any
มาบาวระมท
aglin a ahl ao nollvzinvjyo
NATIONS
Rome 1982

 cois!u!p sounsuris

CHAPTER I. GENERAL CONSIDERATIONS
Importance of Reliable Estimates of Crop Production
Problems of Estimating Crop Areas and Yields
Concepts and Definitions of Crop Areas and Yields
Areas
Yields and production
Sources of Data on Crop Areas and Yields
CHAPTER II. CoNDUCTING CROP AREA AND YIELD SURVEYS
Components of a Programe for Crop Statistics
Coverage of the programme
Design of Crop Area and Yield Surveys
Locality-wise system of crop reporting
Holding -wise direct crop reporting system
Complete enumeration of holdings
Sample surveys and schedules
Questionnaires and
Pre-test or pilot surveys
Tabulation and Processing
Tabulation
Manual processing
Land Surveying Methods
Measuring parcels and fields
Assessment of the surveying instruments
Measuring distances
Measuring angles
Evaluation of crop areas
Remote sensing
CHAPTER III. MEASURING CROP AREAS
Methods Based on Mapping Material
Area sampling

TABLE OF CONTENTS

$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\circ}$

が

published in 1965.
pue cations and documents on the subject, especially the following: part of these promotional efforts, the FAO published and widely circulated a number of publiTechnical assistance experts in agricultural statistics assigned to countries almost invariably
had statistics of croparea and yield as a priority item on their programme of work. As

 ques combined with objective measurement, especially in developing countries. Crop area and - тuqวaี

developing countries.
and willing to provide accurate information, which was often not the case, especially in ful accuracy unless the area data were based on cadastral maps and the farmers were able tors were highly experienced and a number of other criteria were observed. Data on areas unit area, a method which could result in somewhat reliable results, provided the investiga that of eye estimation of both the areas under different crops and the expected yield per

 As determinants of crop production, statistics on crop areas and yields have been amongst
Statistics Division, FAO, 00100 Rome, Italy served as a FAO consultant for this purpose. Coments on this publication for use in pre
 the methodology and incorporating the experience gathered by technical cooperation experts These two publications have been extensively used and demand has been increasing in
their updating and extension of their scope by inter alia, including new developments in
Importance of Reliable Estimates of Crop Production

1. Comprehensive statistics of a reasonable quality are one of the for the formulation and evaluation of development plans. The shortage of statistics and of
other basic information is one of the main obstacles to more effective agricultural develop$m e n t ~ p l a m i n g, ~ e s p e c i a l l y ~ i n ~ t h e ~ l e s s ~ d e v e l o p e d ~ c o u n t r i e s . ~ A s ~ a g r i c u l t u r e ~ i s ~ t h e ~ p r e d o m i-~$ nant activity in most of these countries, high priority should be given to the development of agricultural statistics.

> generally very rapid (except when implementing agrarian reform), the
information need not necessarily be collected on a yearly basis. censuses of agriculture. Since the changes in structure are not

> Data on agricultural production, utilization, prices, etc., items belonging to what is termed current agricultural statistics, which are to be collected through surveys on a continuous or seasonal basis, possibly several times during the agricultural

 development progr 3. Reliable estimates of annual production of food crop and other agricultural commodities
are assuming a rapidly growing importance, as countries make serious efforts to plan national
development programmes to tackle the problem of feeding their populations and to raise their CHAPTER I. GENERAL CONSIDERATIONS 5. Total production of a crop with any degree of reliability may be possible to obtain for
those crops, which are either marketed entirely or which the cultivation is limited to a few
large estates (e.g. cotton, tea, coco, rubber). For such crops, accurate data can be
obtained through marketing organizations dealing with the particular commodities or from the
farms or estates which produce them. Even then, some parts of the production may be marketed
outside the official channels and thus result in an under-estimation of total production.
tivity.

$$
\begin{aligned}
& \text { The zoning or regionalization of crop production according to } \\
& \text { the nature of the soil, the level of the yield, etc. }
\end{aligned}
$$

The elaboration and implementation of import and expert policies
of agricultural commodities in cases of deficits and surpluses. The determination of the cultivation plans at the national level
(diversification of crop production) as well as at the individual
farmer's level).

1) The determination of the cultivation plans at the national level are needed for a larger number of objectives, the most important of which are: 4. Time series of reliable data on crop production and its two components, areas harvested
and yields per unit area, are essential for any rational development programme. The series
are needed for a larger number of objectives, the most important of which are: ,
$-$
vincial offices. They will have to measure and/or estimate the crop areas; estimate the
expected yield and report on crop conditions. The reports could be periodic (e.g. monthly)
or distributed in time depending on the phenological characteristics of the crop. responsibilities of the outposted statistical officers and agents in the regional or pro-
vincial offices. They will have to measure and /or estimate the crop areas; estimate the
 yields and production is a permanent activity and has to be organized on a continuous basis
 order of magnitude of the expected deficit or surplus is needed several months before harvest
for important crops. tion of those food crops and other agricultural conmodities, the output of which is known to
be below the demand. Some kind of reasonable forecast of the production or at least some soon after harvest, do not always satisfy the needs of planners and policy makers, especially
those who are concerned with export policies or with import measures to supplement the produc-
tion of those food crops and other agricultural cormodities, the output of which is known to 10. Reliable statistics of crop production even when they are timely, i.e. when available
soon after harvest, do not always satisfy the needs of planners andipolicy makers, especiall in planning agrarian reform and rural development sometimes by other characteristics, such as land tenure or legal status are also essential fertiiizers (N, K, P and their combination and ratios), treatments (pesticides, insecticides, according to the different types of inputs: water (rainfed, irrigated and method of irriga-
tion), types of seeds (local, improved and high yielding varieties), types and amount of 9. Similarly, the datia on crop areas and yields have to be disaggregated especially

Moreover, other production related data on the volume of existing stocks and the rates
waste (pre-harvest, harvesting, transport, storage, etc.) are also needed.

in time: for each agricultural cycle separately showing the succession
pattern within the year as well as the crop rotation from year to year;

disaggregated in various ways in order to satisfy the needs of the different users. They 8. For development planning purposes, the production data including data on crop areas and
yields are not sufficient if only given at the national level. The statistics have to be A Permanent System to Collect the Needed Data
components are then measured or estimated separately and the product $P=A D Y$ is then calcu-
lated. ponents of production: area "A" of compact plantations, density (number of trees, plants,
stands, etc.) "D" per unit area and yield "Y" per tree (or plant, stand, etc.). The three 7. For certain crops, especially tree crops, the production is estimated either through
the number of productive trees and the yield per tree, or through the following three comoutput of the crop: $\mathrm{P}=\mathrm{AY}$. measure or estimate separately each of them; the product of the two then gives the total
 6. For the large majority of crops and especially staple food crops which are usually
grown by millions of farmers in scattered holdings, a complete enumeration for measuring
their annual production is impossible. A practicable approach to the measurement of

crop areas. However, statistics of
be biased and under-estimated if the farmer does not declare and/or show to the enumera
all his fields and also in the case where the enumerator omits to measure those fields
which are situated far away and difficult to reach. 24. Nevertheless, the obech
crop areas. However, statistics of total crop areas, when using this method, will still
be biased and under-estimated if the farmer does not declare and/or show to the enumerator 24. Nevertheless, the objective method of measuring areas gives the most reliable data on
polygon, with a small number of sides (e.g. .ess than 20 , of an equivalen are
Measuring errors can be introduced by the surveyor or are inherent to the equipment necessary equipment. The shape of the fields, especially in developing countries is not
always polygonal but often a curvilinear closed figure, which has to be reduced to a 23. Measuring areas is a difficult, costiy and
 measured. up-dated, the area different crops change from year to year, and have to be estimated subjectively or
 22. The estimation of crop areas in holdings, even when cadastral maps exist, is not an of crops encouraged by the government through incentives they tend to purposely under-estimate areas or production to ar or production in the case to inability of the respondent to provide the information especially because of lack of
knowledge and/or deliberate unwiliningness to declare the correct figures. In general, error which is known to exist and should not be under-estimated, but the assessment of problems relating to the respondent are due either
which is very difficult to carry out. Priche information, while in the second case at each round a new eorm is uset on winterviewer's
information on all the crops is recorded. The main probiem relates to the intern form is used for each crop and at each round the interviewer records on it all the releva dilemma: individual crop or collective crop questionnaire. In the first case, a special can only be used in sample surveys and thus presents the same problems spelled out in para.
17 . Other specific problems are those relating to the questionnaires or forms to used, The interview method, in the case of continuing investigation of.crop areas and yields, knowledge and experience of the person who makes them yield implies a deep knowledge and a wide and yields by locality chiefs or other knowledge-
judgement and eye estimates of crop areas and yen
able persons of the locality are subjective and their quality will depend on the level of yield implies a deep knowledge and a wide and long experience of the investigator. Similarly not eye-estimate all the areas and all the yields of all the fields and all the crops in his
 deficit years. he or she is liable to over-estimate crop yields. Estimates of crop yields made by a
"neutral" investigator (or voluntary reporters) will tend to show a regression towards a
known normal average, i.e. the investigator will under-estimate the true yield in "good
or bumper years, bringing it nearer the average, and will over-estimate it in "bad" or
 vated part of the area is known, the subdivision of the total area into the corage crop yield
under the different crops is a problem. On the other hand, the estimated average con as mentioned in para. 17 . Even when the total size of the unit or the size of the culti-
vated part of the area is known, the subdivision of the total area into the component areas 19. Problems of field reporting include those created by the size of the enumeration unit
as mentioned in para. 17. Even when the total size of the unit or the size of the culti-
yield. Such problems are enumerated in the following paragraph.

 more complicated than those of successive crops and where cropping inte the problems are similar to those of mixed cropsing and, in the former, the area or, after uprooting those plants that have already been harvested | crops |
| :---: |
| planted |
| pat are | 30. In so

same crop
crops are case of crops in pure stand.

 (from less than three monthis to more than a year) and the crops may have different periods
sowing, plenting and harvesting. Thus, the unmer of crops in the same field may vary
隹

 the slope and thus require for their growth some kind of vertical cylinder of sor sil. If the
crop area is measured on the slope and not projected horizontal1y, crop areas could be sig-

 forms, sizes and cal
standardized units.

 parts of the country and, naturally, these dimensions are not know.
 conversion
with different names are used
locally in different regions within the same country and when
still more serious problem is encountered in counany problem as long as the national unit can be converted ro the standard when measuring units
conversion factor is is fixed once and for all. A serious problem exists when

* Figures between square brackets represent the serial number of the publication in
the List of References and Selected Bibliography
the practices if comparability of area statistics between countries is to be secured. another of the concepts and very often without its being appropriately qualifled or This situation calls for clarification of the concepts and definitions and harmonization of and their yields. However, in practice many countries have used indifferently one dined. while it recommends the use of the concept "net area" (see para 58) when dealing with crops '응 35. Concepts and definitions of Area in agricultural statistics depend on the use to be made Areas [1] Concepts and Definitions of Crop Areas and Yields
this aspect of agricultural statistics and the possibility of introducing a new parameter or
concept related to the period of soil occupation was recommended in the FAO Regional Seminar
on the Methodology of Agricultural Surveys. [13]. *. this aspect of agricultural statistics and the possibility of introducing a new panameter or the factor "time" or "period of soil occupation", those indicators like "cropping intensity" the two concepts: area and yield, or alternatively area and production, do give an incom-

34. From the difficulties presented above in paragraphs 29 to 33 , it is clearly seen that

it would get more and more bushy until some 10 years later when it might be cleared again and cultivated.

 may be used as a reserve stock of cassava or used as pasture land for a period of time, then crop mixtures, but generally including cassava, are planted. After the fourth year the land
is abandoned. Besides the above problems of mixed cropping, continuous planting and harvesgenerally a cash crop like cotton. The second year one or two essential crops (e.g.
cereals, groundnuts) are planted. During the third and fourth year different complicated subdivided into individual fields. As an illustration, the system practiced in some African Each year, the adult members of the community clear a new segment of the forest which is then 33. The practice of shifting cultivation is gradually disappearing, however, there are sumber of countries in which the system still exists. Agriculture is generally carried
 duct gradually increase. Now, since the time reference period for current statistics of crop
production is the agricultural year, the problem arises of how to allocate the area, yield planting, continuous harvesting and partial harvesting, the crop occupies the soil for more
than one year (for cassava from 18 to 36 months) and where the volume and weight of the pro32. The problem is further complicated in the specific case of cassava (a staple food product
in many developing countries) and similar crops where, besides the practices of continuous the period following the time of estimation. On the other hand, it may lead to an unde 31. Certain crops are not harvested in one single operation but the produce is left in the soil
or on plants and trees and is continuously harvested at regular or irregular intervals during a
long period of time (e.g. cassava, some fruits and vegetables). Moreover, for certain crops the
produce is not completely harvested, but some of it is either kept as a kind of reserve from
which to draw if the need arises or even left over to rot (e.g. cassava, plantain). The esti-
mation of crop areas in such cases does not present any particular problem, but the difficulty
lies in how to estimate yield and or production. Continuous estimation of the volume of the
crop harvested is not feasible. An estimation based on a one-time harvesting operation may lead
to an under-estimation of yield and production if the crop is expected to produce more during
the period following the time of estimation. On the other hand, it may lead to an under-
crops, left temporarily fallow or used as temporary meadows. In some countries the term
"arable land" also includes land under permanent crops, and other countries may also use this
term in a different sense. It is essential that their national reports indicate clearly the
definition used. Total arable land may be divided into the following four classes: 42. Arable land refers to all land generally under rotation whether it is under temporary
crops, left temporarily fallow or used as temporary meadows. In some countries the term 1. Land under permanent crops
3. Land under permanent meadows and pastures
4. Wood and forest land
5. All other land
41. The broad categories of land utilization recommended by FAO are: within spread over the national territory. between countries in this respect. Information on land utilization by administrative units 40. The breakdown of the total area according to categories of land utilization shows the purpose of this classification is to show what part of for different types of agricultural production. the country is broken down according to the classification known as land utilization. The ponding holdings. sum of the total area of all the holdings in a country and its breakdown in land use cate-
gories is not equal but smaller than the total cadastral area of the country and the corres land reported as being under operation by the holding. It is to be noted, however, that the 38. In censuses of agriculture and in agricultural surveys where the unit of enumeration is
the holding, the first concept is that of total area which is defined as the sum of all the Thailand
Turkey
 Jordan, Lebanon, Syria
Mauritius 1 'uepiof
by 'aeder
bexi Guatemala
Hungary
Irag
Egypt, Sudan
Ethiopia
Guatemala
Colombia

$$
\begin{aligned}
& \text { Rai } \\
& \text { Decars }
\end{aligned}
$$

Donum
 = eqsey
पeppon
әдכच

world and some of them together with the corresponding conversion factor to hectares, are
given below: 37. Crop area statistics are not always reported in metric system units (hectares, ares and
square metres (see para. 26)). Different units have been used in different parts of the total area is equal to the sum of the component areas which is not the case when areas are
measured on slopes. "the horizontal projection of a particular extent of the earth's surface" and would thus take into account the difficulty mentioned in para. 28. Thus, the def initions would read:
"the horizontal projection of a particular extent of the earth's surface" and would thus 36. The definition of "area" can be taken to be "a particular extent of the earth's surface"
However, for purposes of agricultural statistics, this definition should be supplemented to
 most important use of the area. Since some countries do not distinguish between temporary (wild prairie or grazing land). Permanent meadows and pastures on which trees and shom in the the

 under "wood or forest land"). Permanent meadows and pastures are excluded.
 47. Land under permanent crops signifies land cultivated with crops which occupy it for a
long period of time and which do not have to be planted for several years after each haruses mentioned above during the reference year, such as arable land temporarily damaged by
floods, land prepared for cultivation but not sown because of unforeseen circumstances and
abandoned land. 46. The category all other arable land includes all rotation land not put to any of the the cultivation of temporary crops. temporarily used for grazing should be classified as fallow if the land is normally used for classified by the crops to be sown or planted and not as fallow land. Fallow land that is time reference for the data falls at a time when sowing or planting has not been completed, fied. On the other hand, a piece of land should not be considered temporarily fallow unless
it has been or is intended to be kept at rest for at least one agricultural year. If the

 45. Land temporarily fallow is land at rest for a period of time before it is cultivated again
If the land remains fallow too long, it might acquire certain characteristics which would
determine its inclusion in other major land-use groups, such as "permanent meadows and pasin the reports. rary. Some countries use different criteria, and a few countries do not distinguish between suggested that such crops cultivated for a period of less than five years be considered tempo ceous forage crops for mowing or pasture. Because some practical difficulties may arise in
differentiating temporary meadows from permanent meadows and pastures (see below), it is 44. Land under temporary meadows and pastures is the land temporarily cultivated with herba-
flowers, such as roses and jasmine, should not. and market gardens (including cultivation under protective cover, e.g. glass or plastic)
should also be included in this category; however, land under trees and shrubs producing The specialized cultivation of vegetables, flowers, bulbs, ornamental plants, and kitchen
market gardens (including cultivation under protective cover, e.g. glass or plastic) as under temporary or under permanent crops as the case may be. pineapples, banamas and sugarcane, for example, are sometimes grown as and the respective areas should, therefore, be classified alfalfa, clovers and grasses) should be considered temporary crops. Asparagus, strawberries should also be considered temporary crops if harvesting destroys the plant (e.g. cassava and 43. Land under temporary crops includes all land used for crops with a growing cycle of
under one year, sometimes only a few months, which needs to be newly sown or planted for
further production after the harvest. Crops remaining in the field for more than one ye

the benefits gained through the use of the dithe the above inputs. dressings, pesticides, improved seeds and high yielding varieties. In order to collect cropped area according to the type or types of inputs, Besides labour inputs,
inputs utilized to improye production are: irrigation, fertilizers, manures and soil it imperative to classify and tabulate the data on the production, the yield and the Statistics on crop areas normally refer to areas harvested. harvested and is one of the most important concepts in area statis. of the expected poor harvest.

 Area tilled shows at a given point of time the part of arable land on
which work has been done to fit it for raising crops. The work involved
is ploughing, harrowing, manuring, etc. collected before the planting starts.
 Area intended for planting (or sowing). The information refers to area that 52. The following additional concepts might therefore be useful in considering the programme
of area statistics: areas under each crop. possibility of gains by increasing the area planted, it is useful to know more about planting
intentions. To study the benefits of irrigation it is necessary to collect data on irrigated vest. To advise agricultural producers before their production plans are finalized on the production. For example, in productivity studies it is useful to know, in addition to the
area harvested, what part of each crop was damaged or used for other purposes before the hardown by the classifications presented above, a very useful picture of the country's agriculture
results. However, this information is insufficient for various studies of the economy of crop 51. If data on areas are collected at a given point of time, such as the harvest, and broken parks, etc.
50. All other land includes all other land not elsewhere specified, whether potentially
productive or not. Some countries may wish to subdivide this class into potentially culti-
vable and uncultivable. Generally it refers to unused lands and areas under buildings, road
parks, etc. purposes should be reported instead under "land not elsewhere specified". In either c
areas should be reported to enable reconciliation with other land use cliassifications. have or will have value as wood, timber or other forest products. Nurseries of forest trees
should also be classified under this category. Wood or forest land used only for recreation 49. Wood or forest land includes all woodlots or tracts of timber, natural or planted, which
reporte the agricultural year reported only once unless the same crop is sown or planted and harvested more than once
 crop is grown successively during the agricultural year. Thus the total of rep hassical having more than two cropping seasons. Similar counting of areas also occurs if the same the results, once under each of the two crops concerned and sometimes more in countries area is sown or planted during the agricultural year. Thus if two different crops are The area of successive crops is to be reported for each crop separately for each time the sown or planted and haryested during each cropping season in the same agricultural year. is of great importance in countries with more than one cropping season. The field or parts different or the same crops on a field is called successive cropping. Successive cropping different ones, are shown or planted and haryested more than once in the same field 59. In some countries and under favourable climatic conditions, crops, either the same or
different ones, are shown or planted and haryested more than once in the same field during of the area. Thus, if the known or measured data relate
density should be estimated or measured on a gross area basis. the essential point is that the multiplicants should correspond to the same character
of the area. Thus, if the known or measured data relate to gross area, the yield or the
 gross area when dealing with land use categories and net area when estimating crop areas, 58. Two other important concepts of area, the one including and the other excluding
uncultivated patches, bunds, foot paths, ditches, headlands, shoulders, shelterbeds, etc
are those designated by gross area and net area respectively. It is recommended to use might also be difficult to distinguish between the improved seeds and the high-yielding
varieties. and, in that case they should be presented as one single item. complicated and the sown area could be classified into three classes accoraing to (he
of seeds: indigenous (local), improved (hybrid, etc.) and high-rielding varieties. It
might also be difficult to distinguish between the improved seeds and the high-yielding 57. Area sown with improved seeds or high-yielding varieties should be shown separately
from the area sown with local seeds and, when possible, by variety. Generally this is too
complicated and the sown area could be classified into three classes according to the type

srop $\begin{aligned} & \text { shld be reported only once in reporting the total area treated with chemical inorganic } \\ & \text { fertilizers: }\end{aligned}$ crops grown successively in the year on the same land, the area should be reported for eact
crop separately. An area receiving more than one kind of chemical inorganic fertilizer kind of fertilizer applied to the same crop or group of crops culte applied to different
 area of each land-use category.
 However, when rain water or water from uncontrolled overflow of rivers and streams
collected and later used for irrigation, this practice should be considered irrigation, water orer than by the overflow of rivers or streams should not be considered irrigation
flooding of land by ind
However, when rain water or water from uncontrolled overflow of rivers and streams is 54. Area normally irrigated refers to the gross area of land normally provided with
water other than rain for improving the production of crops or pastures. The uncontrolle
69. It might be useful to describe briefly the major sources through ar or collected at the national level and the
crop areas, yields and production are obtained or
published form in which the data is presented. The main national sources are:
spioti pue seəxy dozj पo eqea ¥o səoanos
economist, but also of the traders and the consumers.
dehusk of yield and production is the most useful from the point of view not only of the moisture content brought to the right level. The produce has been threshed, winowed,

 higher than the acceptable level. etc.) have already been taken into account, while post-harvest losses are not. The produce 67. The harvested yield or production is the actual quan to the method used (manual, machine, 66.
the
may
are

