SPT order and algebraic topology

Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015

Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015 SPT order and algebraic topology

Two kinds of quantum theories: H-type and L-type

- H-type:
- Hilbert space with tensor structure $\mathcal{V} = \otimes_i \mathcal{V}_i$
- A local Hamiltonian operator acting on ${\mathcal V}$

 \rightarrow Space-time path integral well defined on mapping torus $M^{d-1}_{\rm space} \rtimes S^1.$

- L-type:
- Tensors for each cell in space-time lattice defined path integral \rightarrow Space-time path integral well defined on any space-time manifold $M^d_{\text{space-time}}$.
- Lead to different classification of topo. orders and SPT orders H-type models $\rightarrow E_8$ bosonic quantum Hall state L-type models $\rightarrow (E_8)^3$ bosonic quantum Hall state

L-type local bosonic quantum systems

- A L-type local **quantum system** in *d*-dimensional space-time M^d is described by (use d = 3 as an exmaple):
- a trianglation of M^3 with a branching structure,
- a set of indices $\{v_i\}$ on vertecies,
 - $\{e_{ii}\}$ on edges, $\{\phi_{iik}\}$ on triangles.
- two real and one complex tensors $T_3 =$ $\{W_{v_0}, A_{v_0v_1}^{e_{01}}(SO_{ij}), C_{\pm v_0v_1v_2v_3;\phi_{123}\phi_{013}\phi_{023}\phi_{012}}(SO_{ij})\}$ for each 0, 1, 3-cell (vertex, edge, tetrahedron).
- Unitary condition

$$\begin{split} & \mathcal{W}_{v_0} > 0, \quad \mathcal{A}^{e_{01}}_{v_0 v_1} > 0, \\ & \mathcal{C}_{+ \frac{e_{01}e_{02}e_{03}e_{12}e_{13}e_{23}}{v_0 v_1 v_2 v_3;\phi_{123}\phi_{013}\phi_{023}\phi_{012}} = (\mathcal{C}_{- \frac{e_{01}e_{02}e_{03}e_{12}e_{13}e_{23}}{v_0 v_1 v_2 v_3;\phi_{123}\phi_{013}\phi_{023}\phi_{012}})^*, \end{split}$$

 e_{03}

 v_0

[Kong-Wen 14]

Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015

Partition function and Correlation function

• Partition function:

$$Z = \sum_{v_0, \dots; e_{01}, \dots; \phi_{012}, \dots} \prod_{v_{ot} \text{ redge}} W_{v_0} \prod_{edge} A_{v_0 v_1}^{e_{01}} \prod_{tetra} C_{s_{0123} v_0 v_1 v_2 v_3; \phi_{123} \phi_{013} \phi_{023} \phi_{012}}$$

$$= \sum \prod T_3$$

where $s_{0123} = \pm$ depends on the orientation of the tetrahedron.

 Correlation function on closed space-time manifold – physically measurible quantities:

Modify tensor on a few simplices gives us a new partition function $T_3 \rightarrow \tilde{T}_3$: $Z(M^d) \rightarrow Z[\tilde{T}_3(x), \tilde{T}_3(y), \cdots; M^d]$:

$$\langle \tilde{T}_3(x)\tilde{T}_3(y)\rangle = \frac{Z[\tilde{T}_3(x),\tilde{T}_3(y);M^d]}{Z(M^d)}$$

Short-range correlated (SRC) system and liquid

- A **infinite-system** is not a single system but a sequence of systems
- with size of space-time $M^3 \to \infty$ and size of simplices ~ 1 .
- each vertex is shared by at most a finite number of simplices.
- A short-range correlated (SRC) infinite-system satisfies
 - (1) $\langle \tilde{T}_3(x)\tilde{T}_3(y)\rangle \langle \tilde{T}_3(x)\rangle\langle \tilde{T}_3(y)\rangle \sim e^{-\frac{|x-y|}{\xi}}$

for a fixed ξ in the infinite system-size limit;

(2) systems of different sizes in the sequence can deform into each other and keep the SRC property during the deformation.

[Zeng-Wen 14]

Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015

SPT order and algebraic topology

Short-range correlated (SRC) liquid phases

• An equivalence relation:

Two SRC infinite-systems are equivalent if the two sequences can deform into each other while keeping the SRC property during the deformation.

 The resulting equivalent classes are SRC liquid phases or L-type topological orders
 [Wen 89]

[Chen-Gu-Wen 10]

How to classify SRC liquid phases (L-type topological orders) in each dimension?

(1) The indices admit a symmetry action $v_i \rightarrow g \cdot v_i$, $e_{ij} \rightarrow g \cdot e_{ij}, \phi_{ijk} \rightarrow g \cdot \phi_{ijk}$, where $g \in G$. (2) $T_{G,3} = \{W_{v_0}, A^{e_{01}}_{v_0v_1}(SO_{ij}), C_{\pm v_0v_1v_2v_3;\phi_{123}\phi_{013}\phi_{023}\phi_{012}}(SO_{ij})\}$ are invariant under the above symmetry action.

• SRC liquid phases with symmetry:

Equivalence relation: Two symmetric SRC infinite-systems can deform into each other while keeping the symmetry property and the SRC property during the deformation.

How to classifies SRC liquid phases with symmetry \rightarrow L-type symmetry enriched topological (SET) order

・日・ ・ ヨ ・ ・ ヨ ・ ・

Examples of SRC liquids

• **Example 1:** Tensors: non-zero only when all the indices are 1 $W_1 = w_0$, $A_{11}^1 = w_1$, $C(\{v_i = 1, e_{ij} = 1, \phi_{ijk} = 1\}) = w_3$, All degrees of freedom are frozen to 1.

$$\rightarrow \qquad \qquad Z(M^3) = \prod_{n=0} (w_n)^{N_n}$$

- The above systems with different w_n 's all belong to the same SRC phase [have a trivial topological order (triTO)].
- Example 2: Tensors: non-zero only when all the edge-indices, face indices, *etc* are 1; the vertex-indices $v_i \in G$ $W_{v_i} = w_0, \ A^1_{v_iv_j} = w_1 \ C(\{v_i, e_{ij} = 1, \phi_{ijk} = 1\}) = w_3,$ $\rightarrow \qquad Z(M^3) = |G|^{N_0} \prod_{n=0} (w_n)^{N_n}$
- The above systems have a symmetry G
- A conjecture: A system with Z(M^d) = 1 for all closed orientable space-time M^d has a trivial topological order. Both of the above examples have a trivial topological order.

