset Df ⊆ D such that

– Of ∪ Df |= Q(~a) iff O ∪D |= Q(~a) for each tuple ~a ∈ G; and
– Of ∪ Df is as small as possible.

5.1 Overview

In a nutshell, our technique for computing Of and Df works as follows.

1. We consider the upper bound datalog rules ΣU and, for each ~a ∈ G, we
compute all (minimal) proofs of Q(~a) in ΣU ∪ D. Specifically, we consider
“backwards chaining” proofs based on SLD-resolution.

2. We define Df (resp. Σf) as the set of facts in D (resp. rules in ΣU) that
have been used in some SLD-resolution proof for some ~a ∈ G.

3. Finally, we “trace back” the rules in Σf ⊆ ΣU to the OWL 2 axioms Of ⊆ O
from which they were derived.

To illustrate this process, let us consider our example ontology Oex, data set
Dex and query Qex. In this case, we have {sheep} as the lower bound answer and
{sheep, rabbit, lion} as the upper bound answer; our goal is thus to determine

S0 := eats(rabbit, y) ∧ Plant(y)

S1 := Plant(c) ∧ Animal(rabbit) via D1

S2 := Animal(rabbit) ∧ eats(x, c) ∧ Herbivore(x) via D2

S3 := eats(x, c) ∧ Herbivore(x) via A2

S4 := Herbivore(x) ∧ Animal(x) via D1

S5 := Animal(rabbit) via A3

S6 := > via A2

Fig. 2. A proof of Qex(rabbit) in Σex
U ∪ Dex.

whether rabbit and lion are indeed certain answers. To this end, we consider the
upper bound datalog program Σex

U , and inspect all the “backwards chaining”
proofs for Qex(rabbit) and Qex(lion) in Σex

U ∪ Dex.
An example of such proof for Qex(rabbit) is given in Figure 2. Starting from

the goal Qex(rabbit) = eats(rabbit, y) ∧ Plant(y), we can use rule D1 and the
unifier {x 7→ rabbit, y 7→ c} to obtain the subgoal S1, which, together with D1,
entails S0. Then, we can use rule D2 and the unifier {y 7→ c} to obtain from S1

the new subgoal S2. The first conjunct in S2 can be eliminated using the fact A2
in Dex to produce S3. From S3 we can use again rule D1 to produce S4. The first
conjunct in S4 can be eliminated using fact A3 in Dex and finally we can obtain
the empty goal by subsequently using fact A2 to eliminate the remaining atom.
We have now shown that {D1, D2, A2, A3} |= Qex(rabbit); therefore, facts A2
and A3 must be included in Df , and axioms T1 and T2 from Oex, from which
rules D1 and D2 were (respectively) derived, must be included in Of .

To identify all the axioms and facts in O∪D that are relevant to Qex(rabbit)
and Qex(lion), we need to consider all their possible backwards chaining proofs.
By doing so, we can show that only axioms T1 and T2, and facts A1, A2 and
A3 are (possibly) relevant to determining the status of rabbit and lion.

5.2 Technical Approach

We start by formalising backwards chaining proofs based on SLD-resolution.

Definition 1. A goal is a is a conjunction of function-free atoms A1∧ . . .∧Am.
The SLD-resolution rule takes as premises a goal and a datalog rule, and it
produces a new goal as follows

A1 ∧ . . . ∧Am, C1 ∧ . . . ∧ Cq ← B1 ∧ . . . ∧Bp
A2θ ∧ . . . ∧Amθ ∧B1θ ∧ . . . , Bpθ

where θ is the most general unifier of A1 and Cj for some 1 ≤ j ≤ q. The new
goal, together with the rule entail the original goal.

Let G0 be a goal and Γ be a datalog program. An SLD-proof of G0 in Γ is a

sequence of goals G0
r1,θ1 G1 . . . Gn−1

rn,θn Gn, where Gn = > and each

Gi+1 is obtained from Gi and rule ri+1 ∈ Γ by means of a single SLD-resolution
with substitution θi+1.

Finally, we say that a rule r is relevant for G0 in Γ if there exists an SLD-
proof of G0 in Γ involving r.

SLD-resolution is sound and complete for datalog: for each datalog program
Γ , conjunctive query Q(~x) = ∃~y(ϕ(~x, ~y)) and tuple of constants ~a we have Γ |=
Q(~a) iff there exists an SLD-proof of the goal ϕ(~a, ~y) in Γ .

We are now ready to define the relevant fragments Of ⊆ O and Df ⊆ D that
we can use to verify the answers in G using an OWL reasoner.