[^0]included in the Monthly Bulietin The continental, regional and world total are also given, The tables. in
Yearbook, however, contain much more data than those in the Monthly Bulletin. the Yearbook
tho

(USDA) is another source which issues "world summeries at showing continental and world totals.

 on a regional or worldwide basis. They may limit their scope to par For instance, the
all over the world or to a few. commodities in a particular region. Fer
 Area and yield statistics are also available from the publications of the region be १ Кеய suoţezque available year, an historical series on the
period which may range from 2 to 10 years. the country. The usual practice is to present, besides the data on the crurren previous in releases on forecasts of areas and yields. In retrane or agro-ecological subdivisions of agricultural yearbooks, special reports on agricultural conditions and deyeloppents, and 76. Statistics of crop areas, yields and production can be found in national publications have been utilized. Chapter in of to-date mapping material or aerial photographs exist, otherwise mot ant ine sampling scheme)
farmers and fields as statistical units (at one stage or another of the cutting plots. Area sampling and point sampling have, been used in countries where good up
to-date mapping material or aerial photographs exist, otherwise multi-stage sampling with try concerned from the simple and low-cost method of seif-enumeration to the costiy and

 other small areas (e.g. localities). cal operation for obtaining comprehensive and up-to-date data on agricultural land area
its subdivision into land-use categories, on crop areas and on the use of the different
inputs. The census provides the essential data not only for the country as a whole, but
also for adminsitrative subdivisions and, whenever possible, for agro-ecological zones ture of agriculiture and to the use of agricultural resources. It is the principal statisti74. The census of agriculture is meant to provide statistics relating mainly to the struc administrative comanicated to either the central or the regional statistical offices. reports on crop areas and production are made by the administrative officers in small
administrative subdivisions (superintendents in sub-parishes, village chiefs, etc.) and expected yield and production. agriculpure as a base for the elaboration and estimation of
division in the ministries of and
the official data on crop areas, yields and production. In some countries the periodical crop conditions, inputs utilized, occurrence of pest arenersily used by the statistical
expected yield and production. The reported data are generalily on the state of agriculture and especially agricultural production in their area oc assiges,
ment. Generally a large section of these reports deals with statistical data on crop areas, extension workers, etc. whose mat of the outposted personnel is to prepare periodical reports 73. In order to develop and improve agricultural production, ministries of agriculture in
most countries have established a network of regional officice well staffed with agronomists,

Components of a Programe for Crop Statistics
where the administrative sub-civisions into provinces approximate to agro-ecological zones,
is given in Table l. 81. An as illustration, the distribution of national areas under specific crops in Cameroon, for agricultural statistics, the coverage of the survey can be limited in each agro-ecologi-
cal zone to the major crops grown in it. would be that by agro-ecological zones. In such a case and, given the limited resources showi or published on a regional basis (e.g. by provinces or other administrative sub-dividuction are generally carried out on a nation-wide basis and the results are generally
shown or published on a regional basis (e.g. by provinces or other administrative sub-divi80. Surveys for the collection of current statistical data on crop areas, yields and proCoverage of the programme
Labour inputs; and other topics relating to cost of production and other econonic
characteristics.

factory systematic manner. They cover such topics as: crop area, yield and production alone are too numerous to be enumerated here in a satistopics same of which are even not considered agricultural in nature. The topics on which
information is needed for a comprehensive and analytical study of the characternstics of duction are important not only in themselves but also in relation to statistics on many other
topics same of which are even not considered agricultural in nature. The topics on which 79. Crop areas, yields and production are only part, although most important, of a system
of data on crops and related agricultural operations. Data on crop areas, yields and pro-
with different sampling fractions for the three sectors. However, no simple on the
would show the exact limits of the different sectors can be given. This depends on the techniques. Such a classification would be very useful specially in stratified sample surveys
with different sampling fractions for the three sectors. However, no simple definition which

 83. Since crop yields depend on the agricultural techniques, the inputs and the level of

 data will have to be met. The list of crops to be covered nationally of investigated are given between brackets. However, provincial and national requirements for
inta will have to be met. The list of crops to be covered nationally or in provinces or investigated differed from region to region. For example, the percentages of the crops to be four of the mest important auto-consumed crops in each of the regions. Obviously, the crops

 quality of the data. In developing countries, minor crops could be neglected if incluaing

 in the North; cocoa mostiy in the Cenile crops like maize, cassava, etc. are found in different proportions in all the

Crop	Province:	North	East	$\begin{aligned} & \text { Central } \\ & \text { South } \end{aligned}$	Coast	West	North West	South West
Cotton		(97) ${ }^{\frac{1 /}{1 /}}$	-	-	-	1	1	8)
Cocoa		-	(9)	(62)	8	${ }^{2}$	-	(18)
Coffee		-	7	(2)	(15)	(37)	(15)	(17)
Tobacco		(16)	(18)	(42).	-	(15)	9	-
Millet \& sorghum		(97)	-	-	-	-	2	-
Maize		(10)	7	(22)	6	(27)	(21)	7
Cassava		8	(9)	(25)	(10)	(25).	(14)	8
Yam and cocoyam		1	5	(25)	8	(30)	(17)	(14)
Bananas and Plantain		1	6.	(38)	8	(22).	(11)	(14)
Groundruts		(33)	5	(20)	4	(26)	(9)	3
Beans		(46)	1	4	3	(28)	(16)	2

special conditions in each country. The following attempts have been made to define
these sectors.
96. The following crop estimating systems or surveys cover almost all the methods used at
present for the estimation of the areas: as measuring areas and yields. used in the same country can be as simple as eye estimation or mail survey or as complicated

95. Survey designs for the collection of crop area and yield statistics vary widely:
racteristics of the holdings and of the holders. and more, that the data on crop areas and production, be cross-classified with the chaneed, however, to back such data with other information needed for compatible sets of dat
on food and agriculture. It is to be noted that presently plamers are requesting more
 and to the inputs. Some of the data can be estimatad through direct observation of measur-
 agricultural statistics are independent of the holding and the data collected on the chaindividual fields or plots, is arrived at through the holding. Generally, most current

 the people. All this requires highly qualified personnel in sampling techniques and thei ment, the available resources in men, money and material, the existence of transport and should be paid to the conditions of the country, such as its economic and social develop-

 93. In designing a statistical survey, the aim should be to reduce, to the extent feasible
under existing conditions and available resources, the over-all survey errors. To achieve SADAInS PTOTR pue ea工y doxi fo usitsoa
planning and socio-economic decision making. purpose there is need for thorough attent tabulations to ensure that the data are compatible and iusable for development with the data needed for appropriate evaluation, analysis and use of the data. For this

 (fortrightly or monthly) or they could be spaced during the growing cycle of the crop disposal of the produce. The rounds could be periodic at regular intervals of time
(fortrightly or monthly) or they could be spaced during the growing cycle of the crop

			 		Eอ¢1〕V
		．	erixng ETTEス7Sロシ		Ie五 pue ețy
ETxesinn		puetod	•y•S•S＂n pueqod Kuesunh etrenotsoyazo etresing	```puriod ET\YEAOT -SOपุวəz\```	adozng 7 ceg
səวセ7s pə7т̣uด วכueat	 飞e8n7zod Kemion әotrexd smidso		sa7e7s pa7țロ шорбิロ！ рәュบฺロ purtuTa भлЕแüa epeuro	```sә7e7S pə7!un uT!edS &TE7I วววอコง```	pue adoIng แエวาsəM
	ә］dures	әフวโdmoう	әธธุด－8utptot	əstM－K7！TEOeT	

- 22 -
units would be allotted to one investigator or reporter. into a number of enumeration or reporting units. These could be area segments, localition or more of the enumeration

 agricultural land in the country into administrative sub-divisions and/or agro-economic zones
 reporters and served to reduce inaccuracies in eye estimation of areas. The reporters were
provided with ancillary information on crop behaviour in previous years which helped reduce

 suitable in some countries for the less important crops While the main disadvantage is that, the method being subjective, there is no way to evaluat
the quality of the data which could be inaccurage and biased. In any case, this method is

main advantages are: 103. The crop reporting system has many advantages which makes it very attractive. The
 - regular reporting of the crop conditions - eye and judgement estimation of the crop areas
 extension workers, village chiefs, comissions

Crop reporting locality-wise systems are generally based on the use of: case of the most important crops. ment it gradually with sample surveys using objective measurement, where necessary, in the large-scale more accurate surveys which require considerable resources, but to use this
approach (in spite of the fact that the data may contain some inaccuracies) and to suppleadvantageous to countries in the early stages of statistical development not to embark on and many countries (developed and less developed) are still using a syster for this reason, it might be units and of regular reporting. Almost all statistically developed countries have used 101. Low-cost surveys of crop areas, yields and production are those designed on the
bases of both eye or judgement estimation of the variables for small administrative

110. How much statistical detail the reports should contain will depend on the type of
crop; the number and frequency of the reports during the agricultural year and on the need
after proper study, some numerical point system is devised to translate the qualitative
terms into quantitative ones. tive terms, can be useful for an early warning system or for crop forecasting especially if damaged area is about 20% of the total area. Qualitative information, in absolute or rela year. Similarly, the quantitative information is either given in absolute terms, e.g.
the area under cotton is 20,000 hectares or given in relative terms (percentages), e.g. the

 incorm, bad,
 conditions are not improving much. in commissions will tend to under-estimate areas or yields in order to show that farmers' technical assistance they give to the farmers must have improved the results, while farmers enumeration unit. However, in both cases, biases of a certain type may be in or yields on the assumption that the composed of village or locality chiefs and a number of other knowledgeable farmers of the by either long-standing agronomists and extension workers or by specialized commissions is recomended that the operation of estimating crop areas and yields be left to or controlled

 Subjective estimation of crop areas and yields can only be reliable when it is trative officers.
 average crop yields
 - number of farmers and/or of persons economically active in agriculture

- agricultural practices which might help to improve the quality of the estimation are the following: agricultural characteristics of the unit of equmeration. Some of these characteristics 107. Besides the data on land use categories, crop land, etc., provided with ancillary information, previously collected, concerning the main
 and biases in this conditional allocation of crop areas are generally much smaller than in reliable results. The problem of estimating crop areas reduced to the sub-division of the 106. When the total area of the unit, the total area of the arable land and/or the total
area under permanent crops are known, eye estimation of crop areas gives somewhat more

 history of the crop and its evolution in time and up to date. Another advantage is that

 crop failures due to pest attacks, natural calamities, etc., and 11 so to help the authorial 111. If statistics of crop areas and yields are to serve as an early warning in cases of thereof. yield: gross area sown, net area harvested and yield corresponding n no special inputs, irrigated, fertilized, with improved seeds and applicable combinations statistical data in the reports to the most essential characteristics of the area and the
yield: gross area sown, net area harvested and yield corresponding to each of the cases: all the data planned to be collected. For minor crops, it might be sufficient to limit the inputs applied, yields of harvested crop and disposal of the production. When the reports
are less frequent (annual or quarterly), it might be necessary to record at one single time
 during the inter-rounds period, e.g. new sowing or plantings, areas damaged or abandoned, for and degree of accuracy of for and degree of accuracy of the data. If the reports are quite frequent (fortnightly
$97-$
 the ability and willingness of the holders to supply the needed information,

 - Szains әq7 まo
are needed for the survey material, the payment of the staff and for processing the returns
 planning. However, it requires the establishment of a vast field organization to cover the agro-econological sub-divisions of the countries and thus serve as a basis for regional 123. Like the crop reporting system on the basis of localities, complete enumeration of statistical schedules.
 В
 122. In order to reduce the amount of statistical work, in some countries the complete
enumeration of holdings is not carried out yearly but every $3-4$ years. In the intervening vegetables, 5800 reporters for fruits and 1400 reporters for vines. statistical office utilizes, besides the regular enumerators, the voluntary services of four
different groups of specialized reporters: 7500 reporters for cereals, 2400 reporters for growing holdings is about 1500000 and, in order to get data on crop areas and yields, the enumerators would be needed. For example, in Germany, Fed. Rep. (4), the number of cropthe number of holdings exceed the million (25 such countries exist) . Moreover, fin full-time working full time (about one man-year per 500 holdings), especially in those countries where 121. Yearly or more frequent complete enumeration of holdings to collect by in
area and yield statistics is a huge task which may require the use of thousands of enumerators

developed, this method cannot be used except perhaps for enumerating the holding in the moder of
or the socialist sector of agriculture (for the type of questionnaire to be used cf. para. 157) countries where literacy rate is not high and statistical consciousness is not necessarily etc. are all known to, measured and recorded by the respondent. Unfortunately, in developing postage and follow-up for non-response. Moreover, the quality of the statistical information ion of the data is reduced to the overhead cost, the printing of the schedules and the cost of 120. When the prerequisites mentioned on self enumeration (para. 117) are satisfied, the mail
questionnaire procedure has the advantage that the cost of the survey in respect of the collect-
 sampling unit may be identical with the enumeration unit in the case of onemstage sampling tional sectors of agriculture, it is better to separate them right at the beginning into two tics are required. For example, if separate information is required on the modern and tradir universe cannot belong to two different primary units. Another useful condition is that the
primary units should not miss the boudaries of domains of study for which separate statisries of these segments are defined without ambiguity so that an individual member of the the aggregate of primary units covers all the members of the universe and that the bounda-
 is the list of these units or segments together with some of their characteristics.
 domain of study) is sub-divided into a number of separate, well defined and clearly identirelate to the domain of study (the truncated part) and not to the whole universe.
 universe is truncated on purpose, leaving out what is considered to be a negligible fraction prepared (or up-dated) and the time when the inquiry is carried out. Also very often the

 list (the frame) of all the individual enumeration units or a list (frame) of different 127. For a proper study, utilizing complete enumeration or sampling techniques, a complete of bearing age, are additional important characteristics trees their number, age and sometimes other properties, including average yield per tree

 crops) in the country. When the study is limited to one or a few crops, the universe 126. For a global study of crop areas and yields, the universe under consideration is the
agricultural land, or more precisely the crop land (arable land and land under permanent

 collect statistical information and on the general aspects of the organization of sample
surveys. In this section, the discussion is limited to a review of those practical issue
 $\overline{\text { SKəムスns วโdues }}$
village may not apply to a large segment of the population and a suitable alternative showed that they were not reasonably free from defects such as inaccuracy, incompleteness, may be split into two or more villages or a number of hamlets or villages may be consolidated administrative village; villages may be abandoned altogether or shifted elsewhere; villages periodically. However, a frame of villages is not very stable: new hamlets may spring exp
in the vicinity of a village or in far-away places which do not belong to any already existing not practicable while lists of administrative villages almost always existed and were revised
periodically. However, a frame of villages is not very stable: new hamlets may spring up many developing countries, it was found that the construction of a frame of area cits was than area units during the last decade in a large number of developing countries. For, in 132. The administrative village as a primary sampling unit has been used so far more often serious consideration where practicable. of recent technological advances in remote sensing and the use of area frames should be given
 bult to construct, especially in developing very large areas. Also the ancillary information required for their stratifica-
 the universe or the domain of study, then any newly created elementary unit can be assigned
without ambiguity to one or the other of the primary units. However, area units are diffi131. Well defined and recognizable on the ground and the frame is complete, i.e. covers entirely 131. The first type of units (area units) are more stable in time and, if their boundaries

- the cost of collecting the data
- the available budget. - the degree of variability of the characteristics of the units under study
- the degree of precision of the estimate of the required data units to be enumerated
the level of administrative or other divisions of the country for wich separat
data are required the dispersion in space (throughout the domain of study or the country) of the
units to be enumerated design will depend mainly on: cision of the estimate of required data, taking into account the general socio-economic
conditions in a country and of the available resources for the enquiry. Thus, the sample 137. The main objective of selecting an appropriate gample design is to optimize the pre-
cision of the estimate of required data, taking into account the general socio-economic of the unit in order to improve the efficiency of sampling. be carried out at every stage of sampling. It is recommended to collect, during the enume

 The preparation of a complete lise of fields or holdings in a village is not easis. Lists holders, etc. Generally, no ready-made lists of secondary units exsist and tre list unit.
enumeration of these units is to be carried out for each selected (sample) primary unit. could be intermediate units. Thus, they could be individual crop fields or agricultural

135. The secondary sampling units could be the ultimate (or elementary) units or they
survey to be carried out.
the file those agricultural characteristics most suitable for the objectives of the sample
 mic characteristics of each of the localities. Whenever such an up-dated file exists, it

136. Some countries have recently introduced in their statistical system a Locality Data
File or Community. Statistics File which they keep up-to-date. The file covers every and accurate. operation; hovever, it is essential that it be carried out if frames are. to be complete of the
villages in the course of their visits. This operation might be a costly and time-consuming
 tically, division by division, and ascertain, with the help of the local authoritites or 133. Frames of villages can be checked by sending out quiestionnaires to adinistrative
officers and/or sending teams of special investigators who would tour the country systema-
strata, the precision of the results may be lower than in simple random sampling. wrong allocation of the units is accompanied by different sampling fractions in the different

 For a greater precision, stratification should be made in such a way as to maximize the
 while, for the investigation of the others, samples are drawn, e.g. modern, progressive and

 preferably to two or three stages. naturally on the degree of variability of the sampling units at that particular stage,
Thus, it is recommended not to increase the number of sampling stages and to limit then

 141. In many situatiors, multi-stage sampling is unavoidable due to the difficulty of pre- case in crop surveys.
 the collection in simple random sampling of fields but the precision of the estimates is

 140. A type of one-stage sampling is the cluster (or area) sampling where the universe is
divided into a number of primary units, each one of them being a group or cluster of elemenMoreover, the precision of the estimates can be improved if, in the case of systematic

 and the estimates made from such a sample, are generally more precise than estimates obtained

 train respondents' memories and to improve the accuracy of the data collected. of fertilize-reference period should not be too far removed from the reporting time in order not to harvest, area harvescor , for or a year (e.g. total production). On the other hand, the

information, due to memory lapses of the respondents. and the operation is due only once or maybe twice during the agriculucing the accuracy of the
 fixed points or periods of time during the year. For the latter procedure, the sample or semester). In other cases, the survey operations are carried out at a small number of

 144. Since agricultural:operations are highly variable over time during the year, the period
of survey operations is generally a complete agricultural year. In some cases, the survey
 measure of size may improve the precision of the data on the first set of characteristics, set of which may be positively correlated, another set uncorrelated and a third set negatively е'sэт some measure of the size of the unit may be very useful in increasing the precision of the its importance or size. The selection of the sample units with probability proportional to unit is attached, a priori, a specific probability on the basis of some prior knowledge of selection in the sample. This probability may be uniform, i.e., each elementary to to each 143. In probability sampling, to each elementary unit is attached the probability of its
measurement of areas and yields is involved.
tionnaires or schedules used for the interview method are different from those used when wise crop reporting. The questionnaires or schedules used in a sample survey differ widely
when the sampling scheme is based on area sampling or on sampling of holdings. Also ques-
 151. The format of the questionnaires or schedules depends on the method used for the
collection of crop area and yield statistics. The format of the schedule used for locality-

> terms may not necessarily be important
but is, more generally, that of the enumerator. In practice, a question between the two but is, more generally, that of the enumerator. In practice, a questionnaire may include usually a blank form to be filled up by the insertion of particulars under the several headlies with the respondent but the questions may be asked by articulars under the several head any deviation to a respondent and the main responsibility for supplying the correct answers survey. In general, a questionnaire is a formal list of questions which are put without 150. The terms questionnaire and schedule have been indifferently used to represent the soโnpayos pue saxtemuotisano timely estimates are needed. objective measurement techniques in the case of important crops for which more precise and draw attention to some principles which could improve the quality of these methods.
inclusion of this Annex is not in any way intended to distract from the importance of using expert opinions, etc.) for current agricultural statistics in developing countries and to purpose of the paper is to "rehabilitate" the indirect assessment methods 'eye estimates, 149. Annex 3 contains a long abstract from a paper by P. Delorme, first published in StATECO
Bulletin de Liaison INSEE, Paris 1977 and reproduced by the FAO Statistics Division. The aspect of the survey. The inclusion of a summary report of a survey in Annex 2 does not necessarily imply the
endorsement of the sampling design, nor the method used for field enumeration, nor any o 2F June survey of crop acreages and livestock numbers in USA
 ${ }^{2 B}{ }_{2}$ Cereals survey in FRANCE $\mathrm{H}_{\mathrm{H}}^{\mathrm{N}} \mathrm{N}$ Survey of agriculture in COLOMBIA
152. It is useful that the schedule for locality-wise crop-reporting includes the follow-
ing information of general interest:

They are:
statistics. Others have been presented in different training centres sponsored by the FAO 157. In Annex 4, a set of questionnaires and schedules is given for illustrative purposes.
Some of these have been actually used by countries for the collection of crop area and yield
of a combination of these.