A general picture for SRC phases

- Non trivial TO w/o symm. → many phases [Wen 89]
 Trivial TO w/o symm. → one phase (no symm. breaking)
- Non trivial TO with symm. → many phases [Wen 02]
 Trivial TO with symm. → many different phases [Gu-Wen 09]
 may be called symmetry protected trivial (SPT) phase
 or symmetry protected topological (SPT) phase

- SPT phases = equivalent class of *symm.* smooth deformation
- Examples: 1D Haldane phase[Haldane 83] 2D/3D TI[Kane-Mele 05;

Bernevig-Zhang 06] [Moore-Balents 07; Fu-Kane-Mele 07]

SPT order and algebraic topology

SPT phases – the trivial TO with symmetry

SPT phases are SRC (gapped) quantum phases with a certain symmetry, which can be smoothly connected to the same trivial phase if we remove the symmetry \rightarrow trivial topo order.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

 A group cohomology thepry of SPT phases: Using each element in H^d[G, U(1)] (the d group cohomology class of the group G with U(1) as coefficient), we can construct a exactly soluble path integral in d-dimensional space-time, which realize a SPT state with a symmetry G.
 [Chen-Gu-Liu-Wen 11]

SPT phases – the trivial TO with symmetry

SPT phases are SRC (gapped) quantum phases with a certain symmetry, which can be smoothly connected to the same trivial phase if we remove the symmetry \rightarrow trivial topo order.

- A group cohomology thepry of SPT phases: Using each element in H^d[G, U(1)] (the d group cohomology class of the group G with U(1) as coefficient), we can construct a exactly soluble path integral in d-dimensional space-time, which realize a SPT state with a symmetry G. [Chen-Gu-Liu-Wen 11]
- How to get the above result? Construct a path integral with symmetry G and $Z_{top}(M^d) = 1$ on any closed orientable M^d .

L-type SPT state on 1+1D space-time lattice

- Path integral on 1+1D space-time lattice described by tensors $T_{2} = \{W_{v_{0}}, B_{\pm v_{0}v_{1}v_{2}}^{e_{01}e_{12}e_{02}}(SO_{ij})\}_{e_{ij}=1} = \{W_{v_{0}} = |G|^{-1}, [\nu_{2}(v_{0}, v_{1}, v_{2})]^{1,*}\}$ $e^{-S} = \prod \nu_{2}^{s_{ijk}}(g_{i}, g_{j}, g_{k}), \ Z = |G|^{-N_{0}} \sum e^{-S}, \ v_{i} \to g_{i}, \ g_{i} \in G$ where $\nu^{s_{ijk}}(g_{i}, g_{j}, g_{k}) = e^{-\int_{\Delta} L}$ and $s_{ijk} = 1, *$
- The above defines a LNσM with target space G on 1+1D space-time lattice.

• The NL σ M will have a symmetry G if $g_i \in G$ and

 $\nu_2(g_i,g_j,g_k)=\nu_2(hg_i,hg_j,hg_k), \quad h\in G$

• We will get a SPT state if we choose $\nu_2(g_i, g_j, g_h) = 1 \rightarrow Z_{top}(M^2) = 1$ (which is a trivial SPT state) $\rightarrow a$

Topological path inegral (NL σ M) and SPT state

*8*3

 g_0

 g_1

- $\nu(g_i, g_j, g_k)$ give rise to a topological NL σ M if $e^{-S_{fixed}} = \prod \nu^{s_{ijk}}(g_i, g_j, g_k) = 1$ on any sphere, including a tetrahedron (simplest sphere).
- $\nu(g_i, g_j, g_k) \in U(1)$
- \bullet On a tetrahedron \rightarrow 2-cocycle condition

 $u_2(g_1,g_2,g_3)\nu_2(g_0,g_1,g_3)\nu_2^{-1}(g_0,g_2,g_3)\nu_2^{-1}(g_0,g_1,g_2)=1$

The solutions of the above equation are called group cocycle.

- The 2-cocycle condition has many solutions: $\nu_2(g_0, g_1, g_2)$ and $\tilde{\nu}_2(g_0, g_1, g_2) = \nu_2(g_0, g_1, g_2) \frac{\beta_1(g_1, g_2)\beta_1(g_0, g_1)}{\beta_1(g_0, g_2)}$ are both cocycles. We say $\nu_2 \sim \tilde{\nu}_2$ (equivalent).
- The set of the equivalent classes of ν_2 is denoted as

 $\mathcal{H}^2[G, U(1)] = \pi_0$ (space of the solutions).

• $\mathcal{H}^2[G, U(1)]$ describes 1+1D SPT phases protected by G.

Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015 SPT order and algebraic topology

Topological invariance in topological NL σ Ms

As we change the space-time lattice, the action amplitude e^{-S} does not change:

 $\nu_2(g_0,g_1,g_2)\nu_2^{-1}(g_1,g_2,g_3) = \nu_2(g_0,g_1,g_3)\nu_2^{-1}(g_0,g_2,g_3)$

 $\nu_2(g_0, g_1, g_2)\nu_2^{-1}(g_1, g_2, g_3)\nu_2(g_0, g_2, g_3) = \nu_2(g_0, g_1, g_3)$ as implied by the cocycle condition:

 $\nu_2(g_1, g_2, g_3)\nu_2(g_0, g_1, g_3)\nu_2^{-1}(g_0, g_2, g_3)\nu_2^{-1}(g_0, g_1, g_2) = 1$ The topological NL σ M is a RG fixed-point.