Definition 2. Let Q, O and D be the input CQ, Horn ontology and dataset
respectively, let ΣU be the upper bound datalog program for O, and let Ξ(·) be
the function mapping each axiom in O into its corresponding set of rules in ΣU .
Finally, let G be the set of tuples between lower and upper bound. The (Q,G)-
relevant fragments Of of O and Df of D are defined as follows:

Of = {α ∈ O | ∃~a ∈ G and ∃r ∈ Ξ(α) s.t. r is relevant for Q(~a) in ΣU ∪ D},
Df = {α ∈ D | ∃~a ∈ G s.t. α is relevant for Q(~a) in ΣU ∪ D}.

The correctness of our approach is established by the following theorem.

Theorem 1. Let Of and Df be the (Q,G)-relevant fragments of O and D,
respectively. Then, O ∪D |= Q(~a) iff Of ∪ Df |= Q(~a) for each ~a ∈ G.

The proof of Theorem 1 is rather lengthy and can be found in Appendix A.
The idea behind the proof is, however, quite straightforward. The ‘if’ direction
follows directly from the fact that Of ∪Df ⊆ O ∪D. For the ‘only if’ direction,
assume that O ∪ D |= Q(~a). From ΣU |= O it follows that ΣU ∪ D |= Q(~a). As
a result, we can conclude from the completeness of SLD-resolution that there
exists an SLD proof of Q(~a) in ΣU ∪D, and let R be the set of rules used in this
proof. By construction, the axioms in O and facts in D that correspond to rules
in R are contained in Of and Df respectively, and it can be further shown that
these axioms entail Q(~a).

5.3 An Optimised Backward Chaining Algorithm

Computing all SLD-proofs for each answer in the gap between lower and upper
bounds can be infeasible in practice with a naive backward chaining algorithm.
Indeed, our problem is more challenging than typical backward chaining reason-
ing in datalog, where computing just a single proof suffices to verify the goal.

In this section, we describe an optimised algorithm for computing the set R~a
of all rules that appear in an SLD proof of Q(~a) in ΣU ∪ D, where the facts in
D are treated as rules with an empty body, i.e., of the form A(~a)←. To ensure
termination of backward chaining, we apply the well-known tabling technique
[24,22]. To improve performance, we use an aggressive pruning technique that
exploits the upper and lower bound ontologies to detect irrelevant branches in

Tree 1 Tree 2
P(c)e(r, y)∧P(y)

. . .

Answer
y=c
...

Leaf1

...

Solution Nodes
Answer table

Goal
e(r,x)∧P(x)

P(c)
Tree 1
Tree 2

Tree

... ...

Goal table

D1

 P(c)∧A(r)

y=c

Leaf1

Root

... ...P(c)
 A(r)

. .
 .

rule

sub-answer

Fig. 3. Data Structure

the backward chaining tree. In the remainder of this section, we describe the
specifics of our implementation of backward chaining.

Backward chaining with tabling. Our implementation of backward chaining
with tabling is based on the techniques described in [22]. We deviate from [22] in
that our algorithm only terminates once all SLD-proofs of the goal are computed,
and also in that we keep track of all rules used in such proofs.

We first describe our data structures. To keep track of all SLD proofs of a goal
Q(~a) and all rules that occur in them, we maintain a labelled tree tA for each
encountered subgoal A consisting of a single atom; additionally, we maintain
a similar tree for the original goal Q(~a) (see Figure 3). The tree tA encodes all
proofs of A; each node of tA is labelled with a goal and each edge of tA is labelled
with a pair of a substitution and a datalog rule. The labels of each edge and
the nodes that it connects encode an SLD resolution step, and a branch in tA
encodes an SLD derivation. We associate with tA an answer table, which will
eventually map each grounding of the root goal that proves it to the list of all
relevant leaf nodes in tA for that grounding. We also maintain a global goal table
mapping each relevant subgoal to its corresponding tree (c.f. Figure 3). Finally,
we say that a node u with associated goal A1∧ . . .∧An is linked to a tree t if the
first atom A1 in the goal corresponds to the root of t (e.g. node D1 in Figure 3
is linked to Tree 2); we use the goal table to check whether u is linked to t.

The backward chaining algorithm is initialised with a tree tQ(~a) consisting
of just a root node labelled with the goal Q(~a); then, we add an entry in the
Goal table mapping Q(~a) to tQ(~a) and we associate with tQ(~a) an empty answer
table. After this initialisation step, we evaluate the root node of tQ(~a) using the
recursive procedure described below, which takes as input a node u in a tree t.