- estimation by a commission of "knowledgeable or informed persons" еәエe әบุ

- eye-estimation of the crop yields based on observation of the crop condition
or a combination of a number of these cases. While for the estimation of crop yields the
conditions could be:
- estimation by a local commission of "knowledgeable or informed persons" - consultations with agricultural producers in the area
- knowledge of the crop areas which were cultivated the previous year(s)
- consultations with agricultural experts in the area - knowledge of the total area and its sub-division into land use categories

163. When a system of locality-wise crop reporting is to be established, it would be use-
ful to conduct a pilot study of the quality of the data under different conditions. For
the estimation of crop areas the conditions could be: - study of the relative merits of manual and mechanical processing - study of the time needed for the different survey operations

- study of the quality of the measuring equipment (e.g. accuracy, cost)
ness and accuracy)
- study of the quality of the frame: maps, aerial photographs, lists (e.g. complete-
- study the variability of crop areas and yields between and within regions and over
time with the agricultural year in order to improve the sampling scheme (e.g. knowledge and willingness) - evaluatin
- evaluating abilities of the reporters, enumerators, etc. (e.g. understanding and
ability) - testing the questionnaires, schedules and instruction manuals testing the adequacy of the methods (eye estimation, self-enmeration, interview,
measurements)
the collection of crop statistics are the following:

162. The main objectives or scope of pilot surveys for the establishment of a system for
cases (e.g. far-away as well as near-by, highly developed and under-developed) as well as
other special cases. investigate not only average units with respect to various characteristics but also extreme
factors
163. When it is envisaged to utilize self-enumeration for the collection of crop statis-
tics, a pilot survey should be conducted to test, investigate or study some of the following
objectives of the statistical survey and should serve as the main basis on which the content
and format of the questionnaires and schedules are constructed. It also influences the method
to be used for the collection of the data. Thus, if more precise data on crop areas and 169. The tabulation programe should be prepared immediately after the formulation of the पот7PTnq8]

Tabulation and Processing

most appropriate methods to implement it, an integrated programme of pilot surveys and
studies, selected from the above, is to be formulated and carried out. Subsequently, -to permit a rational organization of the system and the selection of the lity of the system under the specific agro-socio-economic conditions of the country.
168. Before establishing the system for the continuous collection of crop areas, yields plot; a pair of scissors or other cutting implement to crop-cut the produce and
balances to weigh it. string or wire, rigid frame, special tape, poles etc. to delimit the crop-cutting

- the time needed, the cost and the accuracy of using the different types of optical
instruments for measuring angles or directions,
- the time needed, the cost and the accuracy of using the different instruments: measuring distances.
instruments: string, chain, tape, range finder, trumeter wheel, etc. for instruments: string, chain, tape, range finder, trumeter wheel, etc. for the time reeded, the cost and the accuracy of using the different measuring the time needed, the accuracy and the total cost of using programmable pocket
calculators for obtaining directly the area of the field, or simple trigonometric formulae for calculating the area of the field, the time needed, the accuracy and the total cost of using grids or planimeters
the time needed, the accuracy and the total cost of using protractor and ruler
versus the topographical "planchette" for sketching the field,
method based on the lengths and directions of the sides of the perimeter of
the field, the feasibility and accuracy of using the method of triangulation versus the
method based on the lengths and directions of the sides of the perimeter of ment to be utilized. They are to test: crop statistics to be established, the main type of pilot studies and surveys of interest
are those dealing with the methodology and those dealing with the type of measuring equip167. When objective measurements of crop areas and yields are involved in the system of
crop statistics to be established, the main type of pilot studies and surveys of interest on the
size of the first, second and higher stage sampling units, the method of selection
of the sample: simple random, cluster, systematic, etc.

the delineation of a crop-cutting plot and for crop-cutting, processing and

the completion of the questionnaire or schedule to another,

172. Some useful and desirable cross-tabulations of crop areas are
extent of the crop area is tabulated by appropriate sub-divisions of the country and

and for the sectors of agriculture separately and crossmabulated with

Extent of area, yield and production of annual crop (by crop) by appropriate
sub-divisions of the country and sectors of agriculture and cross-tabulated with:
172. The following tables are of great interest to almosi. all countries and thus could be
recomended for universal use as basic:
tabulations (not all of them necessarily essential) can be planned. tables are listed as a guidance and illustration of what type of tabulations and cross-

 zation and disposal of the produce, etc. If information on such topics was tabulated and yields and production but also various studies on the effect of agricultural techniques,
inputs, etc. on the yield and production, and special surveys like cost of production, utilistatistics para yields and production but also various studies on the effect of agricultural techniques,
 inputs, etc. showing the different types of areas and to certain particular agricultural practices, and/or according to different the data for the different sectors of agriculture; by smaller sub-divisions of the
 interview method or for the main crops only, the data on crop areas,
the nation as a whole and for large sub-divisions of the country (e.g. states, provinces 170. For crop statistics, the tabulation of the data could be very simple: for each crop
or for the main crops only, the data on crop areas, yields and production are shown for on some kind of complete enimeration (or a large-scale sample) using crop reporting or the
 complex and the method for data collection cannot be based simply on observation or eye yields are required and especially when such data are to be cross-tabulated with the agri-
cultural techniques and/or with the different inputs, the questiomaire would be more

 -surtssoooza

 is not statistical offices since the operations reduce to transcription and simple summa176. In general, the number of variables in crop statistics and also the number of schedules
is not very large and the collation and processing of the data can be easily done in the

 size of crop land, etc.) or the characteristics of the household associated with the holding

 2. the status of the crop: in pure stand, mixed, associated

1. the type of yie1d or production: potential, expected, harvested, economic
2. Other useful and desirable tables are those in which the yield and production are
tabulated by appropriate sub-divisions of the country and sectors of agriculture and cross
tabulated with - type and composition of fertilizers and manures

fallow and harvested

0s) pueqs annd -
7ou pue ssong
the type of area:
sectors of agriculture and cross-tabulated with

Fig. 1. - Cardboard strip design
etc. To record the data, the columns are blackened to
after illustrates the method of transcribing the information of data (Fig. 1) divided into a number of columns corresponding either to a code or to units, tens, hundneds,
 180. The cardbcard strip system is somewhat similar to the precoded card system. In this locality) and can also have different colours for different levels be compensated by an easier and quicker use of the data. As in para.
can be filled at different levels of sub-divisions of the country . (region, province, district figures may introduce some errors in the results; however, this disadvantage is expected to sumations of the data are greatly facilitated. There is the danger that transcribing the

 there all the summary cards from the lowest unit are checked and sumarized, recorded and that unit and recorded on a summary card which is sent to the successive unit (e.g. locality) district, locality, area segment or holding) is organized. The data collected in the
lowest statistical unit (e.g. holding) are checked and summarized (summed or expanded)

$$
\begin{aligned}
& \text { type of cropping } \\
& \text { size and shape of parcels and fields } \\
& \text { configuration and profile of the land }
\end{aligned}
$$

countries. The share of each component in the programme of surveys will depend on
specific conditions of the country and the available resources (human, material and
financial), as well as on the relative importance of the crops.
 18.4. An integrated system in which low-cost surveys based on crop-reporting locality-wise,
interview of the farmers, etc. are combined with sample surveys involving the measurement obtained through simpler and less costly techniques. with objective area measurement are therefore sometimes to control and check the data reliability of answers given by farmers even in highly developed economies. Sample surveys areas, the system generally used is a low-cost one based on come cases to suspect the statistical inquiries and where the farmers are able to provide the required data on crop 183. On the other hand, in developed countries where there is a long tradition of administrative units. the expense of accuracy by reducing the sample size to minimize costs, the results may methods had to be limited to the most important crops. When more crops are covered at to estimate crop areas. Mainly as a result of efforts by FAO, some developing countries
have established such a system. Because of the high cost of objective measurement such statisticians felt the need for objective methods, independent of the farmer's judgement 182. These attempts, although better than nothing, were in no way satisfactory and oxen being used as the unit of measurement. with the amount of and of of of of to plough the parcel, the daily work capacity of a pair of

 local units, e.g. sacks, tins, could be declared by the farmers and used known to the farmers. Thus, it was thought that the amounts of seeds used, measured in
 developing countries was due to the illiteracy of the farmers and their ignorance of the 181. In the fifties and early sixties, a great handicap in the estimation of crop areas in
－7пәแә Inseәแ Kq

 within the sample segment can be identified and listed．The list of field numbers is then

of segments to be investigated are selected．
 areas＂delimited by natural borders，e．g．ridges，rivers，roads，etc．（fig． 2 shows a
segment bounded by a railroad，a river and a powerline）．When these segments are selected first stage sample）into＂segments＂．The segments should be＂natural geographic carried out in this case，is the subdivision of each of these maps or photos（or each of a
 189．The prerequisite for area sampling is the existence of a complete set of large－scale， Butidues eวxv expanded photographically to twice their size without loss of clarity and thus can
eventually be used． fields are of small dimensions．It is to be noted that maps of a scale of $1: 25,000$ can be ground is envisaged，the scale of the maps and photographs should be large enough，e．g．of
the order of $1: 10,000$（i．e．one square centimetre per hectare）or even larger if the crop

 whole country．However，many countries have had，at one time or another，aerial photographs
taken and survey maps prepared．The coverage of these maps and photographs is not always． 188．In many developing countries such cadastral maps do not exist or do not cover the

 IETコンユEK Suṭddek uo paseg spouqaw

 ment of fields and parcels，remote sensing）
The purpose of this chapter is to review and assess：

 -\$6I
sampling unit.
points can be random or systematic (e.g. the points of intersection of the lines in a grid). sample locations for crop observation take the form of a set of points within the primary
sampling unit: the area covered by a map or a photograph. The selection of the sample of 196. A variant of this technique is based on the use of point sampling. i.e. where the geographic area. the ground the boundaries of the square than those of the segment which is a natural to the universe is much simpler. However, it might be much more difficult to identify on variance due to the size of the unit is nil and also, the raising of the results from sample
 the ultimate sampling unit is constant, while in the unrestricted area sampling the total the selected sample square follows the same lines as those in the different abields within

Each of the squares is given a serial number and one (or more) is selected as the ultimate on each sample map or photograph (when maps or photos are considered as primary sampling
units) a grid is super-imposed in which each square has a fixed known area (e.g. 10 ha). only a land area of about 10 square kilometers. The method consists of the following: In fact, if the scale is $1 / 10,000$ the useful part of a normal aerial photograph covers number of non-overlapping photographs or maps, which could be used as primary sampling units In such a case, even small administrative or agro-economic regions are covered by a larg 194. An analogous technique for crop area measurement, also based on the existence of large-

under the different crops are then estimated or measured (e.g. by planimeter) and converted
to ground surface area. segment(s), the portions of the land surface occupied by the various crops. The areas
under the different crops are then estimated or measured (e.g. by planimeter) and conver or fields which are occupied by designated crops and returns it to Head Office. At times,
it might be necessary that the field staff will have to sketch accurately, within the sent to the local field officer who enters on the map the portions of the several parcels
or fields which are occupied by designated crops and returns it to Head Office. At times, records but are nevertheless clearly indicated on the maps, a variant of the above method
(cf. para. 189) can be used. A section of the map containing the relevant segment(s) is

 reference point. If this point for a particular field. falls within the boundaries
 :8ттмотtо天 area of the field is either included or excluded from the segment. To be valid, the rule
should lead to unbiased estimates of crop areas. An example of such a rule could be the rule for associating the field to the area segment, a rule on the basis of which the whole 192. An alternative solution is to use the "open segment" approach, i.e. to formulate some
200. If the point falls clearly within a field in which a single crop is standing, the
identification of the crop is quite easy. This is not the case when: random and increase the variance of the results or they could be biases of unknown
magnitude. as to make it fall within a crop field when, in fact, it should belong to some other land
use category (e.g. an empty unproductive lot). Errors due to these difficulties can be the position of the sample point in such a way consciously or unconsciously slightly shift and precisely located on the ground. and precisely located on the ground. Moreover, point, which generally falls in between
diffexent physical features, cannot be easily
 the physical features, the pattern of parcels 199. Granted that the photographs show all 18.8 km
 - One sample point represents 15 ha land - One sample point represents 15 ha land area - Area covered by photo $=2.4 \mathrm{~km} \times 3.2 \mathrm{~km}$ of systematic point sampling. The relevant
information is: 198. Figure 4A gives an illustration the inaccuracy of the results when the
the total area covered by the photo.
the inaccuracy of the results when the area under the crop is a small fraction of the identification of the type of cultivation

A number of countries tried to estimate crop areas using this method. However,
results were not satisfactory. The main problems encountered were related to: compared with the small number of fields he can visit and measure using other technique
A number of countries tried to estimate crop areas using this method. However, the 50 to 100 points on the ground identified on an aerial photograph ins mether techniques 197. The point sampling technique for the estimation of crop areas appears to be simpler
than the actual measurement of the areas of the fields. Also, an enumerator can visit from

The enumerator is provided with an enlarged photograph on which the sample points are
drawn as the intersection of two branches of a cross. He goes to the precise place and
takes note of the type of soil, the land use category and the crop. - the point falls in-between fields bearing different crops.
 - the field has not yet been planted

	National	$\begin{gathered} \text { Region } \\ \text { (lowest c.v.) } \end{gathered}$	Department (lowest c.v.)
Arable land	0.48	1.37	3.05
Permanent meadows and pastures	0.56	1.83	3.15
Woods and forest	0.52	1.49	2.48
Agricultural not cultivated	1.21	3.04	5.27
Non-agricultural	0.87	2.43	4.47
Cereals	0.65	1.65	3.35
Weeded crops	1.85	4.00	6.36
Grapes and vines	1.80	3.03	5.00
Oilseed crops	3.59	6.42	10.4
Industrial crop	12.3	д.а.	п.a.
Fibre crops	8.41	п.a.	п.a.
Leguminous plants	7.39	д.а.	n.a.
Fodder crops	0.87	2.12	4.08
Fallow	3.77	9.13	15.6
Fruit trees	4.34	10.3	15.3
Soft wheat	1.00	2.50	4.60
Barley	I. 20	3.17	6.50
Potatoes	3.80	9.53	16.3
Beetroots	2.68	4.45	6.78
Apples	5.35	15.8	20.9

Coefficient of Variation (\%) Obtained from Point Sampling for Crop Areas in France

201. A much more serious problem concerns the dimension of the sample size even when the scope and crop coverage of the survey are limited and the required level of precision
comparatively low. In France, where a large-scale land use survey, based on point sampling (cf. Annex $2-B_{1}$), is carried out yearly, the confidence interval of the area data crops. At the "Region" level, the confidence interval is on the average four times larger and at the "Department" level, it is on the average 10 times larger. Table 4 shows the coefficient of variation of the estimated areas (1) at che category, i.e. which would have the lowest coefficient of variation; and (3) for the Department having the largest area of the
land or crop category. 20.2. When point sampling for land use categories or crop areas is practised, acceptable order of precision. No general rule can be given on the size of the sample since the degree of precision will depend on the sampling scheme. However, when the sampling
scheme is a two-stage one with photographs as primary sampling units and points as the scheme is a two-stage one unit, a rough estimate of the order of magnitude of the expected coefficient of variation can be calculated. Then when the estimate of the area is based on the indicated number (N) of points 2. When point sampling for land use categories or crop areas is practised, it is

Table 5. Order of Magnitude of Coefficient of Variation

$\varepsilon \cdot \tau$	000 OT
$\varepsilon \cdot \varepsilon$	000 s
$\tau^{\prime} \subseteq$	000 z
$\varepsilon \cdot L$	000 I
0 T	005
91	002
£Z	00τ
 	spioty doxo zo K.aozazes puet

From Table 5 it is easily seen that if 100 points fall within a certain land or crop
category, the length of the confidence interval (from .54 A to 1.46 A) of the area

 203 Remote sensing is defined (20) in a broad sense as the measurement or acquisition of
information of some property of an object or phenomenon, by a recording device that is not

happen or in as much as they happen at different wavelengths, spectral variations
will occur.

 different wavelength, transmitted through the material (and lost for measurement
 Spectral: These depend on the physical conditions of the surface cover type

spectrum. The spatial resolution of Landsat data is 79 x 56 m and each data point
represents thus about half a hectare. $(.5-.6 \mu \mathrm{~m})$, red (. $6-.7 \mu \mathrm{~m})$, and two infrared (.7-.8 and $.8-1.1 \mu \mathrm{~m})$ portions of the resulting pixel has four values associated with it representing four levels of energy being
returned from the portion of earth surface the pixel represents, in each of the green areas is broken into 7.7 million points. (pixels) by the action of a line scanner. Each
 206. Landsat II and III, orbiting the earth at about 900 kilometres, are capable of making The imagery is less detailed than the photos obtained from manned satellites; however,
it contains much useful information. subsequent use in a semi-automatic or automatic interpretation process involving a computer. may then be processed to make pictures for use in the usual form of interpretation, or they
may be refined and reformatted (put into another form and stored on magnetic tape) for numerical values, and radios these values to receiving stations on the earth. These values energy being reflected or radiated from a series of points, translates these sensations into is exhausted. Sol is exhausted. Such satellites must use other sensing systems. The most common type of graphic cameras and film; for example, there is no way to reload the cameras after the film

 such as Landsat I, II and III (launched in 1972 , 1975 and 1978 , respectively) have passed intervals, and the images obtained have provided only partial coverage. Unmanned satellites, 204. Manned and unmanned satellites have produced imagery that is or could be useful.
Manned satellites, such as Skylab, have operated only for relatively brief and irregula
distant a few hundred kilometres), scanners (instruments sensitive to electromagnetic discussed hereafter is limited to the one based on the use of satellites (space platforms employs such devices as the camera, lasers and radio frequency receivers, radar systems, measurements of force fields, electromagnetic radiation, or acoustic energy. The technique attendant display for gathering information pertinent to the enviroment, such as

$$
\begin{aligned}
& \text { 208. The utility of } \\
& \text { assessed as follows }
\end{aligned}
$$

The list of categories at the two levels is given below:
 of which 10 are related to agricultural land, pastures and forests. The present landsat encompasses 9 categories of land use and land cover and level II encompasses 37 categories the amount of details in the classification of land use and land cover which can be
identified. The U.S. Geological Survey (USGS) classification considers two levels: level I 2.10. The technical possibilities offered by remote sensing can be assessed on the basis of
at another.
thes exist at one time of the year but not

> uncertainty about the location of the features due to inadequate ground truth data and/or i mproper use of it;

- appropriate wavelength bands for discriminatic a are not available (e.g. snow and
clouds are not distinguishable with Landsat data); confused with other types of vegetation)

209. Some of the sources of inaccuracy of the data and/or inability to identify the crop
are the following:
sensing data. ancillary information is available, the more reliable is the identification of the remote is referred to as "ground truth" or reference data and, in general, the more of this to each cover type are known. For this, points representative of the different cover type
must be located on the ground and some information about these locations collected. This

irom cover type b. Measurement of spalicergy being returned at many spatial
$\stackrel{\circ}{\sim}$
Everlasting snow fields
Ice fields
sexpung pexth
sexpunf
PTunt Bushy and spiny tundras
Herbaceous tundras
Dry tundras sәuоz кір рәх留 Uncovered mines, quarries, gravel pits
Transition zones Sandy zones other than beaches
Barren rocks Salted dried lakes
Beaches

61 Wooded marshes 62 Non-wooded marshes

54 Bays and estuaries Rivers and waterways
Lakes
Reservoirs 41 Forests of caducous trees
42 Evergreen forests
43 Mixed forests 1 Grass savannahs
2 Spiny savannahs, bushes, scrubs
3 Mixed savannahs 3 Industrial livestock in fenced land Fruit trees, vines, purseries and horti-
cultural cultivation. Annual crops and cultivated meadow 15 Industrial and commercial compounds
16 Areas partially urbanized or built-up
17 Other areas urbanized or built-up Transport, communications and public
services
Industrial and commercial compounds Shops and services
Industries

Level II
Residential zones
on system
of these two types of errors which makes difficult the evaluation of the efficiency of the
classification of areas using remote sensing imagery. The two types of error might or might not cancel each other. ' In fact; it is the existence
area estimated through remote sensing imagery may be subject to two types of errors: the development of remote sensing accuracy. Even when the two estimates are equal, the

 comparison of the pixels which are identified as belonging to the land cover
category L^{\prime} : with the corresponding ground truth and calculating the ratio of the
estimated or obtained through the traditional methodology;

1. comparison of the estimate obtained through remote sensing imagery with the area
2. Two main methods are used for the evaluation of the accuracy of the estimate ' A ' of
the area under a land cover category $\mathrm{L}: \mathrm{I}$ satisfactory even when the number of classification categories was very small. the forecast of crop production, etc. The results varied widely and they were not always satellite data utilization in agriculture for the estimation of land use and crop areas, assess the possibility of
 of total land area that is cultivated, percentage in pasture, amount of total land area that is cultivated, percentage in pasture, amount of barren land, etc. 213. One way to use satellite imagery in stratification is to determine the proportion or imagery could be the primary source of information for delineating strata and for
delineating sample areas. as a supplemental rather than the primary source of information for delineating strata. of agriculture are available, satellite imagery currently available would probably be used 212. The detailed maps or aerial photographs already exist or if data by small areas from a census -p008
relaxed and the prospects for better and more extensive use of satellite imagery are quite

 ral statistics in a variety of ways and will be more so in the near future. In fact, more estimation of crop areas. However, satellite imagery and data may be useful for agricultu211. From the above, it can be seen that, at present, there are limitations to the use of
satellite data for the estimation of areas of land use categories and more so for the
of evaluating estimates of crop areas will be covered. provide sufficiently accurate, results in meat of the instruments and a review of the methods statistics units of the ministries of agriculture in some countries, but which, nevertheless
 general, the methods and instruments used in the Survey Departments of the countries are too