Topological invariance in topological NL σ Ms

As we change the space-time lattice, the action amplitude e^{-S} does not change:

 $u_2(g_0, g_1, g_2)\nu_2^{-1}(g_1, g_2, g_3) = \nu_2(g_0, g_1, g_3)\nu_2^{-1}(g_0, g_2, g_3)$

 $\nu_2(g_0, g_1, g_2)\nu_2^{-1}(g_1, g_2, g_3)\nu_2(g_0, g_2, g_3) = \nu_2(g_0, g_1, g_3)$ as implied by the cocycle condition:

 $u_2(g_1, g_2, g_3)\nu_2(g_0, g_1, g_3)\nu_2^{-1}(g_0, g_2, g_3)\nu_2^{-1}(g_0, g_1, g_2) = 1$

The topological NL σ M is a RG fixed-point.

• The $Z(M^d) = 1$ if M^d can be obtained by gluing spheres. The NL σ M describes a SPT state with trivial topo. order. Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015 SPT order a

SPT order and algebraic topology

Bosonic SPT phases from $\mathcal{H}^{d}[G, U(1)]$

	Symmetry $G/d =$	0+1	1 + 1	2+	1	3+1	
	$U(1) \rtimes Z_2^T$ (top. ins.)	\mathbb{Z}	\mathbb{Z}_2 (0)	ℤ₂ (ℤ	² 2) ²	$\mathbb{Z}_2^2(\mathbb{Z}_2)$	
	$U(1) times Z_2^{\mathcal{T}} imes$ trans	\mathbb{Z}	$\mathbb{Z} imes \mathbb{Z}_2$	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}_2^3	$\mathbb{Z} imes \mathbb{Z}_2^8$	
	$U(1) imes Z_2^T$ (spin sys.)	0	\mathbb{Z}_2^2	0		\mathbb{Z}_2^3	
	$U(1) imes Z_2^{\mathcal{T}} imes$ trans	0	\mathbb{Z}_2^2	\mathbb{Z}_2^4		\mathbb{Z}_2^9	
	Z_2^{T} (top. SC)	0	\mathbb{Z}_2 (\mathbb{Z})	0 0)	$\mathbb{Z}_2(0)$	
	$Z_2^{\mathcal{T}} imes$ trans	0	\mathbb{Z}_2	\mathbb{Z}_2^2		\mathbb{Z}_2^4	
	U(1)	\mathbb{Z}	0	\mathbb{Z}		0	
	$\mathit{U}(1) imes$ trans	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}^2		\mathbb{Z}^4	
	Z_n	\mathbb{Z}_n	0	\mathbb{Z}_n		0	
	$Z_n \times \text{trans}$	\mathbb{Z}_n	\mathbb{Z}_n	\mathbb{Z}_n^2		\mathbb{Z}_n^4	
	$D_{2h} = Z_2 \times Z_2 \times Z_2^T$	\mathbb{Z}_2^2	\mathbb{Z}_2^4	\mathbb{Z}_2^6		\mathbb{Z}_2^9	
	<i>SO</i> (3)	0	\mathbb{Z}_2	\mathbb{Z}		0	
	$SO(3) \times Z_2^T$	0	\mathbb{Z}_2^2	\mathbb{Z}_2		\mathbb{Z}_2^3	
$^{\prime\prime}Z_{2}^{T}$	": time reversal,	2 topologica	1 order g_2	SY-LRE 1 SY-	LRE 2	SET orders	1 37
"tra	ns": translation,	LRE 1	LRE 2	— intrinsic tope SB-LRE 1 SB-	o. order — -LRE 2	w/ symmetry)
0 ightarrow	only trivial phase.			SB-SRE 1	SB-SRE 2	symmetry brea (group theory)	aking
(\mathbb{Z}_2)	ightarrow free fermion result	SRE		SY-SRE 1	SY–SRE 2	SPT orderes	
		L				 TELOUD COHOMIC 	orogy

Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015

0

SPT order and algebraic topology

Universal probe for SPT orders

 How do you know the constructed NLσM ground states carry non-trivial SPT order? How do you probe/measure SPT order?
 Universal probe = one probe to detect all possible orders.

Universal probe for SPT orders

- How do you know the constructed NLσM ground states carry non-trivial SPT order? How do you probe/measure SPT order?
 Universal probe = one probe to detect all possible orders.
- Universal probe for crystal order = X-ray diffraction:

Incident X-rays

> Sample Transmission

Universal probe for SPT orders

- How do you know the constructed NLσM ground states carry non-trivial SPT order? How do you probe/measure SPT order?
 Universal probe = one probe to detect all possible orders.
- Universal probe for crystal order = X-ray diffraction:

- Partitional function as an universal probe, but Z^{SPT}_{top}(M^d) = 1 → does not work.
- Twist the symmetry by "gauging" the symmetry on M^d
 - \rightarrow **A G** gauge field.
 - $\rightarrow Z_{\text{top}}^{SPT}(A, M^d) \neq 1.$

[Levin-Gu 12; Hung-Wen 13]

SPT order and algebraic topology

Universal topo. inv.: "gauged" partition function

$$\frac{Z(A, M^d)}{Z(0, M^d)} = \frac{\int Dg \,\mathrm{e}^{-\int \mathcal{L}(g^{-1}(\mathrm{d} - \mathrm{i} A)g)}}{\int Dg \,\mathrm{e}^{-\int \mathcal{L}(g^{-1}\,\mathrm{d} g)}} = \,\mathrm{e}^{-\mathrm{i} 2\pi \int W_{\mathsf{topinv}}(A)}$$

• $W_{\text{topinv}}(A)$ and $W'_{\text{topinv}}(A)$ are equivalent if

$$W'_{ ext{topinv}}(A) - W_{ ext{topinv}}(A) = rac{1}{\lambda_g} \mathrm{Tr}(F^2) + \cdots$$