Case 1. If u is labelled with >, we have reached a proof of the goal A(~x) la-
belling the root of t. We take A(~a) to be the grounding of A(~x) using the
composition of the substitutions on the path between the root of t and the
node u. We add u to the list associated with A(~a) in the answer table of t.
We then try to resolve A(~a) with the goal of every node that is linked to t.

If we can resolve A(~a) with the goal of such a node v using a substitution θ,
we add a child node v′ to v, we label v with the resolvent, and we label the
edge between v and v′ with the pair 〈A(~a), θ〉. We then recursively evaluate
the node v′.

Case 2. If u is the root node of t, we resolve its goal with all possible rules, we
create a child node for each of the resolvents, label the new nodes and edges
accordingly, and recursively evaluate each of the child nodes.

Case 3. Otherwise, let A1 ∧ . . . ∧Am be the goal of u.
3.1. If A1 has not been tabled yet, i.e. it is not in the goal table, we initialise

a tree t′ with root node v, label v with A1, add an entry 〈A1, t
′〉 to the

goal table linking u to t, and recursively process v;
3.2. otherwise, we retrieve the available answers for A1 from its associated

tree, resolve u with those answers, create a child node for each of the
resolvents, and recursively compute each added node.

Pruning. To improve performance, we apply a pruning technique that exploits
the lower and upper bound ontologies. Let v be a node with associated goal
Qv := A1 ∧ . . . ∧Am. Before recursively evaluating v, we proceed as follows.

– If cert(Qv,OU ,D) = ∅, we terminate the evaluation of the current node as
this branch cannot lead to a proof. This is due to the fact that the rules used
in the backward chaining algorithm are logically equivalent to OU ∪ D.

– If Qv contains no variables, and cert(Qv,OL,D) 6= ∅, we create a child node
for v, label it with >, and we label the new edge with the empty substitution
and the set of atoms A1, . . . , Am. We recursively evaluate the new node, after
which we terminate the evaluation of v. We can do so because OL∪D |= Qv,
and we know that the current branch will lead to exactly one proof.

– Otherwise, if A1 contains no variable and cert(A1,OL,D) 6= ∅, we create
a child node for v, we label it with the goal A2 ∧ . . . ∧ Am, label the new
edge with the empty substitution and the atom A1, and recursively evaluate
the new node, after which we terminate the evaluation of v. We can do so
because OL ∪ D |= A1, and because v has no other children.

Rule Extraction. The backward-chaining evaluation of the goal Q(~a) results
in a forest of trees encoding all possible proofs of Q(~a) in ΣU ∪ D. In addition
to all proofs of Q(~a), the forest also contains many superfluous derivations that
should be ignored. We now describe an algorithm that traverses the forest and
extracts the set R~a of all rules that participate in proofs of Q(~a). The algorithm
builds the set R~a by carrying out a bottom-up, breath-first search on the nodes
in the forest whose goals appear in proofs of Q(~a). It proceeds as follows.

Step 1 Initialise a set N with all solution nodes in the answer table of tQ(~a).
Step 2 While N is not empty, remove from N a node v with a goal A1∧· · ·∧Am.

If v has a parent, do the following:
2.1. Add the parent of v to N .
2.2. If v is a resolvent of its parent and a rule r ∈ ΣU ∪D, add r to R~a.
2.3. If v is a resolvent of its parent and an answer A from a tree t, retrieve

all solution nodes for A in t and add them to N .

Table 1. Statistics for datasets

Data DL Horn Existential Classes Properties Axioms Individuals Dataset

LUBM(n) SHI Yes 8 43 32 93 1.7× 104n 105n

FLY SRI Yes 8,396 7,533 24 144,407 1,606 6,308

Table 2. Results for LUBM(40)

Query |V | n |G| tf |Of | |Df | tcheck ttotal
M1 2 3 39 36.4 6 29041 H: 23.3 H: 60.7

M2 3 4 1 37.1 6 29004 H: 4.0 H: 42.1

M3 4 6 16 38.2 6 29054 H: 8.4 H: 47.6

M4 2 3 30 36.0 6 29032 H: 23.3 H: 60.2

M5 3 4 4 39.4 6 29010 H: 24.0 H: 64.3

M6 4 6 29 2,845.8 10 87209 H: 483.0 H: 3339.4

M7 3 5 15 38.0 6 29033 H: 10.3 H: 49.3

M8 3 5 14 39.3 6 29038 H: 11.9 H: 52.2

M9 3 4 10 328.9 12 86785 H: 556.2 H: 886.7

S 1 2 39 310.0 12 86802
H: 1,780.0 H: 2,126.5
P: 16,592.1 P: 16,870.0

6 Evaluation

We have developed a prototype reasoner to carry out a preliminary evaluation.
Our prototype integrates the RL reasoner RDFox4 and an OWL reasoner, which
in our case can be either HermiT[16] or Pellet[23]. RDFox is used to compute
lower and upper bound query answers (c.f. Step 1 in Section 3), as well as to assist
with pruning during backward chaining (c.f. Section 5.3). The OWL reasoner is
used with the fragments computed by the backward chaining algorithm (c.f. Step
3 in Section 3) to determine the status of any tuples in the gap.