 220. The purpose of land surveying is to determine the form and extent of a portion of the
earth's surface by linear and angular measurements so as to construct a map, plan or a

spoq7oh outkenins puer

 of remote sensing techniques can be made in conjunction with existing techniques subject some of the traditional agricultural statistical methods, it can supplement or serve as a Although remote sensing techniques will not, in the near future, substitute completely for

219. Remote sensing technology, as a new tool to collect agricultural statistics, especially as many programmencinuing concern.
feproduced at larger scales. programes of agricultural statistics, and their applications deserve to be kept technical developments may result in images with higher resolution and which can be or when several crops are grown in the same field. Future or existing classified
technical developments may result in images with higher resolution and which can be the same crop at different growth stages appears to be limited, especially in small fields fields to small individual holdings. So far, ability to distinguish individual crops and production can be measured. Also, major changes can be observed in land use, such as
 218. Other significant applications of remote sensing in agriculture are the following:
The spread of desert and deterioration through erosion can be observed over time. Effects slicing, minimum distance, and sample (or field) classification spectral properties of those points to decide to which of those cover concer is most likely to belong. Other classification concepts include clustering, level

 217. To atilize the large volume of satellite imagery data efficiently and to provide the
type of information desired, computer aided analysis of the data is commonly performed.
is not the case when the operation is to be carried out on the ground and the errors could easy to determine the positions at which the different widths should be measured but this
 22:2 When the shape of the field is not too complicated, the method of rectangulation can
be useful and its reliability for estimating crop areas is acceptable. For example, the

\author{

the width at a large number of equidistant positions thus dividing the total area into a
number of rectangles or more precisely a number of trapezia (fig. 5c). having three measures of the width: two near the two ends of the field and one in the midale
(fig. 5B). Later it was thought to improve the estimation of the area further by measuring having three measures of the width: two near the two ends of the field and one in the middle fleld rectangulation, a simple way to obtain the area was to measure the length of the parcel or
field somewhere more or less across the middle and then determine through eye estimation the frequently been used in the past to measure crop areas was that of rectangulation. For lines which are not necessarily straight lines. For this reason, a method which has 221 Land parcels and crop fields, in many developing countries, have irregular boundary

Fig. 6c. Dodecagon

1y. The percentage error in the estimated area due to this operation is not very high
4% in the case of the quadrilateral and less than 1% in the case of the dodecagon. produce equivalent polygons, namely, a quadrilateral, a hexagon and a dodecagon respectivecurvilinear boundaries of a parcel of land or a field (many crop fields in developing
countries have more complicated shapes). Figures $6 \mathrm{a}, 6 \mathrm{~b}$ and 6 c show different attempts curvilinear boundaries of a parcel of land or a field (many crop fields in developing
24 As illustration, the contour of the African continent is taken to represent the
area added in from the land surrounding the field. out in such a way as to compensate for the areas left out of the field by an equivalent the vertices of the equivalent polygon by poles or pegs. This operation is to be carried 223. To get over the difficulty of curvilinear boundaries of fields, the first operation
is to transform the field into a rectilinear closed figure and to demarcate on the ground disagreeable to the farmer. enumerator may have to enter in the field and may trample the crop which would be be much larger. Moreover, in order to measure the length and the different widths, the

 minimize the risk of such errors, a fixed vertex should be selected in such a way as to avoid

 require that the surveyor enters the field

 from one particular point. Moreover, it

 Figure 7 shows how the area of
triangles: $A B C . A C D, A D E$ and $A E F$. algebraic sum of these triangles. This method of measuring areas is called triangulation
Figure 7 shows how the area of the hexagon of figure $6 b$ can be divided into the four
 a number of triangles with a

 boundary is not totally visible but only visible by parts at different positions of the 226. The oper globally in an easy way when the boundary of the field is totally visible (e.g., when the

 the accuracy of the resulting estimated area. However, with more sides and eventually
angles to be measured, the enumerator is liable to make more and larger measuring errors 225. It is to be noted that, theoretically, the more sides the polygon has, the better is
235. The method recommended here is the following: -
Let $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{v}_{n}$ be the n vectors representing the sides of the polygon and $\overrightarrow{A A}_{1}$ be the
closing error vector.
From each vector \vec{V}_{i} ($i=1,2, \ldots, n$) subtract $\frac{I}{n} \cdot \overrightarrow{A A}_{1}$, the new set of vectors
$\vec{V}_{i}^{\prime}=\vec{V}_{i}-\frac{1}{n} \overrightarrow{A A}_{1}$ will close perfectly.
is empirically assessed.
 and/or the angles in such a way as to make the
polygon close. Some of the methods are revieved there are different methods to adjust the sides 234. When the closing error is acceptable,
there are different methods to adjust the sides of the perimeter.
able closing error can be raised to 5 percent

 the perimeter or the longest diagonal. The upper
 233. The upper limit of the acceptable closing
error depends on the required accuracy of the data
the measurements have to be repeated on the ground. Figure 8 shows such a closing error a way as to make the figure close properly. If the closing error is above the fixed 1 imit, calited the closing error (or error or closure). If the closing error to below a certain
limit, the measurements can be accepted but the sides and angles have to be adjusted in such (first and last), which should coincide, are some distance apart. This distance has been 232. When the n sides and bearings are measured and the polygonal field plotted at an
appropriate scale, it invariably happens that the figure does not close: the two end points
the possible errors and subsequently accept or reject the set of measurements, it is essen-
tial that all the n sides and the n bearings (or angles) be measured. magnitude of the error, which might be very large, cannot be assessed. In order to estimate
the possible errors and subsequently accept or reject the set of measurements, it is essenmeasuring only ($\mathrm{n}-1$) sides and directions may produce inaccurate results and, moreover, the are free from error which is never the case in actual measurements. side The practice of direction, e.g. the north) of ($\mathrm{n}-1$) of its sides are known, the last side being obtained by
joining the two end points. This is true if and only if the ($\mathrm{n}-1$) sides and directions 231. A polygonal crop field of n sides is uniquely determined when ($n-1$) sides and ($n-2$)
enclosed angles are known or when the length and bearing (horizontal angle with a fixed direction (e.g. the north).
included between two consecutive sides or the angles which each side makes with a \ddagger fixed
direction (e.g. the north). both measuring distances (the sides of the polygon) and measuring angles: either the angles
 instruments have to be as simple and whenever new equipsame time, extension workers, interviewers, surveys, etc., the measuring operations and the operation and where the enumerators, in general, are of the multipurpose type: at the 238. In developing countries where measurements of crop areas are an essential continuous
is less than or equal to ten degrees the slope should be ignored.
introduced by using the length of the side on the slope are $0.4 \%, 1.5 \%$. 3.4% and 6.0% when the slope is very small. For slopes of $5^{\circ}, 10^{\circ}, 15^{\circ}$ and 20°, the relative error the length of the side on the slope instead of the horizontal projection can be negligible bearings will constitute the elements for calculating the area of the sides multiplied by the cosine of the corresponding slope angle), together with the

- its bearing and
 and , in general, will not close even when the measurements are extremely of the sides of the field may be sloping upwards, others horizontal and some more sloping areas and areas measured on a horizontal plane. In hilly regions, from a fixed point, some

point A_{1} will be shifted a distance $\frac{n}{n} A_{1}$ and so coincide with A. Figure 9 shows such an
adjustment. to $\frac{1}{n}$ times the length of $A A_{1}$, shifting the point C a distance $\frac{2}{n} A A_{1}$ and so on. The last sides and angles consists in shifting the point B along the direction $\overrightarrow{A_{1}}$ a distance equal Practically, if the polygon is represented by $A B C$... LA', the operation of adjusting the

 Each end link is provided with a handle. Each link is 0.20 m long measured 20 (100 links)

 be of a non-extensible material (which is not always the case) and care should be taken to

 -s7ota suṭ of a field is not recomended and, in fact, has been discontinued in almost all countries. 242. For the above reasons, the pacing method for measuring the length of sides or diagonals ings before they are used as some of them may be out of order.

 tages of the pacing method. etc., and also according to the enumerator s state of heal which took away most of the advan-
fore necessary to calibrate the step several times a day whe

 enumerators. Then, in order to take into account individual differences, it was recommende

the number of steps to cover the distance. The steps are then converted to standard units. had field and measuring distances through pacing, i.e. walking at a normal gait and counting
 under their crops and the fields had to be measured by the available field staff in collecting 239. In developing countries

measurement of crop areas are reviewed.
long distances. su!
 - the speed of measurement matches the gait of the enumerator

 The topofil has the following advantages:
reads on the counter the length of string unrolled which is then cut and discarded and sets the counter at zero; as the enumerator walks the distance the string unrolls and
the counter registers the length of the string unrolled; at the terminal point the enumer use the topofil is simple: the enumerator fastens the end of the string to a fixed point
 string and a counter which registers distances in decimeters, meters and hectometers. 248. The topofil is a measuring device fitted with a non-recoverable light and strong
string and a counter which registers distances in decimeters, meters and hectometers. the Trumeter or Smith Wheel and the Optical Range Finder. instruments which can be managed by a single person. Such instruments are the Topofil, The remuneration of two persons, even if one of them need not be a professional enumerator
but simply a labourer will, in the long run, be more expensive than the use of more costly however, the running expenses are high since two persons are needed to do the measurements

 - not liable to bend and the catenary effect is almost inexistent
way as chains but they have a number of advantages:
in different lengths $-20,30$ and 50 meters or 50 and 100 feet. They are used in the same cost instrument for measuring distances. Tapes are wound on a special reel and are graduated
in meters, decimeters and centimeters or in yards, feet and inches. They are available 246. The metallic or plasticized tape has displaced the surveyor's chain as a simple low-
 ground but held a few centimeters above which introduces a slight error due to when the ground is uneven (clumps, clods, etc.) the chain is not placed on t length and overestimating the distance
over a lomg distance, there is a risk of forgetting to count a chain lengt
if not handled carefully, the links often tend to bend thus reducing its

245.

has

The distance $A B$ is calculated as so many complete chains plus a number of links.
 vertice
 which the distance can be read. To obtain optimum accuracy the object to be sighted should 255. The instrument is mainly composed of a telescope, a rangematic or telemeter device,
a range of the order of $10-100$ meters and an accuracy of 98 per cent at least for that
range.

mistakes in counting. 254. During the last decade, a number of optical range finder instruments (tachymeter,
range finder, etc.) for measuring distances have been evolved. They differ widely in
 sloping, and land, irrigated and humid land, etc. conditions are not always suitable for using wheels: very rough ground, ploughed
However, it has also some slight drawbacks:

- it is very accurate on smooth dry land, and
- the mechanical recording of the number of revolutions eiminates the risk of - its is easy to manage, the enumerators need not have any special training
 ation. length of which is to be measured. The reading on the counter plus eventually the length
corresponding to an incomplete revolution gives the length of the distance under considerpoint, the enumerator sets the counter at zero and pushes the wheel along the line, the
length of which is to be measured. The reading on the counter plus eventually the length Wheel. The circumference of the wheel is either one meter or one yard. At the starting
 sags slightly and may even rest on the ground or on the plants.
 - it is very costly as an apparatus but also its running cost is high since a
of the hairline on the target and enumerators may need to spend some time in practicing
before they will be able to make accurate measurements.

 - sessedmos readings with an accuracy of half a degree approaching the performance of very expensive

 the compass. Many types of compasses, more or less expensive, have been used in the last
 has rarely been used for measuring crop areas due to the fact that it is not easy to operat

 sight the point B through the sight vanes of the lower section of the cylinder which is
then locked in that position making the plane of sight coincide with the direction AB. on its axis. To measure the angle BAC, the apparatus is placed on a tripod at the point A
and the points B and C are indicated by coloured poles. The apparatus is so placed as to 180 mark, there is an "object" window. The upper section of the cylinder can be revolved
on its axis. To measure the angle BAC, the apparatus is placed on a tripod at the point

$$
\begin{aligned}
& \text { 1n the case of t } \\
& \text { trample the crop }
\end{aligned}
$$

$$
\begin{aligned}
& \text { to place the sighting pol } \\
& \text { they are time saving as tl }
\end{aligned}
$$

recognize when the images are in perfect coincidence before they can make accurate measure-
ments. recordings and average them. Although the operation of these instruments is not complicated,
enumerators will need a little practice on well known distances to train their eye to line, or more precisely, the top of the lower image just touches the bottom of the upper
image. It is useful, especially in the case of critical readings, to take two or more
 the two images coincide producing a single sharp-edged image and reads the distance on the әั7
 st כ[eos mnaţdo than one-half of the perimeter, a simple formula to determine the order of magnitude of an less than 30 cm or in certain cases less than 20 cm . Since the largest diagonal. is less
 have to be reduced to a reasonable size. An optimum size of the sketch (which would mini-
 could be more expensive than those of the first group. reconversion of the data. However, the second group methods are not always feasible and risk of errors and their dimensions in the first group of methods are much larger than in
the second since they include errors of sketching and errors of scale conversion and group, the primary data are used directly to calculate the area. It is obvious that the

 265. For the evaluation of crop in degrees, th
half a degree. in degrees, the accuracy of both the clisimeter and clinometer can easily be of the order of the target point that is at the same height from the ground as the eye of the enumerator.
The position of the hairline against the scale gives the reading. The scale being graduated

ground as the clisimeter lens. The reading of the slope is then direct since the line of
sight is parallel to the slope of the ground. such a way as to keep his eye very close to the clisimeter lens and see simultaneously
lines of the scale and the distant target which should be at the same height from the of a shape scale. In use, the enumerator holds the clisimeter by its suspension ring in
such a way as to keep his eye very close to the clisimeter lens and see simultaneously the upper section of the instrument, there is a collimator on which is fixed the microphotography rapidly assumes an exact vertical position when the instrument is heid vertically. On the
 slope angle is to be measured in order to project the
small pocket instruments have been used to measure slopes: the clisimeter and the
clinometer. elevation difference of the end points of each sloping side has to be ascertained and the
slope angle is to be measured in order to project the distance on the horizontal. Two

> show up if such a deviation exists or not.
 eye-glasses, may cause deviation. Whenever possible, such objects have to be remsed
a safe distance. Also, large structures like buildings, reinforced concrete quays, etc. 261. Iron and steel objects close to the compass, like a wristwatch or steel-rimmed
where a, b, c are the three sides of the triangle and s is the semi-perimeter $s=\frac{a+b+c}{2}$. (o-s) (q-s) (e.-s.).s.f.

 pue ptas -
8utu8tam -

271. Different methods have been used for the calculation of the sketch areas. They are
based on different concepts or instruments: turning the paper rollers. This instrument is not difficult to operate in the field and
the enumerators need little training on its use. a graduated diameter to serve as a ruler, transparent tracing paper and paper rollers and,
different devices for adjusting the protractor, raising and lowering the plaquette and drawing board. It consists of: a frame, a sliding plaquette, a rotating circular protractor, 270. A more sophisticated and costly instrument for sketching is the Topochaix portable
 269. Sketches are to be made only when the lengths and bearings of its sides (they are not needed in the case of triangulation),
 the risk of errors. It is better to reduce to as few as possible the number of different
scales. The following three scales are reconmended. parcel, a new scale is to be used which, apart from complicating the work, will increase 268. Using such a formula, for each individual case, would mean that for almost each which shows that the sketch will almost fill a normal sheet of paper.
will be $4.3,5.8,9.1,6.4,11.0$ and 4.3 cm respectively and the longest diagonal 17.3 cm recommended rounded scale is $1 / 4,000$. In such a case, the sides of the polygon in the sketch 267. An. illustration, consider the hexagon in Fig. 6 b . The sides $A B, B C, \ldots$, $F A$ are
279. An order of magnitude of the area of a field can be quickly estimated and used
check gross errors of calculation (e.g. misplacing decimal point), when the perimeter
279, .

 operation of the boundary. The planimeter is supported on the paper at three points: the operated by experienced personnel. (it is used when the shape is wits of wheel revolutions) with one simple tracing 278. The most accurate instrument for measuring sketch areas is the polar planimeter when tenth is numbered. The degree of accuracy of this method can be quite good.

 field is counted. When several dots lie on the sides of the field, only one out of two is
counted. The total area is calculated by multiplying the number of points by the unit are
 according to the scale of the sketch, is placed over the sketch (or underneath if the sketch
 and divided by eigh
square centimeters. four; the remaining incomplete squares of $/ 2 \mathrm{~cm}$ side, whatever be their size, are counted
and divided by eight. The sum of these three figures gives the area of the polygon in the incomplete 1 cm squares, complete squares of $/ 2 \mathrm{~cm}$ side are counted and divided by can be used in counting: first, the number of squares of 1 cm side are counted, then in within the perimeter.
275. When millimeter grid for greater precision.
within the perimeter. paper and as placed on the sketch. The perimeter of the polygon is sametimes traced on the 274. Two versions of the grid system exist. The first is based on squares of a certain
dimension and the second on points representing a certain area. The grids are on transparent the case in traditional agriculture in developing countries. paper, cut and weighed. The average weight will be used to evaluate the crop areas.
The method is not very accurate especially when the crop fields are small in size as is For the calibration, a number of squares representing one hectare each are drawn on the
 the paper on which the sketches are made is homogeneous in texture and weight

Programmes for the estimation of area through measurements of lengths and bearings of the
sides using programmable pocket calculators and instructions were prepared by Mr. P. Petricevic.
Casio
azOS/dT0s-x.
06s/085-IL pur 65/85-TL

- SR -52
$\mathrm{SR}-56$
L9-dB
L9-dH
G9-dH
56 ऽ-dH
HP-25/25C
HP-29C
prey̆oed

282. The FAO has prepared such programmes together with the mode of operation for a large
number of the presently available pocket calculators. They cover the following makes and
The total operation requires from 2 to 5 minutes per parcel or field. The instructions for
the use of the calculator are quite simple and require very little training to be mastered. the polygon, and
calculate the thus closed area.

- estimate the closing error
- adjust sides and/or angles according to any desirable instructions to close
the polygon, and
polygon, programmes can be prepared for these instruments, to: low cost of such instruments, most of he fact, given the measurements of sides and bearings of any 281. With the present developments in programmable pocket calculators and the relatively
low cost of such instruments, most of the above-mentioned techniques for evaluating crop directly from the actual field measurements using the same formula as in paragraph 272.
The formula can be easily programmed on any programmable pocket calculator. graph 272), there is no need to draw a sketch of the parcel. The area can be calculated 280. When the direct triangulation of the crop area is feasible in the field, (cf. parais very complicated. and three concavities, the divisor is 4.8 . The divisor might exceed five when the figure and one concavity, the divisor is 4.6 , and in Figure 6 c , where the number of sides is twelve a square or rectangle nearer to 4. For example, the polygon in Figure 6 a has four sides based on the degree of complexity of the boundary: number of sides, number
etc. Thus, if the field is very complicated the divisor should be nearer to 5 and of almost (length of the boundary) is known. This is done by dividing the perimeter by a number
between 4 and 5 and squaring the result. The choice of the divisor is subjective and is

 286. Sample surveys of yield based on crop-cutting are normally carried out on only one. crop.
This is so primarily because different crops have different maturing periods and, therefore,

 pling and are not discussed in the manual assessed. The methods of statistical estimation of the yield belong to the theory of saminstruments. In what follows, the different operations are reviewed; the problems are method or technique to be utilized. Also, some operations may necessitate use of special Each of these operations presents specific problems and decisions have to be taken on the

- weighing the produce at differenent stages, and
locating the sample plots within the fields;

285. In the now classical procedure of crop-cutting plots for the objective estimation of
crop yields, the following operations are carried out: feasible. estimate represents the economic yield sinc within the field, its size and shape, the border effect, etc. Moreover, the resulting eliminates most of the random errors and biases involved in the selection of the sample plot estimated by dividing the production by the net area of the sample fields. Such a method select a random sample of the fields of the crop under investigation. The crop is harvested,
threshed, dried and/or otherwise processed, and the produce weighed and the yield is
286. The simplest and most precise objective method for the estimation of the yield is to
-pazeuțาsə ptot Λ crop are selected, the crop on these plots is then harvested, threshed, weighed and the satisfactory system of yield statistics. By means of a sampling procedure, small plots of a which do not yet have the facilities consisting either of extension work agents or the cultivators themselves. In many countries 283. The t

$$
\begin{aligned}
& \text { measuring the crop density (optional) } \\
& \text { - harvesting and processing the crop; }
\end{aligned}
$$

 ility of selection. Those which are far from the road have no chance of being selected.
If these are different from those along the road the estimates of yield will be biased. technique all the fields growing the crop under the sample area do not have the same proba

 called the cruising technique. With this technique a sample of villages from certain suit-

 292. The application of the procedures listed follow strictly the principles of random tion on the fields growing the crop as provided by the farmers. construction of the frame except a list of villages. 291. This procedure has been frequently used if no alternatives are available for the
construction of the frame except a list of villages. The main problem of the procedure holdings is selected and then a sample of fields within the holdings selected listing, it is advisable to collect for each holding inform ind