- The equivalent class of the gauge-topological term $W_{\text{topinv}}(A)$ is the topological invariant that probe different SPT state.
- The topological invariant $W_{topinv}(A)$ are Chern-Simons terms or Chern-Simons-like terms.
- Such Chern-Simons-like terms are classified by $H^{d+1}(BG,\mathbb{Z}) = \mathcal{H}^{d}[G, U(1)]$ [Dijkgraaf-Witten 92] The topological invariant $W_{topinv}(A)$ can probe all the SPT states (constructed so far)

• Topo. terms for U(1) SPT state: $a \equiv \frac{A}{2\pi}$, $c_1 \equiv \frac{dA}{2\pi}$, $ac_1 \equiv a \wedge c_1$

<i>d</i> =	$\mathcal{H}^d[U(1)]$	$W^d_{ ext{topinv}}$
0 + 1	\mathbb{Z}	а
1 + 1	0	
2 + 1	\mathbb{Z}	ac_1
3 + 1	0	

個人 くほん くほん しき

• Topo. terms for U(1) SPT state: $a \equiv \frac{A}{2\pi}$, $c_1 \equiv \frac{dA}{2\pi}$, $ac_1 \equiv a \wedge c_1$ • $\ln 0 + 1D$, $W_{topinv}^1 = k\frac{A}{2\pi} = ka$. $d = \frac{\mathcal{H}^d[U(1)]}{0+1} \frac{W_{topinv}^d}{2}$ 1+1 0 2+1 \mathbb{Z} ac_1 3+1 0

- Topo. terms for U(1) SPT state: $a \equiv \frac{A}{2\pi}$, $c_1 \equiv \frac{dA}{2\pi}$, $ac_1 \equiv a \wedge c_1$
- In 0 + 1D, $W_{\text{topinv}}^1 = k\frac{A}{2\pi} = ka$. $\text{Tr}(U_{\theta}^{\text{twist}} e^{-H}) = e^{i k \oint_{S^1} A^{\text{twist}}} = e^{i k\theta} \boxed{\begin{array}{c|c} d = & \mathcal{H}^d[U(1)] & W_{\text{to}}^d \\ 0 + 1 & \mathbb{Z} & a \end{array}}$

 \rightarrow ground state carries charge $\textit{\textbf{k}}$

0	d =	$\mathcal{H}^d[U(1)]$	$W^d_{ m topinv}$
0	0 + 1	\mathbb{Z}	а
	1+1	0	
	2 + 1	\mathbb{Z}	ac_1
	3 + 1	0	

伺 と く ヨ と く ヨ と

- Topo. terms for U(1) SPT state: $a \equiv \frac{A}{2\pi}$, $c_1 \equiv \frac{dA}{2\pi}$, $ac_1 \equiv a \wedge c_1$
- In 0 + 1D, $W_{\text{topiny}}^1 = k \frac{A}{2\pi} = ka$. $d = |\mathcal{H}^d[U(1)]|$ W^d_{topinv} $\mathsf{Tr}(U_{A}^{\mathsf{twist}} e^{-H}) = e^{i k \oint_{S^1} A^{\mathsf{twist}}} = e^{i k \theta}$ 0+1 \mathbb{Z} а \rightarrow ground state carries charge k 1 + 10 • In 2 + 1D, $W_{\text{topinv}}^3 = k \frac{A dA}{(2\pi)^2} = kac_1$. 2 + 1 \mathbb{Z} aC_1 3 + 10

- Topo. terms for U(1) SPT state: $a \equiv \frac{A}{2\pi}$, $c_1 \equiv \frac{dA}{2\pi}$, $ac_1 \equiv a \wedge c_1$
- In 0 + 1D, $W_{\text{topinv}}^1 = k \frac{A}{2\pi} = ka$. $d = |\mathcal{H}^d[U(1)]|$ W^d_{topinv} $\mathsf{Tr}(U_{A}^{\mathsf{twist}} \mathrm{e}^{-H}) = \mathrm{e}^{\mathrm{i}\,k \oint_{S^1} A^{\mathsf{twist}}} = \mathrm{e}^{\mathrm{i}\,k\theta}$ 0+1 \mathbb{Z} а \rightarrow ground state carries charge k 1 + 10 • In 2 + 1D, $W_{\text{topinv}}^3 = k \frac{A dA}{(2\pi)^2} = kac_1$. \mathbb{Z} 2 + 1 aC_1 \rightarrow Hall conductance $\sigma_{xy} = 2k\frac{e^2}{k}$ 3 + 10 \rightarrow The edge of U(1) SPT phase

must be gapless: left/right movers + anomalous U(1) symm.

- Topo. terms for U(1) SPT state: $a \equiv \frac{A}{2\pi}$, $c_1 \equiv \frac{dA}{2\pi}$, $ac_1 \equiv a \wedge c_1$
- In 0 + 1D, $W_{\text{topinv}}^1 = k \frac{A}{2\pi} = ka$. $d = |\mathcal{H}^d[U(1)]|$ W^d_{topinv} $\operatorname{Tr}(U_{A}^{\operatorname{twist}} e^{-H}) = e^{i k \oint_{S^1} A^{\operatorname{twist}}} = e^{i k \theta}$ 0 + 1 \mathbb{Z} а \rightarrow ground state carries charge k 1 + 10 • In 2 + 1D, $W_{\text{topiny}}^3 = k \frac{A dA}{(2\pi)^2} = kac_1$. \mathbb{Z} 2 + 1 aC_1 \rightarrow Hall conductance $\sigma_{xy} = 2k\frac{e^2}{k}$ 3 + 10 \rightarrow The edge of U(1) SPT phase

must be gapless: left/right movers + anomalous U(1) symm.

• **Probe:** $2\pi m$ flux in space M^2 induces km unit of charge \rightarrow Hall conductance $\sigma_{xy} = 2ke^2/h$.

