

Insect pest
management in
strawberries;
a closer look at the IPM
toolbox

Dr. Sarah Zukoff Research Entomologist, Entomology Program Leader

Cal Poly Strawberry Center

Cal Poly Strawberry Center

Welcome t the 2022 lyg bug rounc table

Table

SINGA MARIA, CR 11/1/22

CALIFORNIA STRANDERRY COMMISS

B.

CAL POLY STRANDERRY CENTER

A small round table meeting was hosted by the California Strawberry Commission (CSC) in Santa Maria to help mediate a discussion on concerns of high lygus bug populations (Fig. 1). Both Cal Poly Strawberry Center (CPSC) and the California Strawberry Commission spoke on issues related to ... Continue reading

Grower/PCA Round

Table: Santa Maria Lygus

Bug discussion summary

BY SARAH ZUKOFF NOVEMBER 15, 2022

Cal Poly Strawberry Center Disease Diagnostic Service

About the plant disease diagnostic service Soil-borne pathogens such as Macrophomina phaseolina are challenging strawberry production as they become increasingly prevalent

SUBSCRIBE HERE

Blog Categories

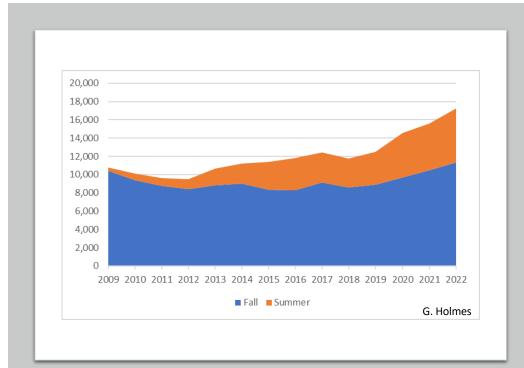
FOLLOW STRAWBERRY CENTER BLOG

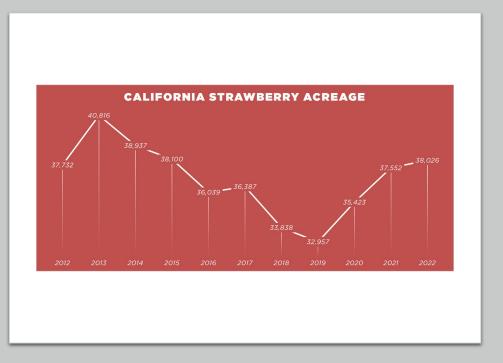
Enter your email address to follow this blog and receive notifications of new

The perfect strawberry

Applied research - integrated pest management (IPM)

focus: everything in a grower's "toolbox" -prevent wasting (food) (\$) (time)


The billion \$ crop...



(Kansas corn worth \$4.6 billion=6 million acres)

Continuous year-round planting=year round bug food

Lygus bugs #1/2 pest

- Western Tarnished Plant Bug Lygus Hesperus
- Pale Legume Bug Lygus elisus

Often run out of options mid-season in areas of heavy pressure.