 290 Another possibility is to select villages or some other convenient area units in the terms of funds and skill needed to prepare accurate sketches. difficulty concerns the sketches: their preparation may present a very serious problem in large samples. The difficulty lies again in the cost. The listing of fields under some
specified crop may make yield surveys an impossible task in some countries. Another carried out with three to five stages of selection without running the risk of excessively 289. Although the introduction of an additional stage of selection increases the variance,
it does not lead to great difficulties as experience has shown that yield surveys can be only. A sample of fields is finally slected for the crop-cutting work. the listing of fields growing the crop concerned is carried out in the selected segments sample of these units is selected at the first stage of selection. Ihe selected units may
288. If no cadastral maps are available, sketches may be prepared for some area units. A
 However, the procedure may become costly. In addition, most of the cadastral maps may not and a lis which makes random selection possible as all the second-stage units will be known.
higher probability of selection than the rest of the field.

 thick line on this figure indicates the border of a field of irregular shape. The thin
lines represent grid consisting of plots of one square metre each, from which a random same 297. The shapes of fields, however, are often irregular and such a selection procedure
does not result in an unbiased sample of area. Figure 10 will clarify the point. The 297. into $k_{1} \cdot k_{2}$ rectangular plots. Randon selection from these plots is also feasible. multiple of its width " c ", i.e. $\mathrm{c}=\mathrm{k}_{2} \mathrm{w}$ where k_{1} and k_{2} are integers, the field can be divided is a sub-multiple of the length "a" of the rectangular field, i.e. $a=k_{1} 1$ and "w" a sub-
 multiple of " a " and " c ", i.e. $a=k s$ and $c=1 s$ where k and I are integers, the field is
considered as consisting of square plots arranged adjacent to each other in " k " rows and venient shape. Por example, if the field selected is rectangular with sides of dimensions
"a" and "c" metres and the plot consists of a square the side of which "s" is a common sub296. These sampling theory principles can easily be applied if the fields are of con-
venient shape. For example, if the field selected is rectangular with sides of dimensio weighting system is needed in the course of the estimation procedure. To simplify survey practice, sample plots are made of equal size. Otherwise a complex only one plot. The requisite number of such plots is then selected to comprise the sample. wise processing and weighing. Following the principles of the sampling theory, the fields cut or harvested for the purpose of the survey and taken for threshing, drying or other295. The term "sample plot" refers to a small area of the field where the crop will be

 to provide in the survey report any information on the method of selection of fields that
 -atqestape fous st selection of fields. This calls for appropriate weighting in the estimation procedure which difficulty may be connected with the weighting procedure. Since only one field is selected
from each household growing the crop, unequal probabilities will be introduced into the in cities or outside the villages concerned have no chance of being selected. Another the quality of the list of households or holdings. The fields belonging to holders residing veniences and problems. If the list of holdings is used, many of them may have to be
visited before the requisite number of fields has been selected. The other problem co If there is no field with that crop, the selected household is substituted by the nearest

 over the whole field (provided several plots are selected from the same fiel the survey may 300. Another reason for the
crop in the course of the location of sample plots. The field staff will be obliged to walk
 the arbitrariness of locating the plots by the field staff. points selected, etc. Its disadvantage lies in the fact that it becomes difficult to limit

 stop is then used as aposition for locating the plot sufficient to walk (approximately) along the longest diagonal and sumber of sample plots needed. Each sufficient to walk (approximately) along the longest diagonal and stop at (approximately) field, the practice of yield surveys can be greatly simplified. Namely, in order to get 298. If it is assumed that the yield is distributed at random over the whole area of the
field, the practice of yield surveys can be greatly simplified. Namely, in order to get
the borders of fields and is, therefore, given the name of border bias. procedures will lead to a bias in the estimates of the yield. This bias is associated with

of points in the inner part of the field (cf. para. 308). The problem is to compare
of being included in a crop-cutting plot different from the corresponding probability $P_{I} B^{\prime}$ Border bias
the plot frame was pulled in so that the end of the diagonal lay on the border. the plot was rejected, two new random numbers were selected and the
whole operation repeated, and 305. If, by so doing,
cedures have been used:
generally to lay the diagonal of the plot beyond that point and in the same direction a
that of walking and to construct the plot around it. considered as its centre but when the plot is square or rectangular, the random point is taken
to be one of the corners. In the latter case, the instructions to the enumerators are 304. When the crop-cutting plot is a circle, the random reference point thus obtained is
 6. If the field is narrow and the second number of steps will get you outside the
field and walk a number of paces equal to the second random number. This will number selected;
At this point, ent
From a given fixed point (e.g. the south-west corner of the field), walk a number . From the table of random numbers, select two numbers less than the semi-perimeter; Measure the perimeter of the field in terms of number of paces;
Divide this number by 2 to get the semi-perimeter;
to be given to the enumerators could be similar to the following steps:
303. For locating the random reference point of the crop cutting plot, the instructions
second a random distance measured along a straight line in a given direction within the
field. random numbers. These could be the cartesian coordinates of the random point or, more
frequently, the first represents a random distance measured along the perimeter and the (the centre of one corner) of the crop cutting plot are based on the selection of two 302. The methods currently used in many countries for the location of a reference point by patches, e.g. near the border of the field, thus increasing the border bias. the field, which cannot be seen at a glance, the enumerator might be liable to select near-
that the second random number is smaller
random reference point of the crop-cutting plot will be inside the field and the diagonal
is to be placed above this point, towards $Y Z T$ and perpendicular to $V X$. direction of walking inside the field is perpendicular to $V X$ and upwards (towards YZT) and
that the second random number is smaller then the width of the field measured at P. The the perimeter of the field) determines a point P somewhere on its side $V X$; that the 307. In order to illustrate the two situations, consider the field TVXYZ and its inner
part $\mathrm{T}^{\prime} \mathrm{V}^{\prime} \mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime}$ (Figs. 11a and 11b). Assume that the first random number (to be taken on

311. When the procedure is to reject such plots and to start ali over again, the probability
that points in the border fringe of the field are proportional to P, that part of the area
of the square which falls within the inner part of the field (the shaded parts in Fig. Ila).
Thus P_{B} is less than P and points in the fringe will be under-represented in the crop-
cutting operations. More precisely: let "d" be the distance of the point from the border
of the field and " D " the diagonal of the crop-cutting square, and let $x=\frac{d}{D} \leq I$; then it is
easy to show that the ratio
 point A of the border is then proportional to $P_{B} \notin P_{I}$ and depends on its position and on
 cutting square plot is proportional to the area of the square and will be denoted here310. Thus, the probability that an interior point (in $T^{\prime} V^{\prime} X^{\prime} Y^{\prime} Z^{\prime}$) is included in a crop(1)

315. In the first proposed procedure, the six steps (paragraph 303) to be carried-out by 314. The procedure of entering the field and placing the crop-cutting plot proposed in
paragraph 303 can be improved when the crop is planted in rows. The improvement consists
in the reduction of the variability of the number of plants and consequently of the varia-
bility of the yield between the crop-cutting plots. When the crop-cutting plot is a circle
no improvement is possible but in all other cases (square, rectangle, etc.) alternative
procedures can be used to reduce the variability. Some of these procedures are given here-
after. Crop planted in rows

culated using the formulae of paragraphs 311 and 312 (cf. Table 6) and directly seen from
Graph I. For this reason it is recommended to use the former procedure. cross the border is smaller than the bias resulting from pulling in the plot as can be cal-
culated using the formulae of paragraphs 311 and 312 (cf. Table 6) and directly seen from from those of the inner part, the bias introduced by neglecting the crop-cutting plots which 313. If the crop yield conditions in the fringe of the field are significantly different This function is plotted as the upper curve in Graph I. $\frac{I_{d}}{g_{d}}$ tion as in paragraph 311 it is easy to show that parts of Fig. 11b give the values of P_{B} in this case). More precisely, using the same notaamount proportional to a rectangular area depending on its distance from the border (shaded 312. When the procedure is to pull the plot frame in so that it lies completely within the
field, the probability that the point is included in the crop-cutting is increased by an
the enumerator to locate the random reference point are not altered but the instruction in
paragraph 304 on the method of laying the diagonal is modified into "lay the diagonal of
the crop-cutting plot in a direction parallel to the crop rows".
$-77-$
$\cdot 7$ 3. an arbitrary number " n " of successive crop rows is taken to be included 2. the pre-determined length $A B$ is laid parallel to the crop rows; the reference point (one of the corners of the rectangle) is moved from its random
position to the nearest point " A " at equal distance from two crop rows;
 320. Another alternative procedure is based on a rectangular crop-cutting plot of partially
flexible size: the length is pre-determined while the width depends on the spacing between
the crop rows and has to be measured accurately. for different values of the spacing of the rows of plants. the range of variation of the total length of crop lines included in the crop-cutting plot place and the range of variation is quite narrow. This can be seen from Table 7 which gives This is not the case when the diagonal is parallel to the crop rows and the length of a the plot differs by the length of one row (5m). In fact, in the example shown in Figs. 13
and 133 , the total length is either 30 m or 25 m according to the position of the square.
This is not the case when the diagonal is to the crop rows, a difference of one row means that the total length of crop lines within 319. It is obvious that, in the case where the side of the crop-cutting square is parallel

to metres and that the distance between crop rows can be anything between 10 cm and 2 m
(in Figs. $12 \mathrm{a}, 12 \mathrm{~b}, 13 \mathrm{a}$ and 13 b , the distance is supposed to be 90 cm). 318. In the illustration it is assumed that the crop-cutting plot is a square of side equal

Fig. 14. Rectangular Plot with Flexible Area

321. Figure 14 illustrates such a case. The length $A B$ of the rectangle is taked to be 6 m ;
the regular spacing of the rows is 80 cm ., the vertices A, B, C and D are distant 40 cm .
from the crop rows, and the arbitrary number of rows within the rectangie is 7 . Thius, the
area of the rectangle is $7 \times 6 \mathrm{~m}, \times 0.80 \mathrm{~m} .=33.6 \mathrm{~m}^{2}$.

- 79 -

-paxnze" sey

 secure the information about the day of the harvest. On the basis of this information the
 326. In some countries it may be useful to proceed in two stages. In the first stage the always done immediately before the harvest and missing information is avoided.
 work in such a way that no sample field is harvested before the team arrives. The problem,
however, is overcome by the approach based on the cooperation of some local staff who get 325: If a team is responsible for a large area it will hardly be possible to arrange this ted field. In some cases, however, the harvest might already be over when the team reaches the selec-
 moving teams visit the fields selected for the purpose of cutting the crop and to reach the
field selected immediately before the harvest. The team might reach some fields just in staff In carrying out yield surveys there are two main approaches from the organizational
point of view. The first consists in establishing a moving machinery of properly trained 204ting the crop

> sample. be either simple random or cluster sampling. In the latter case, a tree is randomly selec
ted and then an appropriate number " n " of trees around and nearest to it constitute the be either simple random or cluster sampling. In the latter case, a tree is randomly selec-

 selected first from sample fields and then the rows are sub-sampled by cutting the crop
along a part of the row which is found to represent a convenient sampling unit. Such a selected first from sample fields and then the rows are sub-sampled by cutting the crop 322. Crop cultivation in rows makes it possible to estimate the yield by means of objec-
tive procedures without using sample plots. Plots are avoided if a sample of rows is
handling the produce, during transport, etc.) are covered from the moment of harvest until
the crop is stored. the survey will overestimate the "economic yieid". In estimating the waste it is obviously
necessary to make sure that all types of waste (losses in the process of harvesting, in show the quantity of the crop available to the farmer. Therefore, if waste is disregarded, part of the biological yield, after allowing for wastage and losses. Yield surveys should
 332. Losses represent a big problem in yield surveys. If the crop is cut and the produce
preserved so that no losses occur, the survey estimates refer to what is often called the the results will be reduced. the farmers do. It should be threshed, dried and processed as the farmers be exposed to the same wastage, etc. By following these principles the expected biases in

Both concepts are valid but the first one is difficult to apply and is liable to risks of
error or biases. For this reason, it is the second concept and method that is found usefu they belong. underneath the plot are to be lifted irrespective of the plants to which

 the plot is considered the physical land area and all the tubers which
belong to the plant inside the plot are to be lifted whether they lie
 dary. In this way the situation of the boundary plants will be clearer.

 vested. In the case where this is not possible and no decision can be taken about including
 consider the bunches of tillers of the plant and separate carefully the tillers which lie

whenever the team comes across a field which is being harvested, they stop, place a random
plot, crop cut, process and weigh the produce. During the harvest period of the crop under consideration, a specific route (difrerent every
day) is assigned to a team of enumerators within the agricultural land of the village, and time and which has been used in some developing countries is based on the cruisifg dechnique, 328. Another procedure that may be used to ensure that the crop is cut at the appropriace
 dealing with different crops and the same basic tendency of obtaining overestimation with 339. The same types of experiments were conducted in a large number of other surveys
 believed that the bias is caused by a tendency on the part of the field staff to include field, it was found that the largest triangle in Table 9. gives unbiased estimates. It is
 appear with small plots is given in Table 8 . Similar percentages of overestimation were associated with small plots. An illustration of the magnitude of the bias that might 338. Sukhatme has presented results which show the same tendency of overestimation sidered the conclusion to be drawn from a large number of his experiments.
 9 which refers to a large number of different sizes of plots and shows that serious overto include unduly some of the bordering plants or tillers inside a cut". The matter was 337. In his early experiments with jute, Mahalanobis found that small plots might lead to
biases because there is a kind of ".... psychological bias on the part of the investigator Research under the guidance of Sukhatme.
under the leadership of Mahalanobis and the other for the Indian Council of Agricultural cians were mainly involved in this work, one working for the Indian Statistical Institute 336. The question or the effect of the plot size on the estimated yield has been studied study the question experimentally

 335. If any pattern of this type is practised by the field staff, then biases of undeter-
mined magnitude are introduced. Furthermore, if field staff are not careful in including: places typical of the field. falling there and may also try to apply their judgement with a view to locating plots on danger that staff may try to avoid places of poor yield by preventing plot coordinates from 334. The arbitrariness in the location of plots would have no effect on the estimated yield
if it were completely uninfluenced by patterns of selection. However, there is a serious for various purposes such as weighing or drying. to cut the crop. They also present difficulties if the crop harvested is to be taken away the estimates based on small plots. On the other hand, on large plots more time is needed particularly in India. This is not surprising. Various arbitrary factors in the location various crops has attracted the attention of many statisticians all over the world and $\overline{\text { อัт }}$ $\overline{\text { azts } 70 \mathrm{Td}}$

Sample of the plot	Area of the plot in square fieet	Irrigated wheat		Non－irrigated wheat	
		Average yield in pounds per acre	Percentage ever－ estimation	Average yield in pounds per acre	Percentage ：pver－ estimation
	471.55	831.1	－	539.0	：－
＂	117.89	870.6	4.8	－ 598.2	11.0
$\because \quad 1$	29.47	961.9	15.7	664.9	3.4
Circular	28.29	954.5	14.9	618.8	14.8
	12.57	1183.3	42.4	767.7	42.4

	$\begin{aligned} & \hline \text { 号 } \\ & \text { 息 } \\ & \stackrel{\rightharpoonup}{H} \\ & \stackrel{\sim}{\circ} \end{aligned}$	
 		$\begin{aligned} & \text { N } \\ & \underset{\sim}{N} \\ & \text { 品 } \end{aligned}$
$1111.1 \stackrel{\rightharpoonup}{\circ} 1111$ 合，	號	
1118 号 1		$\begin{aligned} & \text { 4. } \\ & \stackrel{1}{0} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$
	莒	
，莒莫，䔍，亘1111111号11111		署

344. Thus, the size of the crop-cutting plot is a function of the density of the crop
within the field. For the very dense irrigated wheat, rice, etc., the plot size could b
 would cover about one hundred plants would reduce the coefficient of variation to about 0.02
 if measured, could determine the optimum size of the plot from the point of view of precision 343. The variability of the yield per plant within the same field is generally low and,
plants. For this reason, a discussion on the size of the plot which ignores the type and
density of the crop in the field would be incomplete. plants will give less precise results than a larger plot which covers a larger number of of the bias in crop-cutting surveys. Another important aspect to be considered is the pre-
cision of the results. It is obvious that a small plot which contains a small: number of
 distance.

N HOOO on is ó is	
윽옹	

bias. The plot size of 100.9 sq . ft . is the most economical size leading to unbiased
estimates. time and are, therefore, rejected, while smaller plots require less time but are subject to
bias. The plot size of 100.9 sq . ft . is the most economical size leading to unbiased and sizes of other plots are expressed as percentages. Larger plots than this require more yield surveys. In line with his experiments, Mahalanobis answer to this
in Table 10 . In this table the plot of 100.9 square f eet (about $10 \mathrm{~m}^{2}$) is taken as standard 340. These experiences give rise to the question of what should be the size of plots in
by the enumerators. given in para. 329. concerning crop-cateling one of every two, should be strictly followed
 been excluded. On that basis, it was suggested to utilize plots with the smallest periare liable to include, in the crop-cutting plot, plants on the boundary which should have

$\begin{aligned} & c \cdot \varepsilon 0 \tau \\ & c \cdot \varepsilon 0 \tau \\ & \varsigma \cdot \varepsilon \Sigma \tau \\ & 0 \cdot 00 \tau \end{aligned}$	$\begin{aligned} & 8 \cdot 80 \tau \\ & 6 \cdot \angle 0 \tau \\ & \tau \cdot \varepsilon \boxed{ } 0 \tau \\ & 0 \cdot 00 \tau \end{aligned}$	$\begin{aligned} & 7^{\circ} 00 T \\ & 8^{\circ} 60 \tau \\ & 0^{\circ} \subseteq Z T \\ & 0.00 I \end{aligned}$		
рәuтquop		em7ey	xndurnos	

[^1] results. circular plot. It follows from this table that a triangular shape may produce biased found (cf. para. 354 . are presented in Table 11. Among the shapes listed in the first column "fork" is also
 -7петтэтй

 the objectives of crop-cutting surveys is to know whether the shape of cuts has any effect cutting. The most common ones are square, circular, rectangular and triangular. One of बdeus 70 Id
of the crop yield within the same field, two crop-cutting plots per field were placed.

 could be larger $10-25 \mathrm{~m}^{2}$. While, for very widely spaced crops and in the case of mixed quite small $1-5 \mathrm{~m}^{2}$. For more widely spaced crops like maize, tubers, etc., the plot size
circular plots is composed of a pole to be placed vertically at the random reference point
and to which is hinged a rotating arm. To the end of the arm is attached a stylus to indicate
the plants to be cut. The rotating arm can be adjusted to several fixed lengths (1 to 2 m .)
so that circular plots of different radii can be used if desired.

 the crop-cutting plot. distance between two crop rows. The graduations on the lateral sides determine the size of wich is adjusted the rectangle's fourth side, a rod which should be parallel and at equal is planted in rows, the fork is yery often used (see para. 346). This is to be placed mid instruments used is a rigid hoop for circular plots or a rigid square frame. When the cro 354. In most developed countries, the crop-cutting plots are generally of a very small
size: 1 to 2 square metres or yards and they are circular, square or rectangular. The naturally the cost of the equipment rows), the period of delimitation of the plot (at the time of harvest or long before) and been used in developed and developing countries. The choice of the appropriate instrument
depends on the size of the plot (small or large), the planting technique (haphazard or in 353. For the delimitation of the crop-cutting plot, different types of instruments have
been used in developed and developing countries. The choice of the appropriate instrument and eye estimation of the direction of walking can be sufficient. e.g. a compass or a cross-staff, can be used. Here again accurate bearings are not essential For entering the field in the pre-established direction, an instrument for measuring bearings
 e.g. tapes, measuring wheel can be used. However, as already mentioned, exact measurement
are not essential and pacing may give unbiased results as long as the enumerator does not sented by the pair of random numbers, any one of the irstriuments described in Chapter III,

be recorded on the crop-cutting form (questionnaire) and also that they be ticked-off in the
table in order to avoidrepeating numbers already used. for each random point. It is useful, for control purposes, that the pair of numbers selected the numbers in the table in a pre-established order for the selection of a pair of numbers
351. For the location of the random reference point of the crop-cutting plot, the basic
provide them with motor cycles or even with motor cars. it was possible for the enumerators to utilize bicycles while in others it was necessary to assigrment area of the enumerator, is to be harvested on the same day, it is essential that immediately before harvest and since it may happen that more than one sample field, in the Crop-Cutting Equipment
$350 . \quad$ Since it is nec
cutting procedure.
errors due to the method of conducting the survey, the selection of the units and the cropover, these errors and biases may be small in comparison with other sampling and non-sampling of view of possible errors and biases but also from that of practical convenience. Excel-
lent tools for experimental work may not be applicable in large-scale yield surveys. More349. The problem of the size and shape of plots must be considered not only from the point
of view of possible errors and biases but also from that of practical convenience. Excel-
$$
-\angle 8-
$$
.098
expensive, however, they are heavy and not particularly easy to transport.

they are capable of producing considerable errors, particularly after some time of
also if illused. If used, they should be treated carefully and checked regularly.
in various sizes. Their disadvantages are that they are not a precision instrument and that

where
land-use indicator over the different areas considered to be under shifting cultivation in
a number of countries in Africa and Latin America. considered as permanent while the tern shifting cultivation will be restricted to the cases
where the indicator I is smaller than $1 / 2$. Table 1 I, $[16.17]$ shows the average value of this fallow or land abandonment within the time reference period ($F+C$) years. An arbitrary
cutting off point is to be agreed upon. This could be: equal periods of cropping and fallow.
Then, if the indicator I is included between $\frac{1}{2}$ and I, the system of cultivation can be

 after a longer period of time. (5 to 20 years)
 363. However, it has been suggested that the term shifting cultivation be limited to
the primitive practises of "slash-and-burn" where the farmers clear a wooded area (bush
or forest) and cultivate it from 2 to 5 years to apparent exhaustion, then move to anoth system of abandonment of the land to rest or fallow is widely practised throughout the
world and is an essential response to the problem of soils incapable of sustaining the
continuous production of crops for an unlimited period.
 and another piece of land cultivated. The abandoned land will be re-cultivated after
fertility is judged to be restored, or sooner if other land is not available for use. for a few years on a certain area of land, after which that area is abandoned temporarily 361. Shifting cultivation is defined broadly as a system under which crops are cultivated

* Cases where shifting cultivation is not evident.