- Topo. terms for U(1) SPT state: $a \equiv \frac{A}{2\pi}$, $c_1 \equiv \frac{dA}{2\pi}$, $ac_1 \equiv a \wedge c_1$
- In 0 + 1D, $W_{\text{topinv}}^1 = k \frac{A}{2\pi} = ka$. $d = |\mathcal{H}^d[U(1)]|$ W^d_{topinv} $\operatorname{Tr}(U_{A}^{\operatorname{twist}} e^{-H}) = e^{i k \oint_{S^1} A^{\operatorname{twist}}} = e^{i k \theta}$ 0 + 1 \mathbb{Z} а \rightarrow ground state carries charge k 1 + 1n • In 2 + 1D, $W_{\text{topiny}}^3 = k \frac{A dA}{(2\pi)^2} = kac_1$. 2 + 17 aC_1 \rightarrow Hall conductance $\sigma_{xy} = 2k \frac{e^2}{h}$ 3 + 1n \rightarrow The edge of U(1) SPT phase

must be gapless: left/right movers + anomalous U(1) symm.

- **Probe:** $2\pi m$ flux in space M^2 induces km unit of charge \rightarrow Hall conductance $\sigma_{xy} = 2ke^2/h$.
- Mechanism: Start with 2+1D bosonic superfluid: proliferate vortices → trivial Mott insulator. proliferate vortex+2k-charge → U(1) SPT state labeled by k.

A mechanism for 2+1D $U(1) \rtimes Z_2^T$ SPT state

- 2+1D boson superfluid + gas of vortex \rightarrow boson Mott insulator.
- 2+1D boson superfluid + gas of S^z -vortex

 \rightarrow boson topological insulator ($U(1) \rtimes Z_2^T$ SPT state)

$$T^{-1}\Phi_{\text{vortex}}T = \Phi_{\text{vortex}}^{\dagger}$$
, or $T^{-1}\Phi_{S_z\text{-vortex}}T = -\Phi_{S_z\text{-vortex}}^{\dagger}$.
 $U(1) \pi$ -flux in the non-trivial SPT phase is a Kramer doublet.

$\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$ does not produce all the SPT phases with symm. G: Topological states and anomalies

SPT order from $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$

$\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$ does not produce all the SPT phases with symm. G: Topological states and anomalies

SY-triTO 3

 g_1

Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015

SY-triTO 4

(???)

그는 소프는

$\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$ does not produce all the SPT phases with symm. G: Topological states and anomalies

SPT order beyond $\mathcal{H}^{d}(G, \mathbb{R}/\mathbb{Z})$

Pure SPT order within $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$: $W^d_{\text{topinv}} = ac_1$ W^d_{topinv} only depend on A – the gauge G-connection

向下 イヨト イヨト

Pure SPT order within $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$: $W^d_{\text{topinv}} = ac_1$ W^d_{topinv} only depend on A – the gauge G-connection

topological order : $W_{\text{topinv}}^d = \omega_3, \frac{1}{2} W_2 W_3$

 W_{topinv}^d only depend on Γ – the gravitational *SO*-connection p_1 is the first Pontryagin class, $d\omega_3 = p_1$, and w_i is the Stiefel-Whitney classes.

[Kapustin 14]

伺下 イヨト イヨト

Pure SPT order within $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$: $W^d_{\text{topinv}} = ac_1$ W^d_{topinv} only depend on A – the gauge G-connection

Invertible topological order (iTO): $W_{topinv}^d = \omega_3, \frac{1}{2}w_2w_3$ *Topo. order w/ no topo. excitations* W_{topinv}^d only depend on Γ – the gravitational *SO*-connection p_1 is the first Pontryagin class, $d\omega_3 = p_1$, and w_i is the Stiefel-Whitney classes.

- The \mathbb{Z} -class of 2+1D iTO's are generated by ω_3 , a $(E_8)^3$ state. E_8 state is anomalous as a L-type theory, but not as a H-type

- \mathbb{Z}_2 -class of 4+1D iTO's are generated by $\frac{1}{2}W_2W_3$. [Kapustin 14]

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Pure SPT order within $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$: $W^d_{\text{topinv}} = ac_1$ W^d_{topinv} only depend on A – the gauge G-connection

Invertible topological order (iTO): $W_{topinv}^d = \omega_3, \frac{1}{2}w_2w_3$ *Topo. order w/ no topo. excitations* W_{topinv}^d only depend on Γ – the gravitational *SO*-connection p_1 is the first Pontryagin class, $d\omega_3 = p_1$, and w_i is the Stiefel-Whitney classes.

- The \mathbb{Z} -class of 2+1D iTO's are generated by ω_3 , a $(E_8)^3$ state. E_8 state is anomalous as a L-type theory, but not as a H-type
- \mathbb{Z}_2 -class of 4+1D iTO's are generated by $\frac{1}{2}W_2W_3$. [Kapustin 14]

Mixed SPT order beyond $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$: $W^d_{\text{topinv}} = c_1 \omega_3$ W^d_{topinv} depend on both A and Γ

A model to realize all (?) bosonic pure STP orders, mixed SPT orders, and invertible topological orders

NLσM (group cohomology) approach to pure SPT phases:
(1) NLσM+topo. term: ¹/_{2λ}|∂g|² + 2πiW(g⁻¹∂g), g ∈ G
(2) Add symm. twist: ¹/_{2λ}|(∂ - iA)g|² + 2πiW[(∂ - iA)g]
(3) Integrate out matter field: Z_{fixed} = e^{2πi∫W_{topinv}(A)}

伺 ト イヨ ト イヨ ト

A model to realize all (?) bosonic pure STP orders, mixed SPT orders, and invertible topological orders

- NL σ M (group cohomology) approach to pure SPT phases: (1) NL σ M+topo. term: $\frac{1}{2\lambda}|\partial g|^2 + 2\pi i W(g^{-1}\partial g), g \in G$ (2) Add symm. twist: $\frac{1}{2\lambda}|(\partial - iA)g|^2 + 2\pi i W[(\partial - iA)g]$ (3) Integrate out matter field: $Z_{\text{fixed}} = e^{2\pi i \int W_{\text{topinv}}(A)}$
- $G \times SO_{\infty}$ NL σ M (group cohomology) approach: (1) NL σ M: $\frac{1}{2\lambda} |\partial g|^2 + 2\pi i W(g^{-1}\partial g), g \in G \times SO$ (2) Add twist: $\frac{1}{2\lambda} |(\partial - iA - i\Gamma)g|^2 + 2\pi i W[(\partial - iA - i\Gamma)g]$ (3) Integrate out matter field: $Z_{\text{fixed}} = e^{2\pi i \int W_{\text{topinv}}(A,\Gamma)}$