RDFox is a in-memory triple store that supports OWL 2 RL and datalog rea-
soning, and uses shared memory parallel reasoning for increased efficiency and
scalability. An important feature of RDFox is its rapid query response time—this
is particularly relevant during backward chaining, where queries are used in a
crucial pruning optimisation. HermiT and Pellet are well-established OWL rea-
soners that provide support for CQ answering. HermiT can answer tree-shaped
CQs with a single answer variable; Pellet supports SPARQL CQs.

In our experiments we have used LUBM and the Fly Anatomy ontology as
test sets; their key features are summarised in Table 1. All tests were performed
on a 14 core 3.30GHz Intel Xeon E5-2643 with 125GB of RAM, and running
Linux 2.6.32. All times are given in seconds.

Evaluation results for LUBM. LUBM is a well-known benchmark ontology
that comes with a predefined dataset generator parameterised by the number of
universities. We tested our reasoner on LUBM(40), which contains in its dataset

4 http://www.cs.ox.ac.uk/isg/tools/RDFox/

http://www.cs.ox.ac.uk/isg/tools/RDFox/

over 4 million facts about 40 universities. We used the 14 standard LUBM queries
as well as 78 synthetic queries generated using SyGENiA [12].

Using RDFox, we were able to compute lower and upper bound answers
for all 92 queries in less than 20s (c.f. Step 1 in Section 3). As the focus of
this paper is on checking the tuples in the gap between the two bounds of a
given query, we concentrate our attention on those queries whose bounds do not
coincide. Only 6 queries show a non-empty gap (Q3, Q45, Q51, Q64, Q67, Q69)—
all of them SyGENiA generated—and, due to the relatively simple nature of
the LUBM ontology, it is inevitable that these queries look very similar. Since
the generated queries tend to produce unrealistically large answers, we added
some additional terms to those queries in order to make them more specific and
thus return smaller answers. The resulting 10 “non-trivial” queries, denoted by
M1–M9 and S, are all tree-shaped CQs, with S being the only SPARQL CQ.5

Performance on these queries is summarised in Table 2, where |V |, n and |G|
denote the number of variables, the number of triple patterns and the number of
gap tuples for each query respectively; tf , |Of | and |Df | denote the time needed
to compute the relevant fragments Of and Df using backward chaining, and
their respective sizes; tcheck denotes the total time required for checking all the
tuples in G using the OWL reasoner (c.f. Step 3 in Section 3); and ttotal denotes
the total time for answering the query. We have presented timings for Hermit
(H) on all queries, and Pellet (P) on the single SPARQL CQ.

We can observe that backward chaining times were rather modest for all
queries but M6, for which the computed backward chaining tree had a very large
branching factor. We can also observe that for all queries the dataset fragment
Df contains only about 2% of the facts in LUBM(40), while Of contained just
a few schema-level axioms. This significant reduction in size made it possible
for HermiT to verify answer tuples in reasonable time; indeed, query answering
for LUBM(40) is far beyond the capabilities of HermiT or Pellet, and we were
unable to verify even a single answer tuple using either OWL reasoner over the
original ontology and dataset. A standard optimisation applied by RL reasoners
such as OWLim is to classify the original ontology first and add the entailed
subsumption axioms in OL. Although this optimisation closes the gap between
the lower and upper bounds for query S, allowing, for example, OWLim to
compute all answers for S, it has no effect on queries M1–M9.

To test the scalability of our reasoner, we have also evaluated queries M1,
M6, M9 and S against the datasets LUBM(1)–LUBM(40) (results for queries
M2–M5, M7 and M8 are similar to those for M1). The results of the evaluation
are summarised in Figure 3, which shows the timings and memory usage of our
reasoner for the different datasets.

Evaluation results for FLY. Fly Anatomy is a realistic and complex ontology
describing the anatomy of flies, which comes with a dataset containing more
than 6, 000 facts. We have tested our system using 5 realistic queries provided
by the domain experts who are developing the ontology; all are CQs with non-
distinguished variables, so we were only able to use HermiT in the evaluation.