[^2]

 associated crops"
 The situation when a particular crop is planted between rows of another
 When both temporary and permanent crops are grown simultaneously in crops in the mixture will generally vary accordng
practices in various countries or regions within the same country and
to other factors, such as meteorological conditions.
then both temporary and permanent crops are grown simultaneously in crops in the mixture wili generally vary according to the prevailing crops (but not both temporary and permanent crops) grown simultaneousiy "Mixed crops refers to two or more different temporary or permanent

375. The Programe for the 1980 World Census of Agriculture presents the problem of mixed cropping as follows: Mixed Cropping evaluate the productivity of the land under conditions of shifting cultivation. the yield is generally less than one half of the yield obtained during the first year the crop yields and productivity of the land. In fact, in the last year before fallow, fertility of soil through the use of fertilizers or manures, leads to the rapid decrease exclusive use of human energy, simple tools like hatchet, digging stick or hoe and only 374. Shifting cultivation, like other forms of primitive agriculture, based on the under a specific crop or mixture of crops. Moreover, it does seem possible to estimate

the areas of the different land use categories and study their evolution in time under
such a system of rotation. area is under a single crop (e.g. rice in the Far East, maize in Latin America) and later
under a specific crop or mixture of crops. Moreover, it does seem possible to estimate custom from time immemorial. Estimating or measuring crop areas in such a case is not holds of the community and, in most of the cases, the cultivators follow a common syst out on a communal basis. The cleared land is then subdivided amongst the farming house-
 basis for one or more years and then abandoned for ever. In such a c
is the cropped area and no other land use category can be considered.
 is on search for new lands on which to set up some fields. These lands are nearly always
taken from the forest (woods or bush) because the rights of ownership in the forest, etc. is a communal or tribal undertaking. In the first case, the cultivator owns no land and 372. The application of the concepts of total area, crop area, fallow, etc. can be

mixture, densities of plants in temporary or permanent crop mixtures as compared with
the usual density in pure stands, eye estimates of the proportions of areas occupied
by component crops (if distinguishable), the number of plants or trees per unit of

 crop and the total areas for all crops will far exceed the total cropped area. Also, when
the composition of mixture is variable, comparisons from one region to another or from one method, area figures over a region or a country will over-estimate the importance of every irrespective of the relative importance of the various crops in the mixture. Under this 384. In another approach, the area of a mixed crop field is attributed to every crop found

$\begin{aligned} & \text { B } \\ & 0 \\ & \text { B } \end{aligned}$		-
$\stackrel{\text { on }}{\substack{\infty \\ \hline}}$		
合	-	
$\begin{aligned} & \text { H } \\ & \text { 웅 } \end{aligned}$	N (${ }^{\text {a }}$	-
$\underset{\sim}{\text { ¢ }}$	$\underset{\infty}{\infty}$	

 Senegal. mixtures and the area under secondary mixture. An illustration of this form of recording figures are then shown separately for the area under pure stand, the area under principal pal constituent of a mixture or the secondary constituent. A principal millet mixture for V $\cdot \varepsilon 8 \varepsilon$
an overestimate of the actual areas of some crops and an underestimate of that of other
No information is made available on the areas which are always the minor constituents of crops are more frequently the doninant an of of total national cropped area. However, when, as is often the case in practice, particular 382. This method has the advantage of being easily adopted and giving a total area: for

ber of plants in selected unit areas. In other cases the principal crop may be selected will be selected when the mixture is of crops of similar botanic habit. The area occupied mixture will depend on the aims of the survey. Usually the crop occupying the greatest area crop field attributed to it. The criteria adopted to select the principal crop in the

 for the imputation of areas are However, these criteria should depend on those characteristics of the crops which are highly
correlated with either the area or production. The main characteristics which can be used 391. Imputation of crop areas in mixed cropping can be based on different criteria.
ively, the sum of which is 2.00 ha. equal to the physical area of the field. the same besis of a criterion of production), the imputed areas have to be reduced using the proportion in pure stand. In order to obtain estimates of the allocated areas (always on 390. This means that a field of size 2 ha with the mixed crops A, B, C and D yields
same overall production as an area of 2.50 ha of the same crops cultivated in the same This means that a field of size 2 ha with the mixed crops A, B, C and D yields the

A field of size 2 ha contains 4 mixed crops A, B, C and D. Let the production
obtained from the field be: $200 \mathrm{~kg}, 800 \mathrm{~kg}, 600 \mathrm{~kg}$. and 500 kg . of produce respectively.
389. As an illustration of these concepts, consider the following case:
ratio between the imputed area and the physical area can be considered as an indicator of
the intensity of cultivation of the land. area which would have been occupied by the crop had it been cultivated in pure stand. In equal to the total physical area of the field. The second denoted by "imputed area" is the
area which would have been occupied by the crop had it been cultivated in pure stand. In "allocated area" is that fraction of the physical field area in which the particular crop is
cultivated. The sum of the allocated areas of the different crops in the mixture should be ent statistical data pertaining to two different concepts of area. The first denoted by
 ive is to study the productivity of the system, e.g. comparing the performance of mixed crop-
ping to that of crops cultivated under conditions of pure stand. different component crops of the mixture, the procedure is not the same as when the obiectmixture can be evolved depending on the use to be made of the statistical data (land-use categories) to the 387. Different approaches to the estimation of the area under the individual crop of a
mixture can be evolved depending on the use to be made of the statistical data. If the cult. is variable over the plot eye estimates of the areas occupied by each crop may become diffionly in the case of mixtures of similar crops at the same stage of growth or where failly
regular and systematic systems of intercropping are in use. When the mixture of crops 386. Eye estimates of the proportions of a plot occupied by each crop in a mixture are
sometimes attempted. The method is highly subjective and likely to produce a useful result
production. after the crop has been harvested and the production measured. The comercial value of the

$$
M
$$

$$
i
$$

of mixed cropping

$$
\begin{aligned}
& \text { of mixed cropping } \\
& \text { the corresponding }
\end{aligned}
$$ The theoretical average density for the crop in pure stand can be derived from averages The the use of densjty plots or in counting the number of plants within the crop-cutting plot upon a posteriori. Information on crop density in mixed cropping can be obtained through stand cultivation could be collected from the farmers, theoretically determined or decided of seeds he has utilized (in some local unit of measurement) but not always the amount to

be sown in case of pure stand cultivation. The average amount of seeds in case of pure different crops are not always readily available. The holder usually knows the quantity 394. The different characteristics to be used in the imputation or allocation of areas to
mixture is equal to the physical area of the field. The conversion factor is therefore
equal to 393. The allocated area is proportional to the imputed area and the conversion factor is
calculated in such a way that the sum of the allocated areas to the different crops in the

[^3] $\frac{c_{i}}{c_{i}}$
$$
\text { then, the imputed area } A_{i} \text { of the crop is equal to: }
$$
the numerical value of the characteristic for crop i under conditions
be the physical area of the field
\[

$$
\begin{aligned}
& \text { equal to } \\
& \qquad \frac{1}{\sum \frac{c_{i}}{C_{i}}}=\frac{A}{\sum A_{i}} \\
& \text { and the allocated area } A_{i}^{\prime} \text { for crop } i \text { is given by }
\end{aligned}
$$
\]

7 7
either estimated or measured) and on its average value when the crop is cultivated in pure
stand (which could even be a theoretical standard value). The procedure is as follows: of the value of the characteristic under conditions of mixed cropping (value which is to be 392. The calculation of the imputed area is quite simple and depends only on the knowledge survey and also on the availability of the data.
The choice of the proper characteristic depends on its relevancy to the objectives of the
of pure stand,
400. When yield figures of mixed crops are referred to the physical area of the field,
they are likely to be subject to much more variation than in the case under pure-stand to go back to the fields as many times as there are crops in the mixture. of land greatly complicates the work schedule of the emmerators. The enumerators may have

 crop-cutting plot area and the yield is the measured (weighed) production from that parti399. When the yield is objectively measured through sample crop-cutting surveys, the
situation is totally different. In that case, the area to be considered is the physical

 397. The estimation of crop yields and production under conditions of mixed cropping

(i) + (iii) is the total area which could be used for the calculation of the

This would permit different types of aggregation, namely:
(iii) total imputed area of the crop
(iv) total allocated area of the crop
396. In the presentation and/or tabulation of the results on crop areas under conditions of
mixed cropping, it would be very useful to present separately the following four types of
areas for each particular crop:
successive cropping reduces to a special case of mixed cropping. is automatically covered. In such a system of estimation of crop areas, the problem of (agricultural year), the case where some of the crops in the mixture are harvested before other (agricultural year), the case where some of the crops in the mixture are harvested before other 395. When the imputation of crop areas is based on the criteria of the amount of the seeds
sown or the volume of the production obtained during the totality of the time reference period
shown the same results. Also that this system of recording the results is quite useful as
it permits the calculation of an indicator of land use intensity or of the extent of multipl 403. It is to be noted that the imputed area, based on the amount of seeds, would have
shown the same results. Also that this system of recording the results is quite useful
 the results are simple. They are the following 404. Case 1 of successive cropping does not present specific problems. The crop areas
are to be estimated or measured in the usual way and the FAO recommendations for recording
 titions does not present any particular difficulties. tions is small and large will be considered, even though, in general, the case of 2-3 repe(current statistics), $2-3$ times a year (at each agricultural season) or much more often at
regular or irregular intervals. In what follows, both the cases where the number of repetioperation is repeated at intervals of time. These repetitions could be: once a year

> or the production, te average yield per tree or plant. neede bides the plants are cultivated in pure stand or under mixed cropping conditions, the method of estimation of the average yield or the total production whether the trees or
401. When the yield per tree or plant is estimated or measured, there is no difference in
a beneficial or detrimental effect on another. cropping conditions. This is due to the fact that, in addition to the variation in the
yield between plants, there exists a wide variation in density of plants between crop-cutting
plots and also between fields. Moreover, there might also be some variation due to the cropping conditions. This is due to the fact that, in addition to the variation in the

$$
\begin{aligned}
& \text { c the crop under consideration }
\end{aligned}
$$

7 71
411: The following simple formula is proposed:
(generally the agricultural year or 12 months) the problem consists in elaborating a
tical fomula which would combine the different results and produce an unbiased estimate of
the crop area. (generally the agricultural year or 12 months) the problem consists in elaborating a mathemar 410. In such a system, the estimated or measured area sof a particular crop may and generally
 quarterly) the number of rounds for the estimation or measurement of crop areas under a
system of continuous cropping could be the same. However, the number of rounds should prethe crops in the fields. In a system of regular periodic reporting (monthly, bimonthly, should theoretically be equal to or larger than the number of different configurations of 409. In all the cases mentioned above, the estimation of crop areas cannot be carried out
strip or ring or they could be different.
or more crops in the drying sections of the land which could consist or at times of concentric rings. The planted crop or crops could be the same in each able for cultivation. The farmer, at regular or irregular intervals of time, plants one a piece of arable land is inundated, then gradually the water evaporates leaving areas suit-
408. Case 3 can be considered as the typical case of continuous planting as practised in a

 months, cassava may be partially harvested from 9 to 30 months. Thus, the structure of the in a mixture of maize, cassava and plantain, the maize may be cleared in four or five times, have unequal growing periods and have different harvesting frequencies. For example, this is not the case. The constituent crops in a mixture may have been planted at different time, all the crops in the mixture existed and could be observed in the field and that therelevant characteristics (e.g. the density) could be estimated or measured. In general, crop areas or the allocated crop areas was based on the assumption that, at one point of
time, all the crops in the mixture existed and could be observed in the field and that the

which has been replanted or reseeded. In such a case, the ratio between the area har-
vested and this total area planted can serve as a measure of the intensity of the damage
 40.6. In case 2, where the crops are damaged and the farmer has to replant or reseed the
total or part of the field, it might still be useful to record, as planted or sown area,
cropping namely the ratio between the total cropped area (temporary crops only) and the total
Thus, the total area of the field: 3 ha is subdivided over the 3 years.
of the same plant matures at different times over a long period of time. weighing the produce. In the same plot would appear plants, at atiferent degrees of maturity. The same would also apply whenever the produc

distinct seasons (e.g. cocoa, strawberries).
e.g. lemons, tomatoes). The harvesting period can be a single one or there might be two
 temporaty and perennial crops, not all the produce getsto maturity at the same time and the
mature crop is harvested at appropriate close intervals of time (e.g. daily, weekly) during

 cultural year.
reported only once unless the same crop is sown or planted more than once during the agrisituation should not be confused with successive cropping and the crop area should be nuous planting or it can be inherent to the characteristics of the crop growth cycle which 413. The phenomenon of continuous harvesting can be the consequence of a system of conti-
 is the actually planted and harvested area during the year. Thus, the estimate of

Finally the estimated area on the basis of a round each 4 montins could equally be
$14.4,12.8,13.6$ or 11.2 ha. The estimated area on the basis of quarterly visits could equally be $14.4,12.0$ or
12.6 ha. The estimated area on the basis of bimonthly rounds could be either 12 or 14 he.

1 ha, then 2 ha, then 3 ha, 4 ha, 0 ha and 3 ha successively, during the
first 6 :months of the agricultural year. The observed monthly area figures are On a parcel of land, a crop
planted gradually as follows:
conditions the usual practice is to harvest what is required, choosing the younger plants
which are likely to be more palatable, and allow the rest to go to waste. . the last crop in a cycle before the land is allowed to go back to bush. Under these However, it may also be planted as a reserve crop - it is under shifting cultivation oft cleared when it reaches maturity, which may be from nine months after planting onwards

 reasons such as the land being too wet to allow access, sometimes for economic reasons such
as the consequent lack of incentive to harvest it. What might be regarded as a special 419. Crops, in all types of agriculture, may remain unharvested, sometimes for technical

 the volume of crop harvested during the inter-visits period. Infomation collected in the visits to the farmers during the harvesting period in order to investigate on each visit
418. Also, the method based on the interview and declarations of the sample farmers on
the amounts harvested can still be recomended. However, the method might imply frequen
of the crop performance; reasoning based on the crop conditions and on other relevant
factors (e.g. climatic). method to estimate the crop yield is the subjective method. It could yield reliable results
if it is based on actual observation of the planted areas; experience and previous knowledge 4FZ. Whatever be the type of continuous harvesting, the simplest and most practicable
method to estimate the crop yield is the subjective method. It could yield reliable res estimate the yield.
 on telre-basis of the growth characteristics of the crop, construct a mathematical
model-which would relate the number and size of ears, cobs, fruits, etc.

> '27ə 'ş!̣̃x 'sqoo
7ロ8T

 frames, selection of random fields, selection of random plots, trees or clusters of trees harvesting can still be carried out if combined with some mathematical model of the growth 4if. Objective techniques for the estimation of the yield under conditions of continuous
harvesting can still be carried out if combined with some mathematical model of the growth
-. 20 I -
too that there will be a tendency to exaggerate abandonment of crop in the atmosphere of
disappointment of a bad season. pick over the best from their crop and leave some crop on all plants. It must be expected view of harvesting custom. In practice, only-a rather broad indicator of one set of problems arises from uncertainties about definitions when growers of the crop unharvested" or "proportion of the area unharvested" as may seem appropriate in
 of incomplete harvesting is a significant feature estimates can probanly be provided by : are too discouraging to justify further harvesting towards the end of the season.
remaining crop may be ploughed in, fed to livestock or otherwise disposed of. If this kind
 423. Although in the context of developing countries cassava provides the commonest

 maturity and the harvesting time can be brought closer to twelve months after planting. If

 harvested once for all, the estimation of yield or production does not present more difficulty have been solved. When cassava is produced for
 to fall unless new growth has taken over by then. these must be written off for food purposes and the quantity available will begin, perhaps, (nedible even under conditions of grave food shortage. After a certain point date at which the assessment is made. As one passes from the early days or the the the whe available will increase until a stage is reached where parts must be so since the weight of produce which is regarded as being available will depend on the be noted that, whereas the former is a reasonably clear-cut concept the latter is much less circumstances. Actual production, as represented by the product harvested and used, and 421. There are, of course, two different possible definitron product harvested and used, and 421. There are, of course, two different possible definitions of production in such
$\stackrel{+1}{8}$
REFERENCES AND SELECTED BIBLIOGRAPHY.
ments collected before forwarding them to Statistics which, in turn, makes a probability analysis.
 əपद まo โoxłmo

 15 May census:
or informant. (2) Method of obtaining results: (1) Census listing unit: the farm. A provisional estimate of results is made, based on data collected in
approximately 10 percent of the colmunes in the country. No forecast or current estimate is made apart from these two censuses. winter sowing, standing outdoor and greenhouse garden crops, and livestock. machinery and installations and manpower; that made in December covers censuses every year, one on 15 May and the other on 1 December. The May

Sources of information and methods

 the commune administrations. Unit yields are established by agricultural reporters working Collection of data concerning area readings is carried out by census agents appointed by

宁

The censuses cover all farms producing for the market (regardless of size
or location). सot? (3) Generally, net area (in view of crop conditions, the distinction
between net and gross area does not appear to be applicable). (2) Area observed at date of census (15 May or 1 December). Definition of the term "area"
(1) Sown area.
(T!) (6) As the ensuiry is sanctioned by Royal decree, it is compulsory; any
failure or refusal to provide information is subject to prosecution,
and additional surveys must be made on the spot.
(7) All persons covered by the census are obliged by law to provide
information.
Crops. included. in census
Winter wheat; spring wheat; winter rye; spelt wheat; winter barley; sprin
barley; oats; maize grown for seed; maslin (mixture of wheat and rye);
other grains and grain mixtures (except above mixed crop).
根

for the market and new plantations not yet in production), divided plantations (including field orchards whose fruit harvest is intended
 that fruit crop areas are covered in the annual May census only.
Census crops
 Sources of information and methods

 - (4от7eフot до
(c) OriginaI net area

$$
\text { (b) Area observed at census dates (} 15 \text { May or } 1 \text { December). }
$$ lamb's lettuce; spinach; celery; chervil.

Definition of the term "area"

> Coumercial crops under glass or plastic cover; cabbage-lettuce;
lamb's lettuce; spinach; celery; chervil.
> (1) Commercial outdoor crops; brussel sprouts; winter turnips; spinach;
lamb's lettuce; broccoli.
(2) Commercial crpps under glass or plastic cover; cabbage-1ettuce; ties, frames, cloches (bell glass).
December census:
 Kitchen-garden crops raised exclusively for informant's home other vegetables. Commercial crops raised in greenhouses or under plastic cover; tomatoes
raised in hothouses and under cold glass; cucumbers; gherkins; melons; including strawberries).

$$
\begin{aligned}
& \text { Definition of the term "area" } \\
& \text { (a) Sown area. }
\end{aligned}
$$ $\frac{\text { Production estimate }}{\text { Production estimates }}$ Field of application

The censuses cover all
or location).
 celery; celerica (turnip-root celery); salsifies (scorzonera); endives "Witloof" chicory; tomatoes; cauliflower; asparagus; cabbage lettuce; consumption); onions (small white onions for canning, and other types)
"Witloof" chicory; tomatoes; cauliflower; asparagus; cabbage loter one hand, for the canning industry; and, on the other hand, for fresh
year is issued in the month of March of the succeeding year. The sampling errors of
estimates so obtained are fairly small. preliminary estimate of area and production of eighteen 18 principal crops for a calendar selected. The Agents in charge of these Municipios are instructed to send in the return process a stratified probability sample of about I 000 Municipios in the country has been
 these results.
not tally, but no attempt has so far been made to reconcile seriously the discrepancies in
 the quarterly returns. One copy of the quarterly returns is sent to the Agricultural
 yjeld per hectare; expected yield per unit of measurement (such as fruits per 100 trees,

If two crops are grown mixed in one field, the area of the field will appear twice,
once under each crop.

 area harvested during the quarter; yield per hectare; estimate of quantity produced

period, the second part with crops in the process of cultivation.
The first part of each questi
completes two detailed questionnaires - one for temporary and the other for permanent crops,
between them covering most crops.

statistics is carried out by a section in the ETEA which is located in the Ministry of
Agriculture. Statistics of area and yield have been regularly obtained through the Municipio Agent
in each Municipio for some 30 years. The collection, scrutiny and tabulation of these
 of Agriculture are not used in preparing the national totals
Ministry. The forecast estimates are, on the other hand, used at the federal level when
 major crops of the State are obtained through these surveys. The sample is also used for the basis of an interview with selected producers. Estimates of area and production of the selecting a sample in the field. The actual collection of statistics is generally done on sample surveys at the producer level. The State has experimented with various frames for the

 Headquarters, with the enumeration supervised by middle level technicians usualin the various related Federal or State Agencies - not by the Municipio Agent state level is done by the statistical agency of middie level technicians usually employed knowledgeable people at the Municipio Headquarters. Ine supervision of lat located at the State The forecasts of production and area are collected on the basis of a group interview with for all the crops together is finally selected.

 the third at the time of harvesting. first two regions. For the Centre-South, three estimates are issued every year in resting and
of 14 crops, the first at the time of sowing, the second about a month before harvesting at the time of sowing and the second at the time of harvesting, are issued every year for the
first two regions. For the Centre-South, three estimates are issued every year in respect Centre-South, on the basis of the Agricultural Calendar. Two forecast estimates, the first

organization, Serviço de Previsao
merged into the ETEA in the Ministry in 1967.
In 1962 forganization, Serviço de Previsão de Safras, established in the Ministry of Agriculture which
 orchards are noted. During the survey in June, the number of isolated fruit-trees and the

 four main groups: grain crops; industrial crops; vegetables, potatoes, water and must
melons; and fodder crops. For state and co-operative farms only, data on sowings for 22

 late and second sowings. The data collected hy the state and co-operative farms in June
and August are not considered to be final and are revised twice - when the reported data on the size of sown areas, orchards, vineyards, nurseries, roses and mulberry orchards
and artificial pastures. In August the state and co-operative farms submit data for the
 the whole country. The National Statistical office receives statistical data about land

 Reports about each category are made by the relevant territorial boards of the Ministry natural pastures, forests, built-up areas, mines, roads, bogs, rivers, wasteland and other

unit are determined on the sown land. crops of these households, the production is determined on the basis of
average yield, which is made in the National Statistical office. Average yields per area crops of these households, the production is determined on the basis of the estimate of the plots of the population. The production in these households, for the country as a whole,
 much better. In the annual reports, which are submitted at the beginning of the following
year, the data are based upon the final documentation on realized production. For 25 crop is already known). The accuracy of the preliminary data, which are submitted later, is
 April of the following year). State and co-operative farms submit their estimates at the beginning stages: expected production (September), preliminary data (December) and final data (in
 Estimates of sampling errors are calculated district estimates do not exceed 5 per cent in the case of the more important crops. The

 districts are established, and of these, a 10 per and determine the size of the farm area

 design was decided upon. For all villages and for towns with a population up to 5000 surveys were experimented with).
studies were made, and on the basis of these studies a 10 per cent one-stage sample
 plots of farmers not in co-operatives became the obaried out (except for 1937, when sample
 district office of the National Statistical Office. During the last three years, in June,

complete census where a reply is required from all correspondents.

 objective yield counts for fruits and potatoes, and in 1972 a nation-wide annual enumerative

 quick and quite effective for the past 50 years. However, with the rapid structural change intervals during the course of a year. Most of these surveys are conducted by mail with

indices of farm prices and production.
 Broadly speaking, these statistical series include seasonal estimates of the production and
disposition of field crops, livestock and animal products; prices received from the sale of on a regular besis during each year has been assigned almost exclusively to its Agriculture
Division. The only exception is the monthly survey of the agricultural labour force.