・ 回 と ・ ヨ と ・ ヨ と

A model to realize all (?) bosonic pure STP orders, mixed SPT orders, and invertible topological orders

- NL σ M (group cohomology) approach to pure SPT phases: (1) NL σ M+topo. term: $\frac{1}{2\lambda}|\partial g|^2 + 2\pi i W(g^{-1}\partial g), g \in G$ (2) Add symm. twist: $\frac{1}{2\lambda}|(\partial - iA)g|^2 + 2\pi i W[(\partial - iA)g]$ (3) Integrate out matter field: $Z_{\text{fixed}} = e^{2\pi i \int W_{\text{topinv}}(A)}$
- G × SO_∞ NLσM (group cohomology) approach:
 (1) NLσM: ¹/_{2λ}|∂g|² + 2πiW(g⁻¹∂g), g ∈ G × SO
 (2) Add twist: ¹/_{2λ}|(∂ − iA − iΓ)g|² + 2πiW[(∂ − iA − iΓ)g]
 - (3) Integrate out matter field: $Z_{\text{fixed}} = e^{2\pi i \int W_{\text{topinv}}(A,\Gamma)}$
- All possible topo. terms are classified by H^d(G × SO, ℝ/ℤ)
 Pure/mixed SPT orders, and iTOs are classified by
 H^d(G × SO, ℝ/ℤ)
 = H^d(G, ℝ/ℤ) ⊕^{d-1}_{k=1} H^k[G, H^{d-k}(SO, ℝ/ℤ)] ⊕ H^d(SO, ℝ/ℤ)
 But not one-to-one. Need to quotient out something Γ^d(G).

Trying to classify bosonic pure STP orders, mixed SPT orders, and invertible topological orders

- Pure STP: $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$
- Mixed SPT: $\oplus_{k=1}^{d-1} \mathcal{H}^k[G, \mathcal{H}^{d-k}(SO, \mathbb{R}/\mathbb{Z})]$
- iTO's: $\mathcal{H}^d(SO, \mathbb{R}/\mathbb{Z})$

one-to-one

many-to-one

many-to-one

- Pure STP orders are classified by $\mathcal{H}^{d}(G, \mathbb{R}/\mathbb{Z})$ CS-like topo. inv. $W^{d}_{topinv}(A)$ are classified by $H^{d+1}(BG, \mathbb{Z})$ Pure STP orders are also classified by $W^{d}_{topinv}(A)$
- But iTOs are not one-to-one classified by $W^d_{topinv}(\Gamma_{SO})$ in $H^{d+1}(BSO, \mathbb{Z})$, because different $W^d_{topinv}(\Gamma_{SO})$ and $\tilde{W}^d_{topinv}(\Gamma_{SO})$ may satisfy $W^d_{topinv}(\Gamma_{SO}) = \tilde{W}^d_{topinv}(\Gamma_{SO})$ when Γ_{SO} is the *SO*-connection of the tangent bundle of M^d . - W^d_{topinv} , $\tilde{W}^d_{topinv} \rightarrow$ the same iTO \rightarrow iTO^d = $\mathcal{H}^d(SO, \mathbb{R}/\mathbb{Z})/\Gamma^d$

Trying to classify bosonic pure STP orders, mixed SPT orders, and invertible topological orders

(the black entries below)

- Pure STP orders: $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$
- **iTO's**: $iTO^d = \mathcal{H}^d(SO, \mathbb{R}/\mathbb{Z})/\Gamma^d$ (using Wu class and Sq^n)
- Mixed SPT order $\oplus_{k=1}^{d-1} \mathcal{H}^k(G, iTO^{d-k}) \subset \frac{\oplus \mathcal{H}^k[G, \mathcal{H}^{d-k}(SO, \mathbb{R}/\mathbb{Z})]}{\Gamma^d(G)}$

$G \setminus d =$	0+1	1+1	2+1	3+1	4+1	5+1	6+1
iTO ^d	0	0	Z	0	\mathbb{Z}_2	0	0
Z_n	\mathbb{Z}_n	0	\mathbb{Z}_n	0	$\mathbb{Z}_n \oplus \mathbb{Z}_n$	$\mathbb{Z}_{\langle n,2\rangle}$	$\mathbb{Z}_n \oplus \mathbb{Z}_n \oplus \mathbb{Z}_{\langle n,2 \rangle}$
Z_2^T	0	\mathbb{Z}_2	0	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	0	$\mathbb{Z}_2 \oplus 2\mathbb{Z}_2$	\mathbb{Z}_2
U(1)	\mathbb{Z}	0	\mathbb{Z}	0	$\mathbb{Z} \oplus \mathbb{Z}$	0	$\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_2$
$U(1) \rtimes Z_2$	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}\oplus\mathbb{Z}_2$	\mathbb{Z}_2	$2\mathbb{Z}_2\oplus \mathbb{Z}_2$	$2\mathbb{Z}_2\oplus 2\mathbb{Z}_2$	$\mathbb{Z}\oplus 2\mathbb{Z}_2\oplus \mathbb{Z}\oplus 2\mathbb{Z}_2$
$U(1) imes Z_2^T$	0	$2\mathbb{Z}_2$	0	$3\mathbb{Z}_2\oplus \mathbb{Z}_2$	0	$4\mathbb{Z}_2\oplus 3\mathbb{Z}_2$	$2\mathbb{Z}_2 \oplus \mathbb{Z}_2$
$U(1) \rtimes Z_2^{\overline{T}}$	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$2\mathbb{Z}_2\oplus \mathbb{Z}_2$	$\mathbb{Z}\oplus\mathbb{Z}_2\oplus\mathbb{Z}$	$2\mathbb{Z}_2\oplus 2\mathbb{Z}_2$	$2\mathbb{Z}_2\oplus 3\mathbb{Z}_2\oplus \mathbb{Z}_2$