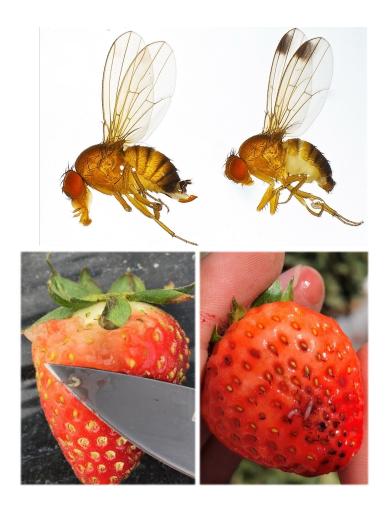
Two spotted spider mites

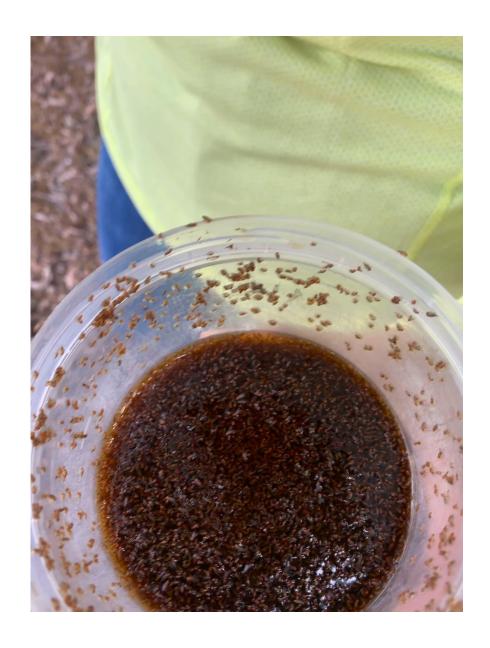
Lewis mite

• Weekly miticide sprays

• Infest all year long

• early summer





Investigating the pest issues

Spotted Wing Drosophila #3-ish

Intro and overview Zukoff lab IPM projects

- Nonchemical options for lygus bugs
- Best use of chemical options for lygus bugs
- UVC?
- How to make predators work!
 - Pred mites BMP
 - SWD parasitoids?
- Honey bees in strawberries?

Non-chemical IPM for lygus bugs?

95% CA strawberry growers use lygus bug vacuums

5-20% efficacy (kills 98%)

Strict use and maintenance standards to reach 20% efficacy.

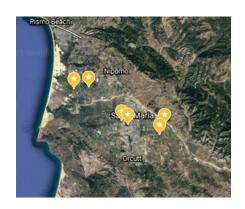
2022 Survey 50% rigs operating too slow Most operating with clogged or caked baffles Drivers using them to clean out old plant material Operating too close or too far from the canopy

Chemical Name	Trade Name	Resistance Detected?	Knock Down?	Classification	Moa	Omri- Listed	Bee Precautio
Bifenthrin	Brigade	Yes	Yes	Pyrethroid	3a	No	Toxic To Bees
Plant Essential Oils (Clove, Peppermint, Rosemary) Or Oil Based	Pest Out Ultra, PureCrop1 Gargoil	No	No			Some	
Bifenthrin+ Abamectin	Athena	?	yes	Pyrethroid+GluCl	3A+6	No	Toxic To Bees
Acetamiprid	Assail	Yes		Neonicotinoid	4a	No	Hazardoi To Bees
Thiamethoxam	Actara	Yes	Yes	Neonicotinoid	4a		Do Not Apply During Bloom O When Be Are Foraging The Area
Pyrethrins	Pyganic	Yes	Yes	Pyrethroid	3a	Some	Hazardoi To Bees
Azadirachtin	Neemix, Trilogy, Azaguard, Debug, Turbo	?	No	Repellent		Some	

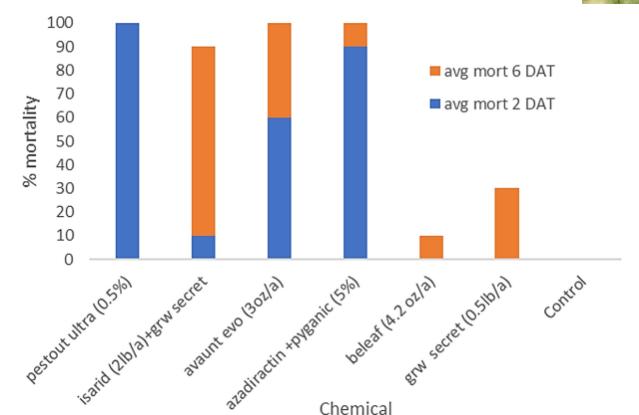
Flupyradifurone	Sivanto	Yes	No	Butenolides	4d		
Fenpropathrin	Danitol	Yes	Yes	Pyrethroid	3a	No	Toxic To Bees
Flonicamid	Beleaf	Yes	No	Flonicanid	29	No	
Malathion	Malathion	Yes	Yes	Organophosphate	1b	No	Hazardoi To Bees
Naled	Dibrom	Yes	Yes	Organophosphate	1b	No	Use In Evening After Bee Activity I Ended.
Novaluron	Rimon	Yes	No	Chitin Inhibitor	15	No	
Beauveria Bassiana	Botegha	No	No	Entomopathogenic Fungi		Some	
Chromobacterium Subtsugae	Grandevo	No	No	Bacteria		Yes	Tempora Repels Bees; Adjust U: Accordin
Metarhizium Brunneum	Met 52 Ec	No	No	Entomopathogenic Fungi		Yes	
Isaria Fumosorosea	Pfr-97	No	No			Yes	
Alcohol Ethoxylate	Oroboost	No	No				

All chemicals listed for lygus management in California strawberries: what is working and what isn't?

Not many...