[^4]
used method is the mail-questionnaires survey because of its low cost. The second involves
the use of the personal interview. Each of these methods is used to collect agricultural Iwo methods of data collection are employed by Statistics Canada. The most widely SOILSILYIS dOZO פNILOATTOD AO SबOHLIM

information about acres harvested, total production and average sales prices for a selected
list of vegetables.

grown under contract. They are asked to report also the same information for vegetable
crops grown on land they own or rent. to determine the total acreages harvested, average yields and values of selected vegetables

> sown to vegetables.
> obtain information which will permit the preparation of a preliminary report on acreages
> 14. Survey of Preliminary Vegetable Acreage
1-13
strata was done in proportion to the area under the crop．Within each selected cluster a constituted the primary sampling units．The allocation of clusters among the different

 For yield estimation the sampling design was a stratified multi－stage one，in which the
districts and sub－districts（ $2-3$ agricultural units within each district）form the strata．

（b）an objective method，of crop－cutting for 8 principal crops（cotton，paddy，wheat，maize，
onions，groundnuts，lentils，potatoes）．

：spioti doav suţem！ $\overline{\text { PTəTX }}$
were difficulties related to the identification of crops in the photos and to errors of
flight．The project was discontinued after 1967 ．
Aerial photography was applied in 1966 on a nation－wide scale to eliminate errors of
coverage and measurement in the field，but errors due to the planimeter remained and there enumeration． wheat and sugar cane．In the case of cotton，wheat and rice a 50% sample has been
used since 1967 and a ratio estimate applied using data of the latest complete calculated by planimeter．This work is carried out on a 100% basis for cotton，rice，
wheat and sugar cane．In the case of cotton，wheat and rice a 50% sample has been boundaries of the crop are thus identified and coded on the maps and the area is By spot inspection measurement is made of the crop along the sides of the
surveg parcels and delineated on the maps with the help of a scaling rule the principal crops and is based on the use of cadastral survey maps of scale $\frac{1}{2500}$
By spot inspection measurement is made of the crop along the sides of the
 －aldoad

sub-sample of the original sample of plots to increase efficiency

use in multiplication to estimate production. The correction factor was obtained on the
basis of a sub-sample of clusters included in the original sample and on using actual
measurement of the length and breadth of canals, drains, ditches, etc.

errors of under 1%.

 variation between units and within units. With 2 plots per p.s.u., 305 p.s.u.'s would be

size ($3.5 \times 6 \mathrm{~m}$) for onions, potatoes and groundnuts crop. The size of the plot was 7×12 metres ($1 / 50$ feddan) for crops grown selected parcel, a field growing the crop was selected out of all the fields growing this a list of crop growers was prepared and two parcels selected at random. Within each.
selected parcel, a field growing the crop was selected out of all the fields growing this
was based on the advice of the Regional Ministries of Agriculture.

 survey was used as a frame households (distinguishing farming and non-farming households) compiled at the time of the

 not harvested in the year of the survey.

[^5]The survey included 204 village units throughout the Federation and
one agricultural year.
reduced to one from 1970. This member had also to remain in the selected village unit for approximately a year in a selected village unit collecting information. With the idea of crop seasons in parts of Nigeria. Up to the 1970/71 survey a team of two members lived

used for conveying produce and tenurial system of land of fertilizers, insecticide, irrigations, agricultural equipment, types of transportation in rural areas; number of farmers, classified by type of farming and area farmed; timing e.g. hair cutting, tailors' charges, travel, etc.); prices received by farmers and prices consumption surveys and reported amount paid together with expenditure for various services, both purchased and raised by the household; composition and occupation of household members their vital statistics, purchases and sales; household consumption of food and other items, sole or mixture; acreage planted to economic tree crops; production of farm crops, sole and design to $\overline{\text { PTOTX pue Eaxy }}$
measured by gridding and planimeter.
 areas determined using usually a closed traverse method with measurements by chain or tape

 a group of villages or enumeration areas). operated by members of the househol
unit of study were studied (say within a 15 miles radius of the main village in the case of made by the enumerator of the household. All farm plots within reasonable distance from the For the farm survey the $\ddagger \mathrm{ir} s t 30$ farming households were selected. Arrangements were
and the number of farm plots being aperated by the household.
 and from these 15 farming households were selected

Selection of Master Sample: From the total list of hoiseholds listed in the study unit
above, 50 households are selected randomly. These 50 households were called Master Samples
 (a) Preparation of a rough map of the unit of study.

Programme of Field Operations. When the enumerator got to the selected unit of study surveys. extended or not, a determined number of households was selected for the multi-purpose rural households and non-farming households. The first 30 households were selected from this
Master Sample in the final sample for the farm survey. From this Master Sample, whether holds was first selected at random from each village unit. This was classified into farming In selecting the second-stage units (farmer's households) a Master Sample of 50 housegrouped using precautions against bias. enumeration districts were grouped to give units of abor
selected at random. If the village selected was under 1500 population, villages were using a systematic random sampling method. If a selected village was above 3000 population,
enumeration districts were grouped to give units of about. 1500 population, one of which was

The size of the primary sampling unit was fixed at between 1500 and 3000 population. stratum to another, but in all cases it was approximately equal to
population in that stratum to the total population in that Region. The number of primary units allocated to each stratum of a Region

[^6]for punching on cards. These source docin
the Federal Office of Statistics where programming for the Farm Survey had already been
worked out.
for punching on cards. These source documents were finally sent to the Computer Centre
웅
The Agricultural Analysis section kept and processed manually with desk calculating
machines all field data. Some part of the section was engaged in preparation of codes

 The summation of all the stratum production and the acreage of different crops multi-
plied by the expansion factor for the stratum gave the global production and acreage for
for tree crops.
oranges, where harvesting customarily extends over a period of the whole sumer,
were all added together as the yield from $1 / 40$ of an acre for the farm crops, and 10 trees Several harvestings may also take place for crops like cotton, pepper; plantain, cocoa and
oranges, where harvesting customarily extends over a period of the whole summer, and these enumerator according to the nature of the crop to determine. dry weight, grain weight, etc.
from the pegged $1 / 40$ of an acre yield plot. Several weighings may be performed by the
were ready to harvest. At the time of harvest, the enumerator weighed all crops harvested
Farmers were requested not to remove thepegs and to inform the enumerator when they

bearing or not, were selected nearest to the peg to constitute the sample plot.
A peg was put in at this point and, up to $1965-66$, with a radius of $18^{\prime \prime} 71 / 2^{\prime \prime}$
ircular yield plot of $1 / 40$ of an acre was laid. For tree crops, 10 trees, whether
randomly determined within the farm plot
entirely, but in the case of plots with more than a 240 ft perimeter a yield point was pegged for demarcation during harvest. If a farm plot with farm crops had a perimeter of selected farm plot. Yield plots were laid in every farm plot embraced by the survey and

 small percentage of the total territory can be cultivated, several cadastral communes
make up a single reporting area.

 utilization categories is also. known.

 facilitate the utilization of records the cadastral service has divided the whole country

 !sədexs pue actual yield of early crops and fruits and expected yield of late crops, fruits

area at the end of planting campaign and the expected yield of early crops;

Data falling under this title are collected each year for the whole country for the
follwoing:
SコT7ST7e7s ptotK pue eaxy
The picture presented here is arranged by fields which are homogeneous with respect to
method.

sectors is 8720 thousand hectares and 1468 thousand hectares, respectively. The total number of agricultural holdings in the private sector amound about 2 thousand in the socialist sector. The arable area operated by the two

general education; is preferably an agriculturist himself. The agents make a contract with
the statistical service for their work and become members of the permanent crop reporting
(\mathfrak{t}) ル covered by the same basic surveys as the private sector of agriculture but they have the
following supplementary programme every year: programe of reporting from the agricultural co-operatives is much broader. They are The system described above does not relate to the socialist agricultural sector. The
specification of procedures that the agents are expected to follow in order to get data
requested in the survey concerned. The instructions prepared for the agents describe first the organization of the service
Then they set out basic concepts and definitions arising in these surveys and go into a

Actual yield surveys cover a comprehensive list of field, vegetable and fruit crops.
Among fruit the items included are: applies, pears, plums, peaches and nuts.

әтqеләрт!

rank on the hierarchy of units. The survey covers a comprehensive list of crops and land.
use items.

deal with concepts, definitions, time-table, etc.
above-mentioned surveys. In addition to methods of obtaining data, these instructions also
Special instructions are prepared for the reporting agents about their duties in the
\cdot suotyentesqo temosied (TTA)
(vi) reports available on areas and yields collected by other organizations;
 (iv) contacts with agricultural experts in the area;
 previous year;
statistical data on areas and yields for the same reporting area for the

cadastral data as to the total size of the reporting area and its breakdown In order to be able to work satisfactorily, the agents are obliged to utilize in their
work the following facilities:
service.

In the 1968 round of the survey non-response amounted to 1.1 per cent of all holdings
included in the sample. of these, 0.6 per cent were cases in which the agricultural

 holdings in each political-administrative department is calculated. To establish the

> respect to the number of head of cattle, and one wrin respect coffee. A 20 per cent systematic sample is selected from each stratum. istribated about 7106 holdings in this category. The remainder of the specialized iond, one wit

 - saseo әxex पT national territory is obliged to supply statistical data. This law has been applied only

 the census.
than 99 per cent of the agricultural holdings are located in the 16 departments covered by 1960 was carried out. Due to special circumstances, the census operation included neither
 country. also , rice, other crops, and social and economic studies of the rural sector of the yield, stock of cattle and livestock production. In planning the survey, it was , e.g. coffee, The purpuse of this survey is to obtain information on the area under cultivation,
sowing of the seed and harvesting. distribution of the land, but also on the development of the territory over time. Ihis
 This is an annual survey. It has been repeated point by point since 1965 for certain

 A surveyor, provided with a photographic enlargement of the field, goes to the precise
place determined by a point found at the intersection of the two branches of a cross drawn

sampling fraction which varies between 10 and 20 per cent, depending on the surface of the
 points each; the distances between the points represent real distances on the ground of
300 metres. This technique yields a sample of 7200 equiprobable points geographically

(vii) permanent specialized cultivations and market gardens; and (viii) waste land and
fallow land.

 different categories of territory have been stratified into a number of strata, those being

 as the basis for certain crop surveys.
distribution" section of the French annual agricultural statistics. This survey also serves 1. The purpose of the annual survey of land utilization is to op-date the "land

Tonvai

and (d) plots. Each of the points represents a field. The owner of the field is contacted

 ears are threshed, the grain from each sample weighed and a humidity analysis performed length. The interviewers are told. in advance from where the samples are to be taken. The

(b) holdings, (c) fields, and finally (d) sample plots.

Where the list. of agricultural holdings is used, the "selection of holdings" technique,
sampling is done in four stages. These stages consist of the selection of (a) cormunes, survey" (see above)
holdings, or (b) the series of data which are periodically collected for the "land at random. The selection of the sample is made in several stages. Two methods may be
considered, depending upon whether (a) the sampling frame used is the list of agricultu

techniques are applied and analyse them in the light of yields obtained.

 production from area and yield data, and (b) to ascertain the degree to which cultivation quadrupled without increasing the number of points surveyed. such that where greater variance exists the number of photographs has been doubled or intra-photo variance. To compensate for this, the photographed areas have been stratified replaced; and (b) accidental - due particularly to changes in land use. instructions. The second type takes on two forms: (a) systematic - and the surveyor is revealed by re-examining a certain number of points visited by a surveyor (generally one outof 12 per photograph). The first type of error can be minimized by giving precise Two causes of error can arise in this survey: (a) error in noting the type of culti-
vation, and (b) error in location of points by the surveyor. These two types of error are
 A second visit by the interviewers takes place in June or July, depending on the region.
After the harvest, each sample of ears of grain is treated in one of the regional threshing
centres; the grains are then weighed and their humidity is measured in departmental or

 from each departmental statistical service agricultural statistics authorities, from the commne survey's registers of holdings. The
first-phase questionnaires are completed during April and May by the corps of interviewers
 production for the whole of France after the 1970 general agricultural census of all areas under wheat, barley and maize. It is planned to survey wheat and barley in 1969 account for approximately 58 per cent, 66 per cent, and 36 per cent, respectively, departments and has been repeated each year in the departments which are the largest The survey was first conducted on an experimental basis in 1962 in a number of pilot
departments and has been repeated each year in the departments which are the largest of autumn cereals, and then spring cereals. crop, and further stratified by type, viz. autumn or spring cereal, in the cases of wheat

cereal cultivation. This operation made it possible to ascertain that the average
structure of the samples was, in general, identical with. that of their populations from which
they were drawn.
 descending order. Two replacement holdings were selected for each holding.

 strata according to the area under cereal cultivation. The first-phase sample was allocated
 the countries of the European Economic Community as the sampling frame.
 first phase. Areas are estimated by extrapolating, at the departmental level, information obtained
from: (a) the farmers involved in the first phase, where the "selection of holdings" metho
the second phase by the interviewers themselves), and (b) the percentage losses in situ and
in transport.

 important for the crop in question is of the order of 100

 the plot, is the only one which has to be located within the selected field by a random in identifying the randomly selected unit at the field stage. The third-stage unit, namely villages, fields and plots as the first, second and third stage units respectively. The A stratified three-stage sampling design has been adopted for this survey with
functions of the revenue and agricultural staff in the states. is given on the field. The field work of this survey constitutes a part of the regular
 conducting crop-cutting experiments in the prescribed manner. The field staff for this
work are drawn from the departments of agriculture and revenue in the state governments. Data are collected by direct physical observation of the selected fields and by
conducting crop-cutting experiments in the prescribed manner. The field staff for this these surveys lies with the state governments concerned. All states and union territories are covered by this survey. Responsibility for organizing

 state) on an objective basis. All major crops, such as rice, jowar, bajra, maize, wheat,
barley, gram, cotton, jute, groundnut, sugarcane, tobacco, etc. are covered, but the food crops for each state and for important administrative divisions and districts (in each

 crop grown plus a proportionate are of the crop grown in mixture. The estimates of品 estimated as a product of the net yield rate obtained in this manner and the net area

 the stratum, district and state levels. In the case of crops sown in mixture, the The average yield per unit area is calculated from the data of all experimental

Each supervisor kept detailed records of field problems and time needed for different
operations. The enumerators were in turn trained by supervisors.

The enumeration of holdings in sample villages started on 18 April 1967 and was
completed on 2 June 1967.
At the second stage, the field staff selected systematically a 20 per cent sample
hodings for measurement of area and the count of date-bearing and non-bearing trees.
date palms. In addition, information on the major varieties and period of harvest was date-bearing trees in the current harvest period, non-bearing trees, and the area under
date palms. In addition, information on the major varieties and period of harvest was At the first stage of enumeration, all managers of date holdings in the sample villages
selected systematically. Finally a sample of date-bearing trees was selected. the first stage villages were selected from which a 20 per cent sample of holdings was Districts of the province were considered as strata. Date-bearing trees were almost
equally distributed among these districts. A three-stage sampling design was used. At

 estimates of yield rates between the subjective interview method and the objective method The purpose of this survey was to develop a suitable sampIing design and field procedure
for organizing regular nation-wide crop-cutting surveys, to compare the reliability of

provided the field staff with motor vehicles generally at the rate of one vehicle per
council.
 normally assigned 18 crop-cutting experiments in six sheikhships or pump schemes at the rate
of three experiments per sheikhship or scheme and 18 sheikhships for the area survey. In 'sечวzeq snozemux ฐ๐ 27 피

as the ultimate

$$
7 \text { by } 6 \text { metres was the sampling unit at the ultimate stage. }
$$ selected holding constituted the unit at the third stage and a rectangular plot measuring

 the area survey with sheikships as primary sampiing unit and agricultural holdings within However, wherever possible a council itself was stratified into two or three strata on the
basis of the crop pattern. Within each stratum a two-stage sampling design was used for the case of dura, each council covered by the survey was generally treated as a stratum.

Project.
survey carried out in the tract to be covered by the first phase of the Rahad Irrigation in 1965/66 and 1967/69 and restricted coverage of two most important councils for this crop
in 1966/67. The crop-cutting survey on dura in $1967 / 68$ was a part of the bench-mark pump irrigation schemes of the Northern province with full coverage of all five councils
 in one 6 , seven councils in 1966/67, parts of councils in $1967 / 68$ and 22 councils were carried out by the Department of Statistics beginning with a study on dura in 1965/66 A series of pilot studies of the crop estimation survey on dura (sorghum) and wheat
by planimetry of the aerial photograph. each segment are outlined. The name of the crop or land use and its acregene are retermined rert outlined. The name of the crop or land use and its acreage are recorded.

and diversity of agriculture within the states and a dual objective of both state and
national estimates.

 areas where most of the land is cultivated, the average size is about 300 acres. In some nearly 17000 area sampling units (segments), which is approximately 0.6 per cent of the
total land area. The average segment contains 1.3 farm operators and about 480 acres. IN of very large farms. The area sample is single-stage, stratified randou.
nearly 17000 area sampling units (segments), which is approximately 0.6 per cent of the Use is made of an area sample supplemented by a sample selected from a list of operators
 living outside the segment the tract questiomaire is desligne tract data together to getting data for their land (tracts) that falls within the segment boundaries. For operat chickens. For operators living within the segments the.farm questionnaire also provides for

for livestock, chickens, agricultural labour, farm population, and size and type of farm. with respect to the segment boundaries. Data on a farm basis are collected and summarized

parcel of land within a segment under one management.
The June survey population is all farms and land in the 48 conterminous states. Each
sample segment is divided into tracts which are delineated on photographs. A tract is a
obtains information on number of farms, livestock, poultry and farm labour. statisics programe. Although the major emphasis is on planted acreages the survey also
 The Economic Statistics and Cooperative Services of the United States Department of
Agriculture each June conducts a survey of acreage planted to various crops and numbers of

 (

 administrative forms. Actual field practice is used near the conclusion of the training

 the survey both in the state office and in the field. responsible for hiring, training and general supervision of enumerators and all aspects of promoted to state supervisor after one or two years of experience. The state supervisors are the assignment of state supervisor. Usually one or more additional statisticians are
designated as assistant state supervisors. An assistant state supervisor is usually the collection of agricultural statistics. For the June survey, a statistician is given

The June enumerative survey data are collected during a two-week period in late May and
 retained from the previous year. This provides a ratio estimate from the identical segments. and acreage seeded to winter wheat and rye.

 f a sample segment. The latter involves the definition of a unique point (headquarters) for

 reporting units the "open" segment concept is applicable and is applied in one of two ways The preceding paragraph describes the operation of the "closed" segment definition of
sampling unit, which is not feasible for all kinds of data. When farms must be used as
questionnaires are mailed to Washington, D.C. Summarized data are returned to the
respective state for use in making state estimates.
 supervisory enumerators. The state supervisor and his assistant then return to the state
office to review completed questionnaires. the enumerators are women. In the early phases of enumeration, a period of direct field desire to work with people and be receptive to the technical training required. Many of Qualifications for enumerators generally consist of knowledge of agriculture in his

other methods (eye estimates, expert opinion, indirect methods, ...). connotations connected with its use in mathematical statistics. We shall therefore reserve
it for procedures based on statistical theory, and use the term "assessment" for all the

 for current agriculturai statistics in the developing countries and to draw attention to

 type of information is. then worth taking, whether secondary sources (by-products a thorough
administrative activities, management, etc.) or assessments made by people with a detective who tries to reconstruct an event on the basis of fragmentary indications. Every use of the data available, he attempts to build up the missing data (in national accounts it
is not possible to leave any item blank). His method of working resembles that of the are less expensive and which avoid the obstacles presented by reticence. By making the best

 - Psychological, because direct observation very frequently comes up against resistance and

 such observation.

who endeavour to plit hairs in estimation procedures, and the empirical simplicity of the

livestock numbers and 94 for milk production.
the agricultural statistics relating to a number of countries. used, as will be gathered from the figures below, drawn from an FAO report which reviews

$$
3 \text { - Eye estimates and expert opinions. }
$$

In agricultural statistics, as in the other areas, data can be classified into three
categories according to the way in which they are produced:

without saying, because the aim is definitely to improve their quality. to consider whether the statistician might not be able to coexist with them in peace without

we shall see below, this target is still far from being achieved.
For a long time it has been thought that objective statistical surveys would be able to
replace these archaic methods, and considerable progress has undoubtedly been made. But, as expert opinion, etc.).