5 All test queries are available at http://tinyurl.com/ccmwvc6.

http://tinyurl.com/ccmwvc6

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40
 0

 20

 40

 60

 80

 100

 120
To

ta
l t

im
e

(s
)

M
em

or
y

us
ag

e
(G

)

The number of universities

M1_time
M1_mem
M6_time

M6_mem
M9_time

M9_mem
S_time

S_mem

Fig. 4. Scalability test for LUBM(1)-LUBM(40)
Table 3. Results for FLY

Query |V | n |G| tf |Of | |Df | tcheck (H) ttotal tHermiT

Q1 2 3 803 108.9 224 4515 45.9 155.2 3,465.9

Q2 3 5 342 97.7 224 4054 16.0 114.0 3,179.0

Q3 1 1 28 91.0 217 3712 0.9 92.3 5,863.3

Q4 2 3 25 94.3 233 3762 4.7 99.2 2,944.3

Q5 2 2 518 100.3 222 3712 24.0 124.6 3,243.7

RDFox was able to compute lower and upper bound answers for all 5 queries
in less than 15s, with the bounds being different in all cases. Our results are
summarised in Table 3; columns 1–9 are the same as in Table 2, and column
10 gives the time taken for HermiT to answer the query—in contrast to the
case of LUBM(40), HermiT is able to answer all these queries directly. In each
case, Of contained less than 0.2% of all the schema-level axioms; in contrast,
Df contained about 60% of the facts in the dataset. The reduction in number of
schema-level axioms had a significant effect on performance: our reasoner took
less than 200s per query, whereas HermiT required more than 3, 000s per query.

7 Related Work

In recent years there has been a growing interest in the problem of query an-
swering over ontologies and large-scale datasets. Some OWL 2 reasoners, such
as HermiT, Pellet and RACER, support query answering, but despite intensive
efforts at optimisation they can only deal with modestly-sized datasets [14,15,10].

The idea of using a rule-based engine for query answering over ontologies in
the description logic SHIQ was proposed by Hustadt et al. [11] and implemented
in the KAON2 system. The transformation of the ontology, however, results
in a disjunctive datalog program which is exponential in the worst case. An

alternative approach based on tableaux reasoning and data summarisation was
implemented in the reasoner SHER, which is complete for the description logic
SHIN , but (effectively) supports only SPARQL CQs [7].

Many specialised query answering techniques have been developed for ontolo-
gies in the QL and RL profiles of OWL 2. RL reasoners such as OWLim, Ora-
cle’s and RDFox are based on forward-chaining reasoning. QL reasoners such as
QuOnto [1], Presto [21], and Quest [20] are based on query rewriting. These rea-
soners are, however, incomplete for ontologies outside the relevant profile. Query
rewriting techniques have been extended to more expressive Horn Description
Logics, and implemented in systems such as REQUIEM [19] and Clipper [8].

The idea of combining a profile-specific reasoner with a fully-fledged OWL 2
reasoner was proposed in [2], but only for ontology classification. The idea of
transforming the ontology, data, and/or query to obtain upper bound query
answers has also received some attention in the Semantic Web literature. In
addition to our own previous work [27], approximations into OWL 2 QL [13,18]
and into Datalog [25] have also been explored; however, all these techniques are
worst case exponential, and the question of how to deal with cases where upper
and lower bounds do not coincide was not considered.

8 Conclusion

In this paper we have described a hybrid approach for complete query answering
over Horn OWL 2 ontologies. Our technique combines a scalable OWL 2 RL
reasoner with a fully-fledged OWL 2 reasoner s.t. most of the computational
workload is delegated to the RL reasoner, with the OWL 2 reasoner being used
only as necessary to ensure completeness. We have implemented a prototype rea-
soner that integrates the RL reasoner RDFox and the OWL 2 reasoner HermiT.
A preliminary evaluation of our prototype produced very promising results: we
managed to compute in reasonable time the exact answers to a range of queries
over LUBM(40)—results that are far beyond the capabilities of any other OWL
2 reasoner known to us. Our system also outperforms HermiT on the realistic
Fly ontology by at least an order of magnitude. We are currently working on an
extension to support query answering over arbitrary OWL 2 ontologies (and not
just Horn ontologies), as well as on several promising optimisations.