Trying to classify bosonic pure STP orders, mixed SPT orders, and invertible topological orders

(the black entries below)

- Pure STP orders: $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$
- **iTO's**: $iTO^d = \mathcal{H}^d(SO, \mathbb{R}/\mathbb{Z})/\Gamma^d$ (using Wu class and Sq^n)
- Mixed SPT order $\oplus_{k=1}^{d-1} \mathcal{H}^k(G, iTO^{d-k}) \subset \frac{\oplus \mathcal{H}^k[G, \mathcal{H}^{d-k}(SO, \mathbb{R}/\mathbb{Z})]}{\Gamma^d(G)}$

$G \setminus d =$	0+1	1 + 1	2+1	3+1	4+1	5+1	6+1
iTO ^d	0	0	Z	0	\mathbb{Z}_2	0	0
Z _n	\mathbb{Z}_n	0	\mathbb{Z}_n	0	$\mathbb{Z}_n \oplus \mathbb{Z}_n$	$\mathbb{Z}_{\langle n,2\rangle}$	$\mathbb{Z}_n \oplus \mathbb{Z}_n \oplus \mathbb{Z}_{\langle n,2 \rangle}$
Z_2^T	0	\mathbb{Z}_2	0	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	0	$\mathbb{Z}_2 \oplus 2\mathbb{Z}_2$	\mathbb{Z}_2
U(1)	\mathbb{Z}	0	\mathbb{Z}	0	$\mathbb{Z} \oplus \mathbb{Z}$	0	$\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_2$
$U(1) \rtimes Z_2$	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}\oplus\mathbb{Z}_2$	\mathbb{Z}_2	$2\mathbb{Z}_2\oplus \mathbb{Z}_2$	$2\mathbb{Z}_2\oplus 2\mathbb{Z}_2$	$\mathbb{Z}\oplus 2\mathbb{Z}_2\oplus \mathbb{Z}\oplus 2\mathbb{Z}_2$
$U(1) imes Z_2^T$	0	$2\mathbb{Z}_2$	0	$3\mathbb{Z}_2\oplus \mathbb{Z}_2$	0	$4\mathbb{Z}_2\oplus 3\mathbb{Z}_2$	$2\mathbb{Z}_2 \oplus \mathbb{Z}_2$
$U(1) \rtimes Z_2^{\overline{T}}$	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$2\mathbb{Z}_2\oplus \mathbb{Z}_2$	$\mathbb{Z}\oplus\mathbb{Z}_2\oplus\mathbb{Z}$	$2\mathbb{Z}_2\oplus 2\mathbb{Z}_2$	$2\mathbb{Z}_2\oplus 3\mathbb{Z}_2\oplus \mathbb{Z}_2$

 Probe mixed SPT order described by H^k[G, H^{d-k}(SO, ℝ/ℤ)]: put the state on M^d = M^k × M^{d-k} and add a G-symmetry twist on M^k → Induce a state on M^{d-k} described by H^{d-k}(SO, ℝ/ℤ) → a iTO state in iTO^{d-k}

A mechanism for Z_2^T mixed SPT state in 3+1D

[Vishwanash-Senthil 12, Kapustin 14, Wen 14]

(日) (部) (注) (注) (言)

The Z_2^T mixed SPT states are classified by $\mathcal{H}^1(Z_2^T, iTO^3) = \mathbb{Z}_2$

The topological invariant for a Z_2^T mixed SPT state (bosonic topological super fluid with time reversal symmetry) is $W_{\text{topinv}}^4 = \frac{1}{2}p_1 \text{ [W 14]} (W_{\text{topinv}}^4 = \frac{1}{6}p_1 \text{ [VS 12, K 14]})$

- Start with a T-symmetry breaking state. Proliferate the symmetry breaking domain walls to restore the T-symmetry.
 → a trivial SPT state.
- Bind the domain walls to $(E_8)^3$ [W 14] $(E_8$ [VS 12, K 14]) quantum Hall state, and then proliferate the symmetry breaking domain walls to restore the T-symmetry.
 - \rightarrow a non-trivial Z_2^{T} SPT state.

• Topological terms:

$$\oint A_{Z_2} = 0, \pi; a_1 \equiv \frac{A_{Z_2}}{\pi};$$

<i>d</i> =	$\mathcal{H}^{d}[Z_{2}]$	$W^d_{ m topinv}$
0 + 1	\mathbb{Z}_2	$\frac{1}{2}a_{1}$
1+1	0	
2 + 1	\mathbb{Z}_2	$\frac{1}{2}a_{1}^{3}$
3 + 1	0	

 → Ξ → ...

Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015 SPT order and algebraic topology

- Topological terms:
- In 0+1D, $W_{\text{topinv}}^1 = k \frac{A_{Z_2}}{2\pi} = ka_1$.

$\oint A_{Z_2} = 0, \pi; a_1 \equiv -\frac{\pi}{\pi}$

d =	$\mathcal{H}^{d}[Z_{2}]$	$W^d_{ m topinv}$
0 + 1	\mathbb{Z}_2	$\frac{1}{2}a_{1}$
1+1	0	
2 + 1	\mathbb{Z}_2	$\frac{1}{2}a_{1}^{3}$
3 + 1	0	

★御▶ ★理▶ ★理▶ → 理

- Topological terms:
- In 0 + 1D, $W_{topinv}^1 = k \frac{A_{Z_2}}{2\pi} = ka_1$. $Tr(U_{\pi}^{twist} e^{-H}) = e^{2\pi i \oint_{S^1} W_{topinv}}$ $= e^{i k \pi \oint_{S^1} a_1} = e^{i k \pi} = \pm 1$
 - \rightarrow ground state Z₂-charge: k = 0, 1

