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Two kinds of quantum theories: H-type and L-type

• H-type:
- Hilbert space with tensor structure V = ⊗iVi
- A local Hamiltonian operator acting on V
→ Space-time path integral well defined on mapping torus
Md−1

space o S1.

• L-type:
- Tensors for each cell in space-time lattice defined path integral
→ Space-time path integral well defined on any space-time
manifold Md

space-time.

• Lead to different classification of topo. orders and SPT orders
H-type models → E8 bosonic quantum Hall state
L-type models → (E8)3 bosonic quantum Hall state
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L-type local bosonic quantum systems

• A L-type local quantum system in d-dimensional space-time
Md is described by (use d = 3 as an exmaple):

- a trianglation of M3 with a branching structure,
- a set of indices {vi} on vertecies,
{eij} on edges, {φijk} on triangles.

- two real and one complex tensors T3 =
{Wv0 ,A

e01
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• Unitary condition
Wv0 > 0, Ae01

v0v1
> 0,

C+
e01e02e03e12e13e23
v0v1v2v3;φ123φ013φ023φ012

= (C−
e01e02e03e12e13e23
v0v1v2v3;φ123φ013φ023φ012

)∗,

[Kong-Wen 14]
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Partition function and Correlation function

• Partition function:

space−time

−

+

i
j k

j
i

k

Z =
∑

v0,··· ;e01,··· ;φ012,···∏
vertex

Wv0

∏
edge

Ae01
v0v1

∏
tetra

Cs0123

e01e02e03e12e13e23
v0v1v2v3;φ123φ013φ023φ012

=
∑∏

T3

where s0123 = ± depends on the orientation of the tetrahedron.

• Correlation function on closed space-time manifold –
physically measurible quantities:
Modify tensor on a few simplices gives us a new partition
function T3 → T̃3: Z (Md)→ Z [T̃3(x), T̃3(y), · · · ;Md ]:

〈T̃3(x)T̃3(y)〉 =
Z [T̃3(x), T̃3(y);Md ]

Z (Md)
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Short-range correlated (SRC) system and liquid

• A infinite-system is not a single system but a sequence of
systems

- with size of space-time M3 → ∞ and size of simplices ∼ 1.
- each vertex is shared by at most a finite number of simplices.

• A short-range correlated (SRC) infinite-system satisfies

(1) 〈T̃3(x)T̃3(y)〉 − 〈T̃3(x)〉〈T̃3(y)〉 ∼ e−
|x−y|
ξ

for a fixed ξ in the infinite system-size limit;
(2) systems of different sizes in the sequence can deform into
each other and keep the SRC property during the deformation.

[Zeng-Wen 14] → SRC liquid
k+1k kN NN

LULA

Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015 SPT order and algebraic topology



Short-range correlated (SRC) liquid phases

• An equivalence relation:
Two SRC infinite-systems are equivalent if the two sequences
can deform into each other while keeping the SRC property
during the deformation.

• The resulting equivalent classes are SRC liquid phases or
L-type topological orders
[Wen 89]

[Chen-Gu-Wen 10]

k+1k kN NN

LULA

l l
k+1k kN NN

LULA

How to classify SRC liquid phases (L-type topological
orders) in each dimension?
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L-type local bosonic systems with symmetry

(1) The indices admit a symmetry action vi → g · vi ,
eij → g · eij , φijk → g · φijk , where g ∈ G .
(2) TG ,3 = {Wv0 ,A

e01
v0v1

(SOij),C±
e01e02e03e12e13e23
v0v1v2v3;φ123φ013φ023φ012

(SOij)}
are invariant under the above symmetry action.

• SRC liquid phases with symmetry:
Equivalence relation: Two symmetric SRC infinite-systems
can deform into each other while keeping the symmetry
property and the SRC property during the deformation.

How to classifies SRC liquid phases with symmetry
→ L-type symmetry enriched topological (SET) order
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Examples of SRC liquids

• Example 1: Tensors: non-zero only when all the indices are 1
W1 = w0, A

1
11 = w1, C ({vi = 1, eij = 1, φijk = 1}) = w3,

All degrees of freedom are frozen to 1.