Lygus hesperus Insecticide Resistance Status in California Strawberries



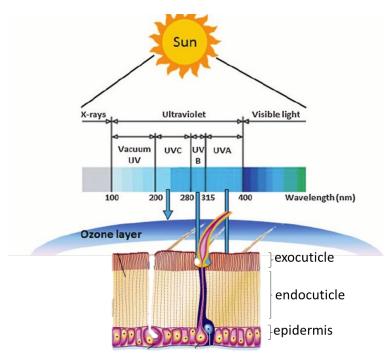
Kiley Jensen M.S. student

Lygus bug insecticide screening

Noelia Ayuso Undergraduate Student intern Senior project

Dip assay simulating 100% coverage

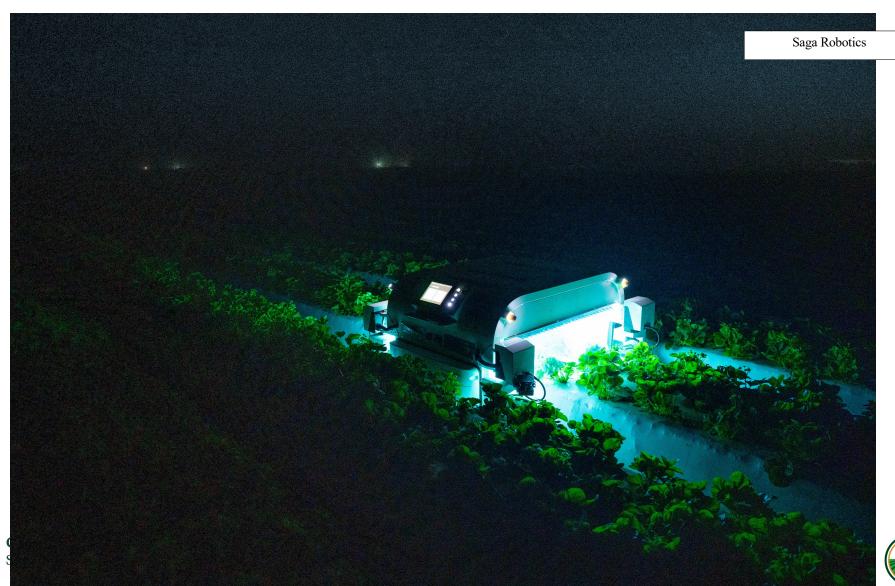
Non-chemical alternatives?


Can UV-C be used to manage insect pests?

Jose L. Alvarado Rojas Research/lab assistant M.S. student

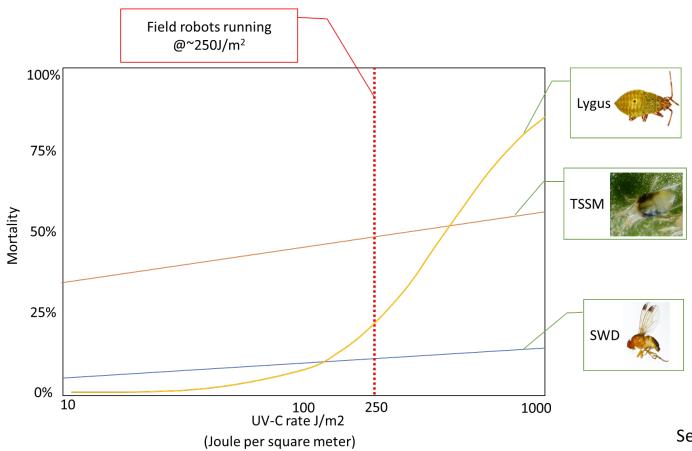
Savana Becerra Student intern

We are studying how UVC can be used in strawberries for insect management in both the lab and field.


- All organisms including insects have a natural repair mechanism that activates during daylight to repair damage done by UV.
- A repair enzyme absorbs natural light from the sun to obtain energy for the repair processes.
- For UVC to be effective in doing damage to pest insects it must be applied only at night.
- Different stages of insects may react differently to different dosages of UVC.
- Understanding the dose of UVC required to damage different species while not disrupting the plants' ability to thrive is critical.

TRIC Robotics

Saga Robotics



Several field studies in Salinas and Santa Maria...

