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Strain Sensitivity of aLIGO
• Mostly limited by quantum noise
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Quantum noise

LSC, Class. Quantum Grav. 32, 074001 (2015)

Advanced LIGO

design sensitivity

http://iopscience.iop.org/article/10.1088/0264-9381/32/7/074001/meta


Strain Sensitivity of KAGRA
• Mostly limited by quantum noise
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Quantum

KAGRA

design sensitivity

YM+, Phys. Rev. D 97, 122003 (2018)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.122003


Quantum Noise
• Originated from quantum fluctuation of light

Shot noise

Fluctuation of number of photons to photodiode

Radiation pressure noise

Fluctuation of number of photons to mirror

• Let’s calculate quantum noise limited sensitivity of 

gravitational wave detectors!
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Shot Noise
• Number of photons to photodiodes fluctuates

• Quantum fluctuation of power
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Shot Noise Limit of Michelson
• Power change

• Shot noise

• Shot noise limited sensitivity
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Better shot noise with higher input power
Best at dark fringe (where PPD=0)

(recall Lecture 1)



Radiation Pressure Noise
• Number of photons to mirror fluctuates

• Power fluctuation

• Mirror displacement
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Mirror

Assumed Michelson with input power P0

Force on 
mirror

Force to 
displacement

free-falling mirror



Susceptibility
• Equation of motion of a suspended mirror

• Transfer function from force to displacement
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Resonant 
frequency

Q-value



Standard Quantum Limit
• Shot noise is lower with higher power

• Radiation pressure noise is lower 

with lower power

• Standard Quantum Limit (SQL) for Michelson
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Trade-off

√2 for two arms
m is mirror mass
(m/2 is reduced mass)
Assuming BS with infinite mass

from Uncertainty principle



Input Power and Sensitivity
• SQL cannot be beaten by changing power
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Michelson
(1000 W)

Michelson
(10 W) Shot

Michelson
(100 W)



Use of Fabry-Pérot Cavities
• Still, SQL cannot be beaten (similar effect to increasing 

the power)
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Fabry-Pérot-Michelson
(100 W, Finesse 100)

Michelson
(100 W)



High-Frequency Response
• The effect of gravitational waves

cancel at high frequencies
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Michelson

FPMI

For a given frequency, 
there is a limit where 
longer arm length and 
higher finesse won’t 
help increasing the 
sensitivity

Laser



FPMI Quantum Noise
• Shot noise

• Radiation pressure noise

• Standard Quantum Limit (SQL) for FPMI
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2 for two mirrors of a cavity
m is mirror mass (m/4 is reduced mass)



Finesse Dependence
• Too high finesse narrows the detector bandwidth
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Michelson
(100 W)

High frequency 
sensitivity is not 
dependent on finesse 
(nor length)



Arm Length Dependence
• Longer arm is better (but not at high frequencies)
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Michelson

Fabry-Pérot-Michelson



Mirror Mass Dependence
• Heavier mass is better for reducing radiation 

pressure noise
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Michelson

Fabry-Pérot-Michelson



Sensitivity Curves of GW Detectors
• Now you know how to calculate quantum noise 

limited sensitivity

• Let’s look at the designed sensitivity curves of 

current and proposed GW detectors

• B-DECIGO

Space-based Fabry-Pérot interferometer

• LISA, TianQin

Space-based Optical transponder
(similar to Michelson interferometer)

• Advanced LIGO, KAGRA

Ground-based Fabry-Pérot-Michelson

interferometer (with recycling cavities)
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Sensitivity Curves of GW Detectors
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B-DECIGO

LISA

Cosmic Explorer

Einstein Telescope aLIGO

KAGRA

LISA: https://perf-lisa.in2p3.fr/

TianQin: arXiv:1902.04423 (from Yi-Ming Hu)

B-DECIGO: PTEP 2016, 093E01 (2016)

KAGRA: PRD 97, 122003 (2018)

aLIGO: LIGO-T1800044

ET: http://www.et-gw.eu/index.php/etdsdocument

CE: CQG 34, 044001 (2017)

TianQin

https://perf-lisa.in2p3.fr/
https://arxiv.org/abs/1902.04423
https://academic.oup.com/ptep/article/2016/9/093E01/2468920
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.122003
https://dcc.ligo.org/LIGO-T1800044/public
http://www.et-gw.eu/index.php/etdsdocument
https://iopscience.iop.org/article/10.1088/1361-6382/aa51f4/meta


B-DECIGO
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B-DECIGO

• Consistent with 100 km, 30 kg, 1 W, Finesse 30
(wavelength: 515 nm)



LISA
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LISA

• Shot noise of 2.5e6 km, 3e-12 W Michelson
(classical force noise at low frequencies)



TianQin
• Shot noise of 1.7e5 km, 4e-10 W Michelson

(classical force noise at low frequencies)
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TianQin



Optical Transponder
• LISA and TianQin uses small amount of light 

(1-100 pW) due to very long arm length

• Amount of light scales with

→ shot noise floor stays the same

(cut-off frequency shifts by         )
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Laser Laser

More power received
with shorter arm



Advanced LIGO
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aLIGO

• 4 km, 40 kg, 125x40/0.1 W, Finesse 450*0.1
(power recycling gain 40, signal recycling gain 0.1)



KAGRA
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• 3 km, 22.8 kg, 67x10/0.07 W, Finesse 1530*0.07
(power recycling gain 10, signal recycling gain 1/15=0.07)

KAGRA



Resonant Sideband Extraction
• Power Recycling

• Resonant Sideband

Extraction

26

Laser

~100 W

~1 kW

~1 MW

Power recycling mirror:
Effectively increase power

Signal recycling mirror:
Effectively reduce finesse while 
keeping arm cavity power



Some Details Neglected
• LISA, TianQin and DECIGO are triangular

• DECIGO is locked Fabry-Pérot interferometer

(not Fabry-Pérot-Michelson interferometer)

• There are other sensing noises such as photodiode 

noise, laser frequency noise, oscillator phase noise 

etc...

• There are many other classical noises

- Seismic noise

- Gravity gradient noise (Newtonian noise)

- Suspension thermal noise

- Mirror coating thermal noise

- Other force/displacement noises

→ To be addressed some in next Lecture 27



Summary
• Standard Quantum Limit (SQL) sets certain limit to 

the sensitivity of laser interferometers

• SQL can be reduced with larger mirror mass and 

longer arm length

• Higher power shifts the detector band to higher 

frequencies

• Higher finesse increases the sensitivity at the most 

sensitive band, but reduces the bandwidth

• LISA and TianQin use small fraction of power, and the 

detector band can be shifted by changing the arm length

• Resonant Sideband Extraction technique is used in ground-

based detectors to effectively change finesse and power
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