References

1. Acciarri, A., Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Palmieri,
M., Rosati, R.: Quonto: Querying ontologies. In: AAAI. pp. 1670–1671 (2005)

2. Armas Romero, A., Cuenca Grau, B., Horrocks, I.: MORe: Modular combination
of owl reasoners for ontology classification. In: ISWC. pp. 1–16 (2012)

3. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: OWLim:
A family of scalable semantic repositories. Semantic Web J. 2(1), 33–42 (2011)

4. Bry, F., Eisinger, N., Eiter, T., Furche, T., Gottlob, G., Ley, C., Linse, B., Pichler,
R., Wei, F.: Foundations of rule-based query answering. In: RR. pp. 1–153 (2007)

5. Cali, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A fam-
ily of logical knowledge representation and query languages for new applications.
In: LICS (2010)

6. Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B.,
Wang, Z.: Acyclicity conditions and their application to query answering in de-
scription logics. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Rep-
resentation and Reasoning (KR 2012) (2012), download/2012/CHKKMMW12a.pdf

7. Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun, X.:
Scalable grounded conjunctive query evaluation over large and expressive knowl-
edge bases. In: The Semantic Web-ISWC 2008, pp. 403–418. Springer (2008)

8. Eiter, T., Ortiz, M., Šimkus, M., Tran, T.K., Xiao, G.: Query rewriting for horn-
shiq plus rules. In: AAAI (2012)

9. Haarslev, V., Möller, R.: RACER system description. J. of Automated Reasoning
(JAR) pp. 701–705 (2001)

10. Haarslev, V., Hidde, K., Möller, R., Wessel, M.: The RacerPro knowledge repre-
sentation and reasoning system. Semantic Web 3(3), 267–277 (2012)

11. Hustadt, U., Motik, B., Sattler, U.: Reasoning in Description Logics by a Reduction
to Disjunctive Datalog. Journal of Automated Reasoning 39(3), 351–384 (2007)

12. Imprialou, M., Stoilos, G., Grau, B.: Benchmarking ontology-based query rewrit-
ing systems. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, AAAI (2012)

13. Kaplunova, A., Möller, R., Wandelt, S., Wessel, M.: Towards scalable instance
retrieval over ontologies. Knowledge Science, Engineering and Management (2010)

14. Kollia, I., Glimm, B.: Cost based query ordering over OWL ontologies. In: ISWC.
pp. 231–246 (2012)

15. Kollia, I., Glimm, B., Horrocks, I.: SPARQL query answering over OWL ontologies.
In: ESWC. pp. 382–396 (2011)

16. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics.
J. of Artificial Intelligence Research (JAIR) 36(1), 165–228 (2009)

17. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2
Web Ontology Language Profiles (2nd Edition) (2012), W3C Recommendation.

18. Pan, J., Thomas, E., Zhao, Y.: Completeness guaranteed approximations for OWL-
DL query answering. DL 477 (2009)

19. Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient query answering for OWL 2.
In: ISWC. pp. 489–504 (2009)

20. Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-
Lite ontologies. In: KR (2012)

21. Rosati, R.: Prexto: Query rewriting under extensional constraints in DL-Lite. In:
ESWC. pp. 360–374 (2012)

22. Sagonas, K., Swift, T.: An abstract machine for tabled execution of fixed-order
stratified logic programs. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 20(3), 586–634 (1998)

23. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. Web Semantics (JWS) 5(2), 51–53 (2007)

24. Tamaki, H., Sato, T.: OLD resolution with tabulation. In: ICLP. pp. 84–98 (1986)
25. Tserendorj, T., Rudolph, S., Krötzsch, M., Hitzler, P.: Approximate OWL-

reasoning with screech. In: RR. pp. 165–180 (2008)
26. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan,

J.: Implementing an inference engine for RDFS/OWL constructs and user-defined
rules in Oracle. In: ICDE. pp. 1239–1248 (2008)

download/2012/CHKKMMW12a.pdf

27. Zhou, Y., Cuenca Grau, B., Horrocks, I., Wu, Z., Banerjee, J.: Making the Most of
your Triple Store: Query Answering in OWL 2 Using an RL Reasoner. In: WWW
(2013)

A Proof for Theorem 1

In this section, we proof the correctness of Theorem 1. Because the ‘if’ direction
is trivial for monotonicity, we next prove the ‘only if’ direction.

Let O be an OWL 2 ontology, D be a dataset, Q be a conjunctive query and
G be the gap between lower and upper bounds of Q. According to the Definition
2, Of ∪ Df is the union of the (Q, {~a})-relevant fragment, denoted as O~a ∪ D~a
,for each ~a ∈ G. Due to the monotonicity, it suffices to prove that for each ~a ∈ G,

if O ∪D |= Q(~a), then O~a ∪ D~a |= Q(~a).