The methods used to produce current agricultural statistics very often consist of what
has been referred to in the preface under the general term "assessments" (eye estimates,
measure the capacity of the country to export agricultural products. the fundamental balances between population, food production and food consumption, and of the subjects and sites for development activities. They make it possible to perceive
 or soil maps, population statistics, climatic data, etc. They are not statistics connected

 they are not produced with sufficient rapidity, they may make it possible to determine the cases do not lead directly to action, although in certain cases, and despite the fact that
statistics on agricultural population, utilization of fertilizers, etc
we are deliberately adopting a very restrictive definition. One could legitimately add production of crops, livestock numbers and the output of animal products. This means that In the developing countries, current agricultural statistics are a permanent require-
ment. By current agricultural statistics we mean annual statistics on the area and มoTำกnpoxivi

170:224, and for rice $128: 200$. The other figures are supplied by the countries, but
two-thirds prove to be eye estimates. $14 \times 7=98$ data; of these 98 data 69 are direct estimates by FAO!!! For maize the ratio is consumption, sees, etc.). For 14 countries producing wheat, the balance sheets contain

> sạฺas am!T 2nd criticism: Inconsistency between different figures.
such as a yearbook of agricultural statistics, must really correspond to the concept of "the
best possible estimate in the light of all. the information available". permissible for crude survey data to show some discrepancies with other figures, a document agricultural statistics food balance sheets should play a similar role. Although it may be national accounts constitute a constrictive framework making syntheses obligatory. In endeavoured to reconcile in a final synthesis. It would be better for these judgements and projects, etc.) consist to a large extent of a compilation of divergent figures which it is source. This work is indispensable and it can be seen that many study reports (studies on these judgements and syntheses so that the reasons for divergence can be eliminated at thei is a situation which he should not tolerate as a matter of course. The differences must be
 represent rice production in Viet Nam.
statistics in the developing countries". He gives three series of assessments supposed to Another example of the same kind is given by Mr. THEODORE in his work: "Agricultural better than the first, but does not indicate why. of the same milk production. Mr. KLATZMANN seems to think that the second is decidedly reason this " Agriculture assesses this production at about 180 million hectolitres for 1955 , there is Mr. KLATZMANN quotes the example of milk production in France: "While the Ministry of
 these criticisms some rules for improving the quality of assessments.

 For this we shall use the course given at ENSAE by Mr. KLATZMANN, entitled "Course on the

of enumerators, methodological reflection and better mobilization and utilization of
existing information. In the following pages we shall speak very little of statistical surveys, but rather
of assessments, considering how they could be improved at little cost through the training \qquad comparisons and synthesis should be systematically encouraged in order to arrive at the not constitute two separate worlds that ignore each other's existence. On the contrary,

 with respect to the quantities to be estimated - a problem all the more difficult in that

 have harvested and from the replies obtained deduces (extrapolates) an assessment of

[^7] - systematic errors resulting from a collected and to faulty extrapolation;

It is therefore possible to distinguish between:
partial information. Information is recorded, consciously or not, in the memory of the
operator and extrapolated to produce the assessment.
Every assessment is the result of an abstract mental process which generalizes from
of this deviation. such that the person producing the assessment is aware of the existence of a probable One thus arrives at the concept of a subjectively unbiased assessment, that is to say,
such that the person producing the assessment is aware of the existence of a probable
estimate. If, for example, the bias is positive, any number slightly inferior to the
initial estimate will be a better estimate.

If the zone is small information can be picked up from most of the zone's area. The quality
of the assessments should thus be improved.

 of a few principles calculated to improve the quality of assessments.

distortions connected with the personality of the individual producing the assessments

And it is at this stage that previous experience in objective surveys proves most useful extrapolate to be able to undertake explicit (by calculations) or implicit (by reasoning) weightings. extrapolate them with discernment. This in turn presupposes suifficient knowledge of the
Utilization of this information for the purpose of making assessments presupposes the
ability to replace them in the environment which has to be described, that is to say, to
the market, etc.).
information collected (farmers' opinions, measurements taken in the fields, facts noted in
The information could be stored by being written in a notebook which the operator would
carry around with him. In this book the operator would record in sumariżed form the

We have seen that any assessment is the result of processing by the operator's brain
partial information stored in the memory. One may therefore hope to improve the quality -scantins teotistubas extent on training is for them to take part in effecting and processing the results of objective
Reduction of the errors we have referred to as technical also depends to a great
groundnuts, one must be able to indicate its approximate weight. assessments. This is precisely the meaning of the term "eye estimates". On looking at a
field, one must be able to assess its area in hectares. On looking at a bowl of millet or

 Study of the definitions and concepts used in current agricultural statistics (cf
principle No. 6).
 nature, should be recorded in a sort of log-book so that it can later be sorted and journeys, meetings, conversation, etc., whether of a qualitative or a quantitative
 cultivated per person, etc.) which will enable them to test the probability of their
own assessments.

 area, details on its contents (list of villages and population) and more generally Thorough study of their zone, including mapping of its boundaries, calculation of its
 It is therefore with these officers in mind that we shall now list the main subjects cultural statistics.
 These officers, owing to their responsibilities in the field of extension work or the according to the country). usually control much less extensive zones than the other administrative divisions of the
country (agricultural sectors, agricultural stations, etc. - the terminology varying view the local officers of the Ministry of Agriculture offer the advantage that they placed on agents working in the smallest possible geographical units. From this point of By virtue of the first principle we have just stated, for assessments reliance must be

It can be shown, in fact, that under fairly general hypotheses the quality of the
assessments obtained by aggregating the assessments for the elementary zones is better the
higher the number of zones.
there is a prior critical examination.

 data provided by research bodies situated in the zone. Plant production research data from special studies carried out in the zone (village monographs, for example); possess figures which they have had to collect for their own requirements; data provided by the activity of administrative or other bodies working in the zone
For example, the development projects whose activities affect the zone very often budget, agricultural or others);

- total population of the zone, using the data from administrative censuses combined $-\quad$ area of
plotting; In the zone itself, certain data may exist or be easy to calculate: assessments
Data on the zone

> Principle No. 4: Search systematically for data able to strengthen or support the the previous year. annual variations or, at the very least, will be systematically compared with the figures for the information available. The figures thus obtained for the base year should serve as the
starting point for the assessments, which will now be made only through appraisal of the small zone, thus making it possible to reach the best possible assessments in the light of
the information available. The figures thus obtained for the base year should serve as the this base year consistency between all the figures available should be ensured within each figures for a base year. This base year sherging from statistical operations (for example, results of an agricultural census). For lations as the model for assessments: that is to say, establishing assessments in absolute than absolute values. Realization of this fact leads to the idea of taking economic calcu-

[^8] person concerned. field is then measured and the result stated. Numerous repetitions of this operation produce This is not a question of flair, but derives from training techniques that can be
squares and serve on glossy paper in a yearbook of agricult-ural statistics.
 follows: a good portion of assessments, a portion of statistical surveys, another portion

and serve the customer with a dish of acceptable figures.

 detects, stratifies, intrapolates, extrapolates, interpolates, retropolates, corrects, amalgamates, compares, breaks down, rectifies, analyses, synthesizes, improves, corroborates,
 $\overline{\text { पotsntomon }}$
identical throughout the territory in order to facilitate aggregation by precise instructions on the meaning of the various concepts used. These forms must be

 thus are geographic sumaries justified. It is these definitions which illuminate the On the contrary, one must define with precision what one is trying to assess. Only
claiming that a mediocre archer can do without a target. differences between standing crops, harvests, farm production, etc.; if these quantities can
be estimated only to within 2.0 or 30 per cent. Such reasoning is mistaken. It is like

Principle No. 6: Harmonize and clearly define concepts and nomenclatures
in order to improve the latter's quality. Food balance sheets can play an important role any inconsistencies. One can also use the relationships that the assessments should verify other. For this purpose one can calculate the ratios between certain quantities (area
cultivated per person, per capita consumption, etc.), which will make it possible to detect Assessments referring to different quantities must be systematically compared with each
other. For this purpose one can calculate the ratios between certain quantities (area ciple No. 5: Look för connections between the quantities estimated
Assessments referring to different quantities must be systematicall

> using the least squares method. leading to successive corrections. These corrections can, moreover, be formalized by overall figures. Hence the necessity of links between the different geographical levels whole country or for large regions, but not available for the small elementary zones. (price stabilization funds, cooperative unions, etc.) often possess data valid for the Use must also be made of data available at a wider geographic level than the elementary
zones in which the basic assessments are made. For example, administrative bodies
observation of certain prices, area measurements, etc.). the annual data for current agricultural statistics and strengthening this by local statistical
observations (yield measurements by sample crop cutting, maintenance of village registers, progressive programe of work can be formulated, organized around the system of assessing Agriculture, and ascertaining how much time they can devote yearly to agricultural statistics
bearing in mind their other tasks. On the basis of this parameter a modest but realistic and

real financial capacities.
scale statistical surveys. The cost of such programmes is rarely compatible with the country's inquiries must be conceived around these officers. Too often there is a temptation to
up an ambitious programe intended to satisfy very different requirements by means of fullwith regard to agricuitural statistics. It also means that the programe of statistical statistics: The corollary of this is the institutional responsibility of this Ministry We have seen that the field oficers of the Ministry of agricultur current agricultural We have seen that the field of
.....................: хทอาจeอร................... :

5.- Avencement des travaux agricoles (Compte tenu du Plan de Campagne)

(1) Indiquer brièvement les causes :
पоsтes จxจ3
\square
-

IDENTIFICATION OF AREA
pROVINCE
....... -.......
........

CROP NAME

or
REPORTING DATE

rear

$\begin{aligned} & \text { DATE OF ROUND } \\ & \text { OR } \\ & \text { WAMES OF CROPS } \end{aligned}$	$\begin{array}{llllllllllll}\text { A } & \mathbf{R} & \mathrm{E} & \mathrm{A} & \text { OF } & \mathbf{C} & \mathrm{R} & \mathbf{O} & \mathbf{P}\end{array}$								I		-	U T	S	
	IRRIGATED				NOT IRRIGATED				SEEDS		FERTILIZERS		PESTICIDES	
	Ordinary Seed		H.Y.V. Seeds		Ordinary Seeds		H.Y.V. Seeds		Volume of Ordinary	Volume of H.Y.V.	Type	Volume	Type	Volume
	With Fert.	Without Fert.	Uith Fert.	Without Fert.	$\begin{aligned} & \text { With } \\ & \text { Fert. } \end{aligned}$	Without Fert.	$\begin{aligned} & \text { With } \\ & \text { Fert. } \end{aligned}$	Without Fert.						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

ANNEX 4-C FAO
$\begin{array}{ll}\text { Schedules on: } & \text { List of Parcels and Fields } \\ & \text { Field Questionnaire } \\ & \text { Crop Densities Questionnaire } \\ & \text { Crop Yield Questionnaire }\end{array}$

FAO-UOAND EXPERZEENTAL CENSUS OF AORICOLIURE

vI. LIST OF PARCELS AND FIELDS

Hame of Molder \qquad
--

$\begin{aligned} & \text { Serial } \\ & \text { No. of } \\ & \text { Parool } \end{aligned}$	Looztion	Land Tenure \qquad	Sorial No. of fiold	Year of Clearing 5	Cropa		Crops plantod in previous $\frac{\text { geason }}{8}$	Crops expected to be planted $\frac{\text { in noxt geason }}{9}$
-1	2	3	4	5	6			
							*	
							.	
					-			
	. ${ }^{\circ}$							

[^9]

\[

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{nSO}}{ }^{T_{\mathrm{E}}} \\
& \begin{array}{l}
\text { The horizontal and vertical projections of the vector } \overrightarrow{a_{i}} \text { (see Figure 1) are } \\
\text { respectively: }
\end{array}
\end{aligned}
$$
\]

Denote with \vec{a} the vector which represents the side \underline{i} in a two dimensional space XOY
in which Y-axis coincides with the North. where a_{i} is the length of the side i and α_{i} is the angle this side forms with North
measured in clockwise direction. $T_{p}{ }^{T_{B}}$

error the measurements can be repeated.
Calculation or the area of a polygon
calculator is the possibility to use it directly in the field when measurements are made,
as the closure error can be evaluated directly on the spot and in case of too large an methods of distributing the closure error to all vertices, which is superior to the hand errors in measuring the area from the sketch and, in particular, errors in applying the minutes to calculate the area of a field depending on the mumber of sides) but also in the
fact that possible errors in the classical method, such as errors in plotting the sketch, The advantages of calculators over the traditional method of calculation of areas are
multifold. They consist not only in simplicity of use and speed (it takes about 1 to 4
minutes to calculate the area of a field depending on the mumber of sides) but also in the

> $1970 t i e s . ~ T h e ~ S t a t i s t i c s ~ D i v i s i o n ~ o f ~ F A O ~ h a s ~ d e v e l o p e d ~ s e v e r a l ~ m e t h o d s ~ o f ~ c a l c u l a t i n g ~ i n ~$
which are suitable for programmable calculators. These methods were first implemented in
the 1974 Census of Agriculture in Ivory Coast. of the programmable pocket or desk calculators which appeared on the marke in the $1970 t i e s$. The Statistics Division of FAO has developed several methods of calculating areas Tanimetre or grid paper.
on the besis of measurements consisted in plotting the field in the of a
planchette or a ruler and a protractor and then measuring the area of the sketch by use of
a planimetre or grid paper. measured by use of sight poles and taking compass bearings and measuring the length of each
side of a so obtained polygon. The traditional procedure of evaluating the area of a field
on the basis of measurements consisted in plotting the field in the office by use of a agricultural statistics, which consists of identifying the boundaries of a field to be
This article deals with the well-known traditional method of measurement of areas in
AND

DESK PROGRAMMABLE CALCULATORS

taken in order to permit the evaluation of the closure error.
measurements taken for the last side of the polygon are not taken into account for the

A. Closure by connecting the last but one point with the starting point polygon calculated. Let us consider different methods of closing the polygon.
If the closure error is below a certain value, say 2%, the error may be considered as
acceptable. The polygon can be closed in different ways ana the area of a so closed.

$$
001 \times \frac{s^{\frac{1-\bar{z}}{u}}}{u_{q}^{T}}=0
$$

can be used as a measure of error. The normal practice is, however, to express the
closure error as percent of the perimeter of the polygon:
$\tau^{u x}+z^{u x} \Lambda={ }_{x}^{u}$
The length of the vector \vec{n}_{n}

In practice the polygon defined by the data which are collected in the field will never
close. In this case
Closure error and corrected area of a polygon
where X_{i} and Y_{i} are given by (2) and (3)

$$
\begin{aligned}
& \frac{z}{l}= \\
& \text { N- } \\
& \sum_{i=1}^{n}\left(X_{i+1} Y_{i}-X_{i} Y_{i+1}\right) \\
& \Lambda X \quad \tau^{\cdots \cdots u}
\end{aligned}
$$

The area of the whole polygon calculated as a sum of areas of triangles, each formed
by the two consecutive vectors \vec{R}_{i}, will be:

It should be noted that this area will have a positive value if the vector $\overrightarrow{R_{1}}$ precedes the
vector \vec{R}_{2} (looking clockwise), otherwise it will be negative.
$\left({ }^{2}{ }^{l} b_{X}-l_{X}{ }^{2} X\right) \frac{2}{l}=b$
Thus the area of the triangle between vectors \vec{R}_{1} and \vec{R}_{2} (see Figure 2) is given by:
The area of a triangle formed by two vectors which start from the same point can be
calculated as a function of their horizontal and vertical projections.

estimates of area than methods A and B, particularly if the measurement errors occur in
angles rather than in lengths. In this case application of superior methods reduces the
error to haif or less. Nevertheless, the following remarks are possible. Method A produces similar results
as Nethod B and also Nethod C is similar to Method D. Methods C and D give much better
estimates of area then methods A and B, particularly if the measurement errors occur in

Kind of random error		Percentage standard eror of area estimate			
		Method A	Method B	Method C	Method D
Error in length of sides	S.D. constant	3.1	3.2	2.3	2.4
	S.D. proportionate to the length of side	3.3	2.9	2.4	2.3
Error in angles	S.D. constant	2.3	2.2	1.1	1.1
	S.D. inversely proporionate to the length of side	2.0	2.0	0.7	0.6

are sumarized in the table below:
of errors, and each time the four different area estimates were calculated. The results

the sight poles indicating end points of the side are not perfectily parallel.
types of errors were also introduced in angles, one independent of the length of side and
considered independently. Two types of errors were introduced in the length of sides, one
independent of the length of sides and another proportionste to the length of sides. Two

for which programes are being prepared $\begin{aligned} & \text { on request from Statistios Division, FAO, Rome. }\end{aligned}$
Let
vertices of the given polygon along the lines parallel to the line passing through the
starting and ending point. The vertex i is shifted by the i/n fraction of the distance
between starting and ending point.

The area of the polygon (A), and the closure error (djstance between the starting and

$$
r_{e} r_{x}
$$

$=\sum_{j=1}^{i} \Delta Y_{j}$
and let $X_{i}=\sum_{j=1}^{i} \Delta X_{j}$

$$
\Delta Y_{j}=a_{j} \operatorname{Cos} \alpha_{j}
$$

where α_{j} is the angle (in degrees) the side j forms with North measured in clockwise

$$
\begin{aligned}
& \begin{array}{ccc}
M & M \\
M
\end{array}
\end{aligned}
$$

	$\square \square \square \square$	，	
	$\square \square \square \square$	－man mamo ummo	
－	四回回戒	．umam	
	$\begin{aligned} & \square \square \square \text { 悃 } \\ & \square \square \square \square \end{aligned}$		
∞°	塁回 $\square^{\text {a }}$	amper	
	$\square \square \square \square$	come	
Hem	4	\％exmem	，

	$\square \square \square$			9
0	$\varepsilon \varepsilon \varepsilon$			ς
∇	$\square \square \square$			$\stackrel{\square}{\square}$
¢	\square \square \square \square s／d	$\begin{aligned} & \varepsilon_{x} \\ & \varepsilon_{p} \end{aligned}$	$\text { u } 60.0 \cdot{ }^{\prime} \text { ' } \downarrow=\text { ! }$	ε
$\infty^{*} 0$	1.850	－		乙
	\square		u0т7onxqsuI	\downarrow
7 ndino	ธSəy	qưuI		dozs

OtS が $0 ; 8$ ○६ウ		$\begin{gathered} \nabla \\ \varepsilon \\ \tau \\ b \end{gathered}$
		（ จ¢T¢ ）¢

				9
Ј	\square		cosia ammoto aqetnotej	5
\forall	[еаля aqetnotej	\pm
\uparrow	5/8	F_{8}	ч•••• ‘と = ! 	ε
$00^{\circ} 0$	\square		azfiety	2
			aumesgosd 3 aqus	\downarrow
7nd7n0	sках	7ndui	40770n3754I	da7s

: suotzonazsuI

Should different number of decimals be required, the factor
2 (sixth instruction in INV P5) should be changed accordingly.

ฤ』 $\varepsilon ฮ$

むd
ת־

> Od

			of 0.8 əseo meut a 20 五	5
∇	乙d			∇
0	1.			ε
$¢_{0}^{¢}$	$\begin{aligned} & \mathrm{EXE} \\ & \text { Od } \end{aligned}$	${ }_{5}^{5}$	 	$乙$
0	bd			\downarrow
7ncam	sSə¢	qncuI		đə7S

I^{-}

[^0]: - the conditions of growth of the crop (size, height, state of health, attack, etc.)
 - the actual weather and other climatic conditions

[^1]:

[^2]:
 Crop-Fallow time ratio (shifting cultivation in Venezuela and Mexicon

[^3]: $\frac{I}{T} V={ }_{T}^{T} \nabla$

[^4]:

[^5]: Nigeria), a total of 6120 households.
 households were studied in each village unit in 1965/66 (the year before the civil war in

[^6]:

 Each stratum was planned so as to have a population larger than twice the sampling

[^7]: (e Let us give a few examples of these two types of errors:

[^8]: Principle No. 3:

[^9]: 新罪
 Farm Report，Acreage and Production of Grain Crops
 O ITM XTNNF