→ Z (M3) =
∏

n=0(wn)Nn

- The above systems with different wn’s all belong to the same
SRC phase [have a trivial topological order (triTO)].

• Example 2: Tensors: non-zero only when all the edge-indices,
face indices, etc are 1; the vertex-indices vi ∈ G
Wvi = w0, A

1
vivj

= w1 C ({vi , eij = 1, φijk = 1}) = w3,

→ Z (M3) = |G |N0
∏

n=0(wn)Nn

- The above systems have a symmetry G
• A conjecture: A system with Z (Md) = 1 for all closed

orientable space-time Md has a trivial topological order.
Both of the above examples have a trivial topological order.
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A general picture for SRC phases

.• Non trivial TO w/o symm. → many phases [Wen 89]

Trivial TO w/o symm. → one phase (no symm. breaking)

• Non trivial TO with symm. → many phases [Wen 02]

Trivial TO with symm. → many different phases [Gu-Wen 09]

may be called symmetry protected trivial (SPT) phase
or symmetry protected topological (SPT) phase

triTO

g

TO 2

2

g
1

TO 1

topological order

(PSG, ??? )

g

(???)

1

2
g

SY−TO 2SY−TO 1

SY−TO 3 SY−TO 4

SY−triTO 1 SY−triTO 2

SY−triTO 3 SY−triTO 4

SPT phases

SET phases
topological order

symmetry
preserve

no symmetry

phase

transition

SPT 1 SPT 2

• SPT phases = equivalent class of symm. smooth deformation
• Examples: 1D Haldane phase[Haldane 83] 2D/3D TI[Kane-Mele 05;

Bernevig-Zhang 06] [Moore-Balents 07; Fu-Kane-Mele 07]

1D 2D 3D
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SPT phases – the trivial TO with symmetry

SPT phases are SRC (gapped) quantum phases with a certain
symmetry, which can be smoothly connected to the same
trivial phase if we remove the symmetry → trivial topo order.

SPT1 SPT2 SPT3

Product state

with a symmetry G

break the symmetry

• A group cohomology thepry of SPT phases:
Using each element in Hd [G ,U(1)] (the d group cohomology
class of the group G with U(1) as coefficient), we can
construct a exactly soluble path integral in d-dimensional
space-time, which realize a SPT state with a symmetry G .
[Chen-Gu-Liu-Wen 11]

• How to get the above result? Construct a path integral with
symmetry G and Ztop(Md) = 1 on any closed orientable Md .
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L-type SPT state on 1+1D space-time lattice

• Path integral on 1+1D space-time lattice described by tensors

T2 = {Wv0 ,B±
e01e12e02
v0v1v2

(SOij)}eij=1 = {Wv0 = |G |−1, [ν2(v0, v1, v2)]1,∗}
e−S =

∏
ν
sijk
2 (gi , gj , gk), Z = |G |−N0

∑
e−S , vi → gi , gi ∈ G

where νsijk (gi , gj , gk) = e−
∫
4 L and sijk = 1, ∗

• The above defines a
LNσM with target
space G on 1+1D
space-time lattice.

G

space−time

−

+ ggg

g

g
gi

j

k
ν(    ,    ,    )i j k

i
j k

i j
k

• The NLσM will have a symmetry G if gi ∈ G and

ν2(gi , gj , gk) = ν2(hgi , hgj , hgk), h ∈ G

• We will get a SPT state if we choose ν2(gi , gj , gh) = 1 →
Ztop(M2) = 1 (which is a trivial SPT state).
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Topological path inegral (NLσM) and SPT state

• ν(gi , gj , gk) give rise to a topological NLσM if
e−Sfixed =

∏
νsijk (gi , gj , gk) = 1 on any sphere,

including a tetrahedron (simplest sphere).
21

0
3g
g

gg• ν(gi , gj , gk) ∈ U(1)

• On a tetrahedron → 2-cocycle condition

ν2(g1, g2, g3)ν2(g0, g1, g3)ν−1
2 (g0, g2, g3)ν−1

2 (g0, g1, g2) = 1

The solutions of the above equation are called group cocycle.

• The 2-cocycle condition has many solutions:
ν2(g0, g1, g2) and ν̃2(g0, g1, g2) = ν2(g0, g1, g2)β1(g1,g2)β1(g0,g1)

β1(g0,g2)

are both cocycles. We say ν2 ∼ ν̃2 ( equivalent).