A.1 Resolution Notations

Our definition of SLD-resolution rule is slightly deviated from the standard SLD-
resolution by restricting ourselves on the most general unifiers. The next lamma
guarantees that in terms of the rule is also complete for horn clauses because
the completeness of standard SLD-resolution.

Lemma 1. Let Λ be a set of datalog rules with functions, and let Q be a Boolean
conjunctive query, if there is a standard SLD-refutation

(H0 = GQ)
r1,µ1 H1

r2,µ2 . . .
rn,µn (Hn = �)

of GQ in Λ with rk ∈ Λ and θk a substitution for each k, then there is an
SLD-proof using the same sequence of rules r1, . . . , rn of the form

(P0 = GQ)
r1,θ1 P1

r2,θ2 . . .
rn,θn (Pn = �)

Definition 3. Let Γ be a set of datalog rules with functions, and let G0 be a
goal of the form A1∧ . . .∧Am. A SLD-tree of G0 in Γ T (G0, Γ) is a labeled tree
satisfying the following conditions:

– the root of T (G0, Γ) is labeled with A1 ∧ · · · ∧Am;

– if Gi+1 can be obtained by a single SLD-resolution Gi
r,θ
 Gi+1, then the node

labeled by Gi has a child labeled by Gi+1 by an edge labeled by r.

If a branch of T (G0, Γ) finishes with ⊥, the branch is an SLD-proof of G0 in
Γ . The refutation rules of G0 in Γ is R(G0, Γ) defined as all the edge labels in
any SLD-refutation in T (G0, Γ).

The SLD-tree of G0 in Γ should contain all the SLD-proof of G0 in Γ .

A.2 Over-approximation Notations

We next define some notations to formalize the over-approximation from datalog±

rules to datalog rules.

Definition 4. Let Λ be a first order logic signature, and let Λ′ be a disjoint
signature containing only constants such that if a function f ∈ Λ, then there
exists a corresponding constant cf ∈ Λ′. Let t be a term in signature Λ, χΛ(t) is
defined as follows.

– if t is a constant or variable, then χΛ(t) = t;
– if t is in the form of f(t1, . . . , tl) then χΛ(t) = cf .

The Λ is omitted for brevity if the signature is clear from the context.
Let ϕ be a first order formula in signature Λ, χ(ϕ) is defined as the resulting

formula by replacing each term t in ϕ by χ(t). Let θ be a substitution of the form
{t1/x1, . . . , tn/xn} from signature Λ, χ(θ) is {χ(t1)/x1, . . . , χ(tn)/xn}.

Property 1. Let Λ be a first order logic signature, χ(tθ) = χ(t)χ(θ) for any term
t and any substitution θ from Λ.

Definition 5. A datalog± rule r is a function-free first order sentence of the
following form with the commas standing for conjunctions and the outside uni-
versal quantifier ∀~x omitted for brevity

∃~y (C1 ∧ . . . ∧ Cq)← B1 ∧ . . . ∧Bp (2)

where B1, . . . , Bp are non-⊥ atoms with free variables in ~x, C1, . . . , Cq are non-⊥
atoms with free variables in ~x ∪ ~y.

Let Σ be a set of datalog± rules. For each rule r ∈ Σ of the form (2) and
each variable yi ∈ ~y, let f ir be a function symbol unique for r and yi. Then sk(r),
the skolemization of r, is the rule

C1θ ∧ . . . ∧ Cqθ ← B1 ∧ . . . ∧Bp

where θ is a substitution that maps each variable yi ∈ ~y to f ir(~x). And sk(Σ) =
{sk(r) | r ∈ Σ}.

Let Σ be a set of datalog± rules, Λ be the signature of sk(Σ) and Λ′ the corre-
sponding signature as defined in Definition 4. Then Ξ(r), the over-approximation
of r defined in our previous paper [27], can be also defined as χ(sk(r)). And recall
that Ξ(Σ) = {Ξ(r) | r ∈ Σ}.

It is easy to verify that Ξ(·) is a injection function from datalog± rules Σ to
datalog rules, and thus, its inverse Ξ−(·) on Ξ(Σ) is well-defined. For a set of
datalog rule Γ ⊆ Ξ(Σ), Ξ−(Γ) = {Ξ−(s) | s ∈ Γ}.