Improving predatory mite use in strawberries

Sam Bregman Student intern

Jesus Alberto Martinez-Rodriguez Graduate student

Bella Donati STUDENT INTERN

Jimi Valov Senior Project

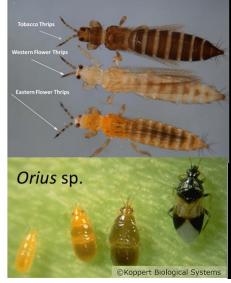
Paola Guido Student Intern SENIOR PROJECT

Noelia Ayuso Student intern

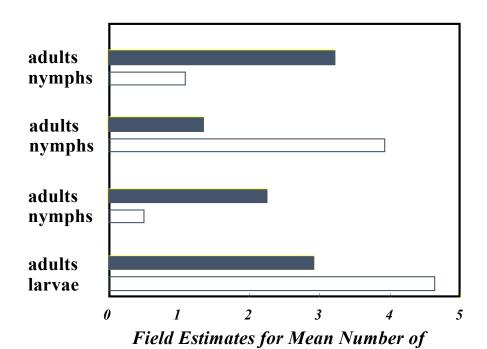
Alvin Xu STUDENT INTERN

Ben Grossman-Thompson STUDENT INTERN

Non-chemical IPM for spider mites



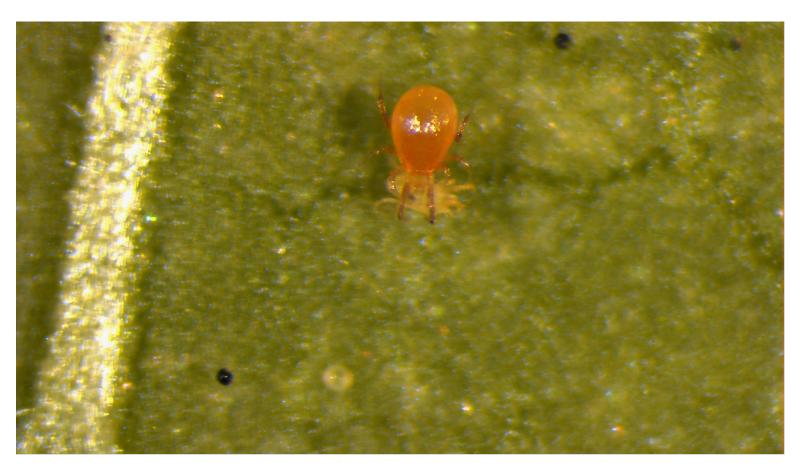
Biological Control:Our Primary Defense


Predatory mite

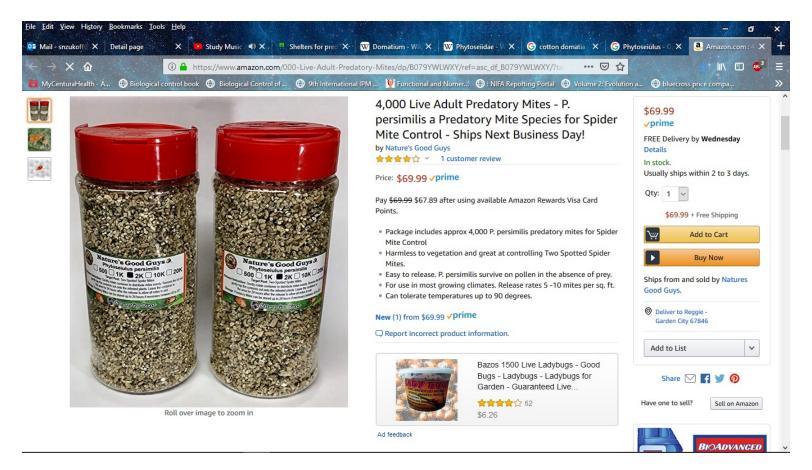
Pirate bug

Six-spotted thrips

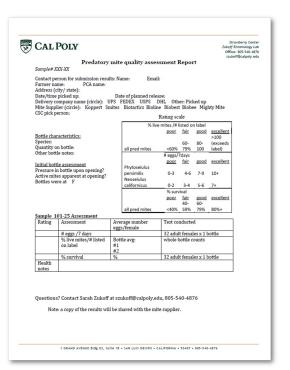
Spider mite destroyer



Spider Mites Consumed/Predator/Hour



Classical biocontrol of mites



How to submit a sample

Predatory mite quality summary for 2021-2022

	year	company	received
	2021	Biotactics	4
		Bioline	10
		Koppert	6
emite™Natural Enemies		Mighty Mite	4
eiulus persimis contents before dispensis	2022	Biobest	2
		Bioline	2
		Mighty Mite	12
		Smites	12
		USA AG	2