• The set of the equivalent classes of ν2 is denoted as

H2[G ,U(1)] = π0(space of the solutions).

• H2[G ,U(1)] describes 1+1D SPT phases protected by G .
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Topological invariance in topological NLσMs
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As we change the space-time lattice,
the action amplitude e−S does not change:

ν2(g0, g1, g2)ν−1
2 (g1, g2, g3) = ν2(g0, g1, g3)ν−1

2 (g0, g2, g3)

ν2(g0, g1, g2)ν−1
2 (g1, g2, g3)ν2(g0, g2, g3) = ν2(g0, g1, g3)

as implied by the cocycle condition:

ν2(g1, g2, g3)ν2(g0, g1, g3)ν−1
2 (g0, g2, g3)ν−1

2 (g0, g1, g2) = 1

The topological NLσM is a RG fixed-point.

• The Z (Md) = 1 if Md can be obtained
by gluing spheres. The NLσM describes
a SPT state with trivial topo. order.
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Bosonic SPT phases from Hd [G ,U(1)]
Symmetry G/ d = 0 + 1 1 + 1 2 + 1 3 + 1

U(1)o ZT
2 (top. ins.) Z Z2 (0) Z2 (Z2) Z2

2 (Z2)
U(1)o ZT

2 × trans Z Z× Z2 Z× Z3
2 Z× Z8

2

U(1)× ZT
2 (spin sys.) 0 Z2

2 0 Z3
2

U(1)× ZT
2 × trans 0 Z2

2 Z4
2 Z9

2

ZT
2 (top. SC) 0 Z2 (Z) 0 (0) Z2 (0)
ZT

2 × trans 0 Z2 Z2
2 Z4

2

U(1) Z 0 Z 0
U(1)× trans Z Z Z2 Z4

Zn Zn 0 Zn 0
Zn × trans Zn Zn Z2

n Z4
n

D2h = Z2 × Z2 × ZT
2 Z2

2 Z4
2 Z6

2 Z9
2

SO(3) 0 Z2 Z 0
SO(3)× ZT

2 0 Z2
2 Z2 Z3

2

“ZT
2 ”: time reversal,

“trans”: translation,
0 → only trivial phase.
(Z2)→ free fermion result

2
g

1
g

2
g

SY−SRE 1

SB−SRE 1

SB−LRE 2

SY−LRE 2

SB−LRE 1

SY−LRE 1

g
1

SRE

SB−SRE 2

SY−SRE 2

symmetry breaking

(group theory)

(tensor category

(group cohomology

  theory)

LRE 1 LRE 2

SET orders

  w/ symmetry)

SPT orderes

intrinsic topo. order

topological  order
(tensor category)
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Universal probe for SPT orders

• How do you know the constructed NLσM ground states carry
non-trivial SPT order? How do you probe/measure SPT order?

Universal probe = one probe to detect all possible orders.

• Universal probe for crystal order
= X-ray diffraction:

• Partitional function as an universal probe,
but Z SPT

top (Md) = 1 → does not work.

• Twist the symmetry by “gauging” the symmetry on Md

→ A – G gauge field.
→ Z SPT

top (A,Md) 6= 1.

[Levin-Gu 12; Hung-Wen 13]
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Universal topo. inv.: “gauged” partition function

Z (A,Md)

Z (0,Md)
=

∫
Dg e−

∫
L(g−1(d− iA)g)∫

Dg e−
∫
L(g−1 dg)

= e− i2π
∫
Wtopinv(A)

• Wtopinv(A) and W ′
topinv(A) are equivalent if

W ′
topinv(A)−Wtopinv(A) =

1

λg
Tr(F 2) + · · ·

• The equivalent class of the gauge-topological term Wtopinv(A)
is the topological invariant that probe different SPT state.

• The topological invariant Wtopinv(A) are Chern-Simons terms
or Chern-Simons-like terms.