Let Σ be a set of datalog± rules. According to Definition 5, sk(Σ) is a set
of datalog rules with functions and Ξ(Σ) is a set of datalog rules. For any rule
r ∈ Σ of the form (2),

sk(r) : C1θ, . . . , Cqθ ← B1, . . . , Bp

= ∃~y (C1θ, . . . , Cqθ)← B1, . . . , Bp

= rθ

Ξ(r) : χ(sk(r)) = χ(rθ) = rχ(θ)

A.3 Proof

Now we are ready to formally prove the theorem. Let ~a be an arbitrary tuple
in G. The fragment O~a ∪ D~a is the set of OWL axioms that are equivalent to
Ξ−(R(Q(~a), Ξ(ΣO))), where ΣO is the datalog± program that are equivalent to
O in the signature of O. Then,

O ∪D |= Q(~a) iff ΣO |= Q(~a)

O~a ∪ O~a |= Q(~a) iff Ξ−(R(Q(~a), Ξ(ΣO))) |= Q(~a)

In order to prove

if O ∪D |= Q(~a) then O~a ∪ D~a |= Q(~a),

it suffices to prove the following theorem.

Theorem 2. Let Σ be a set of datalog± rules, let Q be the Boolean conjunctive
query of the form P (~a) for a conjunctive query P and a tuple ~a, then the following
holds

if Σ |= Q then Ξ−(R(Q,Ξ(Σ))) |= Q

Proof. Since Σ |= Q, we have sk(Σ) |= Q, and further there exists an SLD-proof
of Q in sk(Σ). Assume it to be the derivation (3) where rk ∈ Σ for each k.

(G0 = Q)
sk(r1),µ1
 G1 . . . (Gn = �) (3)

(H0 = Q)
Ξ(r1),χ(µ1)
 H1 . . . (Hn = �) (4)

(P0 = Q)
Ξ(r1),λ1
 P1 . . . (Pn = �) (5)

We next prove that there is an SLD-proof of Q in Ξ(Σ) of the form (5) that
appears in the SLD-derivation tree of Q in Ξ(Σ). We divide the following proof
into two steps:

Step 1. Given the SLD-proof (3) of GQ in sk(Σ), there is a standard SLD-
refutation (4) of Q in Ξ(Σ).

Step 2. Given the standard SLD-refutation (4) of Q in Ξ(Σ), there exists an
SLD-proof (5) of Q in Ξ(Σ).

Step 2 can be proved by Lemma 1. So we only need to prove Step 1.

Proof for Step 1.

We first construct Hk = χ(Gk) and next show that Hk can be obtained from
Hk−1 by a single SLD-resolution with the substitution χ(µk) using rule Ξ(rk)
for each k.

Assume that we have the following facts.

Gk−1 : A1 ∧A2 ∧ . . . ∧Am
rk ∈ Σ : C1 ∧ . . . ∧ Cq ← B1 ∧ . . . ∧Bp

Then,
Hk−1 : χ(A1) ∧ χ(A2) ∧ . . . ∧ χ(Am)

According to Definition 5, there is a substitution θ such that

sk(rk) = rkθ : C1θ ∧ . . . ∧ Cqθ ← B1 ∧ . . . ∧Bp
Ξ(rk) = rkχ(θ) : χ(C1θ) ∧ . . . ∧ χ(Cqθ)← B1 ∧ . . . ∧Bp

With the substitution µk such that A1µ = Cjθµ, we have

Gk : A2µ ∧ . . . ∧Apµ ∧B1µ ∧ . . . ∧Bpµ

Since χ(A1)χ(µ) = χ(A1µ) = χ(Cjθµ) = χ(Cjθ)χ(µ), the following goal Hk

is obtained with the substitution χ(µ).

χ(A2)χ(µ) ∧ . . . ∧ χ(Am)χ(µ) ∧B1χ(µ) ∧ . . . ∧Bpχ(µ)

which is equivalent to χ(Gk) because of Property 1 and the fact that χ(B) = B
for each function-free atom B. ♦

Therefore, the sequence (4) is a standard SLD-derivation of Q in sk(Σ).
Moreover, Hn = χ(Gn) = � and hence the SLD-derivation (4) is an SLD-
refutation of Q in Ξ(Σ).

So P0
Ξ(r1),λ1
 P1

Ξ(r2),λ2
 . . .

Ξ(rn),λn
 Pn is an SLD-proof of Q in Ξ(Σ)) and

hence, {Ξ(r1), . . . , Ξ(rn)} ⊆ R(Q,Ξ(Σ)). Therefore,

{r1, . . . , rn} ⊆ Ξ−(R(Q,Ξ(Σ))).

Because (3) is an SLD-proof of Q in sk(Σ), {sk(r1), . . . , sk(rn)} |= Q and
hence {r1, . . . , rn} |= Q. Finally, we have Ξ−(R(Q,Ξ(Σ))) |= Q. �

	Complete Query Answering OverHorn Ontologies Using a Triple Store