Central Coast Insectary

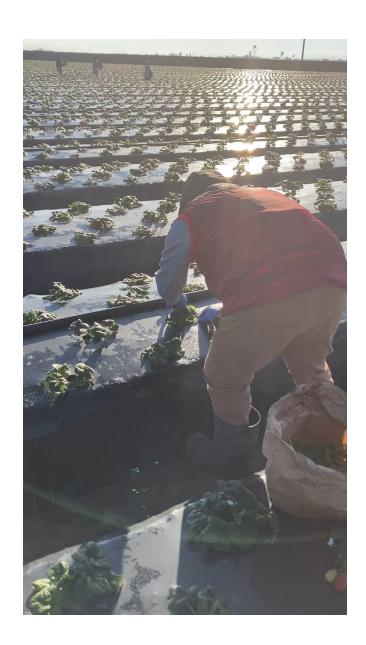
samples

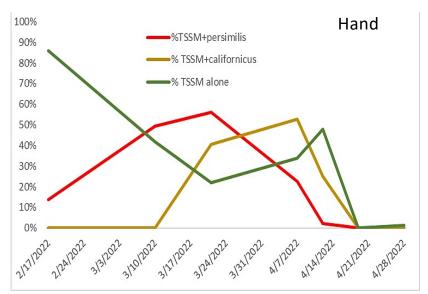
Phytoseiulus

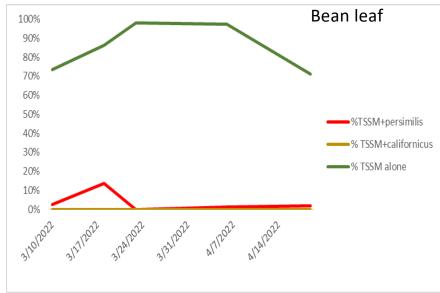
Release Immediately Keep cool 40-50°F (5-10°C)

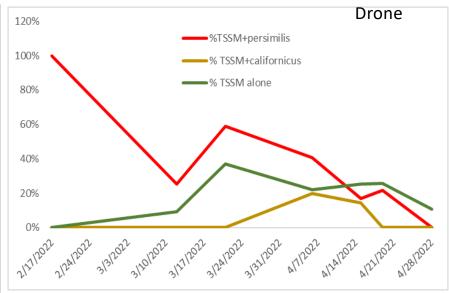
2021 2022 ~63% ~45% # lives mites per bottle/# listed on bottle label= % live mites

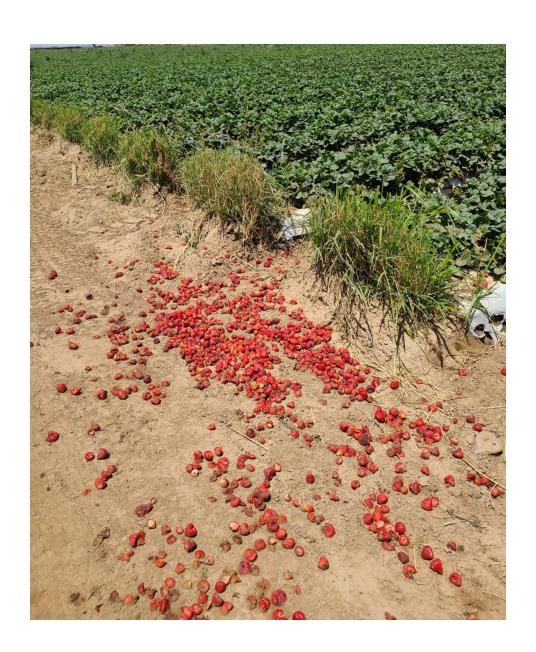
Year	Predatory mite company	Average number of live mites per bottle	Species
2021	PM-A	100%	Neoseilus californicus
2021	PM-A	47%	Phytoseiulus persimilis
2022	PM-A	41%	Phytoseiulus persimilis
2021	PM-B	64%	Neoseilus californicus
2021	PM-C	19%	Phytoseiulus persimilis
2022	PM-C	40%	Phytoseiulus persimilis
2021	PM-D	70%	Phytoseiulus persimilis
2021	PM-E	75%	Phytoseiulus persimilis
2022	PM-E	54%	Phytoseiulus persimilis
2022	PM-F	75%	Phytoseiulus persimilis
2022	PM-G	12%	Phytoseiulus persimilis











Spotted Wing Drosophila

Honey bees foraging preference in strawberry

Honey bees foraging preference in strawberry

Honey bees foraging preference in strawberry