$\oint A_{Z_2} =$	0 , <i>π</i> ; <i>a</i> ₁	$\equiv \frac{A_{Z_2}}{\pi};$
-------------------	---	-------------------------------

d =	$\mathcal{H}^{d}[Z_{2}]$	$W^d_{ m topinv}$
0 + 1	\mathbb{Z}_2	$\frac{1}{2}a_{1}$
1+1	0	
2 + 1	\mathbb{Z}_2	$\frac{1}{2}a_{1}^{3}$
3 + 1	0	

伺い イヨト イヨト 三日

• Topological terms:

 $\oint A_{Z_2} = 0, \pi; a_1 \equiv \frac{A_{Z_2}}{\pi};$

 $\mathcal{H}^{d}[Z_{2}]$

 \mathbb{Z}_2

0

 \mathbb{Z}_2

d =

0 + 1

1 + 1

2 + 1

 $\overline{W}^d_{\mathrm{topinv}}$

 $\frac{1}{2}a_1$

 $\frac{1}{2}a_1^3$

- In 0 + 1D, $W_{\text{topinv}}^1 = k \frac{A_{Z_2}}{2\pi} = ka_1$. $\text{Tr}(U_{\pi}^{\text{twist}} e^{-H}) = e^{2\pi i \oint_{S^1} W_{\text{topinv}}}$ $= e^{ik\pi \oint_{S^1} a_1} = e^{ik\pi} = +1$
- \rightarrow ground state Z₂-charge: k = 0, 1• In 2 + 1D, $\int_{M^3} W_{\text{topiny}}^3 = \int_{M^3} \frac{1}{2} a_1^3$.
 - Here we do not view a_1 as 1-form but as 1-cocycle $a_1 \in H^1(M^3, \mathbb{Z}_2)$, and $a_1^3 \equiv a_1 \cup a_1 \cup a_1$: $\int_{M^3} a_1 \cup a_1 \cup a_1 = 0$ or $1 \to e^{2\pi i \oint_{M^3} W_{\text{topinv}}} = e^{\pi i \oint_{M^3} a_1^3} = \pm 1$

- Topological terms:
- In 0+1D, $W_{\text{topiny}}^1 = k \frac{A_{Z_2}}{2\pi} = ka_1$. $\operatorname{Tr}(U_{-}^{\operatorname{twist}} \mathrm{e}^{-H}) = \mathrm{e}^{2\pi \mathrm{i} \oint_{S^1} W_{\operatorname{topinv}}}$ $= \mathrm{e}^{\mathrm{i}\,k\pi} \oint_{S^1} a_1 = \mathrm{e}^{\mathrm{i}\,k\pi} = \pm 1$

 \rightarrow ground state Z₂-charge: k = 0, 1

 \mathbb{Z}_2 $\frac{1}{2}a_1^3$ 2 + 1• In 2 + 1D, $\int_{M^3} W^3_{\text{topiny}} = \int_{M^3} \frac{1}{2} a_1^3$. 3 + 10 Here we do not view a_1 as 1-form but as 1-cocycle $a_1 \in H^1(M^3, \mathbb{Z}_2)$, and $a_1^3 \equiv a_1 \cup a_1 \cup a_1$: $\int_{M^3} a_1 \cup a_1 \cup a_1 = 0 \text{ or } 1 \rightarrow e^{2\pi i \oint_{M^3} W_{\text{topinv}}} = e^{\pi i \oint_{M^3} a_1^3} = \pm 1$

 $\oint A_{Z_2} = 0, \pi; a_1 \equiv \frac{A_{Z_2}}{\pi};$

 $\mathcal{H}^d[Z_2]$

 \mathbb{Z}_2

0

d =

0 + 1

1 + 1

 $\overline{W}^d_{\mathrm{topinv}}$

 $\frac{1}{2}a_1$

• Poincaré duality: 1-cocycle $a_1 \leftrightarrow$ 2-cycle N^2 (2D submanifold) N^2 is the surface across which we do the \mathbb{Z}_2 symmetry twist. Choose $M^3 = M^2 \rtimes S^1$ $\bigcirc \Box \diamond \cdot) (\Box \diamond \leftthreetimes$ $\cdot \Box > ()$ As we go around S^1 : (a) (c)

 $\int_{M^3} a_1^3 = \#$ of loop creation/annihilation + # of line reconnection

The edge of Z₂ SPT phase must be gapless or symmetry breaking Chen-Liu-Wen 11; Levin-Gu 12

Assume the edge of a Z_2 SPT phase is gapped with no symmetry breaking. We use Z_2 twist try to create excitations (called Z_2 domain walls) at the edge. We may naively expect those Z_2 -domain walls are trivial, but they are not. They have a non-trivial fusion property: different fusion order can differ by a - sign.

So the Z_2 domain walls on the boundary form a non-trivial fusion category.

 \rightarrow the bulk state must carry a non-trivial topological order.

The boundary of the 2+1D Z_2 SPT state has a 1+1D bosonic global Z_2 anomaly [Chen-Wen 12]

The 1+1D bosonic global Z_2 **anomaly** \rightarrow The edge of Z_2 SPT phase must be gapless or symmetry breaking.

- One realization of the edge is described by 1+1D XY model or U(1) CFT. The primary field (vertex operator) $V_{l,m}$ has dimensions $(h_R, h_L) = (\frac{(l+2m)^2}{8}, \frac{(l-2m)^2}{8})$.
- The Z_2 symmetry action $V_{l,m} \rightarrow (-)^{l+m}V_{l,m}$ Such a 1+1D Z_2 symmetry is anomalous:

(1) The XY model has no UV completion in 1+1D such that the Z_2 symmetry is realized as an on-site symm. $U = \prod_i \sigma_i^x$. (2) If we gauge the Z_2 , the 1+1D Z_2 gauge theory has no UV completion in 1+1D as a bosonic theory. (3) The XY model has a UV completion as boundary of 2+1D lattice theory w/ the Z_2 symmetry realized as an on-site symm.

200