• Such Chern-Simons-like terms are classified by
Hd+1(BG ,Z) = Hd [G ,U(1)] [Dijkgraaf-Witten 92]

The topological invariant Wtopinv(A) can probe all the SPT
states (constructed so far)
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U(1) SPT phases and their physical properties

• Topo. terms for U(1) SPT state: a ≡ A
2π , c1 ≡ dA

2π , ac1 ≡ a ∧ c1

d = Hd [U(1)] W d
topinv

0 + 1 Z a

1 + 1 0

2 + 1 Z ac1

3 + 1 0

• In 0 + 1D, W 1
topinv = k A

2π
= ka.

Tr(U twist
θ e−H) = e ik

∮
S1 Atwist

= e ikθ

→ ground state carries charge k
• In 2 + 1D, W 3

topinv = k AdA
(2π)2 = kac1.

→ Hall conductance σxy = 2k e2

h

→ The edge of U(1) SPT phase
must be gapless: left/right movers + anomalous U(1) symm.

• Probe: 2πm flux in space M2 induces km unit of charge →
Hall conductance σxy = 2ke2/h.

• Mechanism: Start with 2+1D bosonic superfluid:
proliferate vortices → trivial Mott insulator.
proliferate vortex+2k-charge → U(1) SPT state labeled by k .
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A mechanism for 2+1D U(1)o ZT
2 SPT state

• 2+1D boson superfluid + gas of vortex
→ boson Mott insulator.

• 2+1D boson superfluid + gas of S z -vortex

→ boson topological insulator (U(1) o ZT
2 SPT state)

- The boson superfluid + spin-1 system
S z -vortex =
vortex + (Sz = +1)-spin
anti S z -vortex =
anti-vortex + (Sz = −1)-spin

Probing 2+1D U(1) o ZT
2 SPT state [Liu-Gu-Wen 14]

Let Φvortex be the creation operator of the vortex. Then

T−1ΦvortexT = Φ†vortex, or T−1ΦSz -vortexT = −Φ†Sz -vortex.

U(1) π-flux in the non-trivial SPT phase is a Kramer doublet
Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015 SPT order and algebraic topology



Hd(G ,R/Z) does not produce all the SPT phases

with symm. G : Topological states and anomalies

SPT order from Hd(G ,R/Z)
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CS-like topological terms ↔ SPT and topo. orders

Pure SPT order within Hd(G ,R/Z): W d
topinv = ac1

W d
topinv only depend on A – the gauge G -connection

Invertible

topological order

(iTO)

: W d
topinv = ω3,

1
2
w2w3

Topo. order w/ no topo. excitations

W d
topinv only depend on Γ – the gravitational SO-connection

p1 is the first Pontryagin class, dω3 = p1, and wi is the
Stiefel-Whitney classes.

- The Z-class of 2+1D iTO’s are generated by ω3, a (E8)3 state.
E8 state is anomalous as a L-type theory, but not as a H-type

- Z2-class of 4+1D iTO’s are generated by 1
2
w2w3.

[Kapustin 14]

Mixed SPT order beyond Hd(G ,R/Z): W d
topinv = c1ω3

W d
topinv depend on both A and Γ
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A model to realize all (?) bosonic pure STP orders,

mixed SPT orders, and invertible topological orders

• NLσM (group cohomology) approach to pure SPT phases:
(1) NLσM+topo. term: 1

2λ
|∂g |2 + 2π iW (g−1∂g), g ∈ G

(2) Add symm. twist: 1
2λ
|(∂ − iA)g |2 + 2π iW [(∂ − iA)g ]

(3) Integrate out matter field: Zfixed = e2π i
∫
Wtopinv(A)

• G × SO∞ NLσM (group cohomology) approach:
(1) NLσM: 1

2λ
|∂g |2 + 2π iW (g−1∂g), g ∈ G × SO

(2) Add twist: 1
2λ
|(∂ − iA− iΓ)g |2 + 2π iW [(∂ − iA− iΓ)g ]

(3) Integrate out matter field: Zfixed = e2π i
∫
Wtopinv(A,Γ)

• All possible topo. terms are classified by Hd(G × SO,R/Z)
Pure/mixed SPT orders, and iTOs are classified by
Hd(G × SO,R/Z)
= Hd(G ,R/Z)⊕d−1

k=1 Hk [G ,Hd−k(SO,R/Z)]⊕Hd(SO,R/Z)
But not one-to-one. Need to quotient out something Γd(G ).

Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015 SPT order and algebraic topology



A model to realize all (?) bosonic pure STP orders,

mixed SPT orders, and invertible topological orders

• NLσM (group cohomology) approach to pure SPT phases:
(1) NLσM+topo. term: 1

2λ
|∂g |2 + 2π iW (g−1∂g), g ∈ G

(2) Add symm. twist: 1
2λ
|(∂ − iA)g |2 + 2π iW [(∂ − iA)g ]

(3) Integrate out matter field: Zfixed = e2π i
∫
Wtopinv(A)

• G × SO∞ NLσM (group cohomology) approach:
(1) NLσM: 1

2λ
|∂g |2 + 2π iW (g−1∂g), g ∈ G × SO

(2) Add twist: 1
2λ
|(∂ − iA− iΓ)g |2 + 2π iW [(∂ − iA− iΓ)g ]

(3) Integrate out matter field: Zfixed = e2π i
∫
Wtopinv(A,Γ)

• All possible topo. terms are classified by Hd(G × SO,R/Z)
Pure/mixed SPT orders, and iTOs are classified by
Hd(G × SO,R/Z)
= Hd(G ,R/Z)⊕d−1

k=1 Hk [G ,Hd−k(SO,R/Z)]⊕Hd(SO,R/Z)
But not one-to-one. Need to quotient out something Γd(G ).

Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015 SPT order and algebraic topology



A model to realize all (?) bosonic pure STP orders,

mixed SPT orders, and invertible topological orders

• NLσM (group cohomology) approach to pure SPT phases:
(1) NLσM+topo. term: 1

2λ
|∂g |2 + 2π iW (g−1∂g), g ∈ G

(2) Add symm. twist: 1
2λ
|(∂ − iA)g |2 + 2π iW [(∂ − iA)g ]

(3) Integrate out matter field: Zfixed = e2π i
∫
Wtopinv(A)

• G × SO∞ NLσM (group cohomology) approach:
(1) NLσM: 1

2λ
|∂g |2 + 2π iW (g−1∂g), g ∈ G × SO

(2) Add twist: 1
2λ
|(∂ − iA− iΓ)g |2 + 2π iW [(∂ − iA− iΓ)g ]

(3) Integrate out matter field: Zfixed = e2π i
∫
Wtopinv(A,Γ)

• All possible topo. terms are classified by Hd(G × SO,R/Z)
Pure/mixed SPT orders, and iTOs are classified by
Hd(G × SO,R/Z)
= Hd(G ,R/Z)⊕d−1

k=1 Hk [G ,Hd−k(SO,R/Z)]⊕Hd(SO,R/Z)
But not one-to-one. Need to quotient out something Γd(G ).

Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015 SPT order and algebraic topology



Trying to classify bosonic pure STP orders,

mixed SPT orders, and invertible topological orders

• Pure STP: Hd(G ,R/Z) one-to-one

• Mixed SPT: ⊕d−1
k=1Hk [G ,Hd−k(SO,R/Z)] many-to-one

• iTO’s: Hd(SO,R/Z) many-to-one

- Pure STP orders are classified by Hd(G ,R/Z)
CS-like topo. inv. W d

topinv(A) are classified by Hd+1(BG ,Z)

Pure STP orders are also classified by W d
topinv(A)

- But iTOs are not one-to-one classified by W d
topinv(ΓSO) in

Hd+1(BSO,Z), because different W d
topinv(ΓSO) and

W̃ d
topinv(ΓSO) may satisfy W d

topinv(ΓSO) = W̃ d
topinv(ΓSO) when

ΓSO is the SO-connection of the tangent bundle of Md .

- W d
topinv, W̃ d

topinv → the same iTO → iTOd = Hd(SO,R/Z)/Γd
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Trying to classify bosonic pure STP orders,

mixed SPT orders, and invertible topological orders

• Pure STP orders: Hd(G ,R/Z) (the black entries below)

• iTO’s: iTOd = Hd(SO,R/Z)/Γd (using Wu class and Sqn)

• Mixed SPT order ⊕d−1
k=1Hk(G , iTOd−k) ⊂ ⊕Hk [G ,Hd−k (SO,R/Z)]

Γd (G)

.

G \ d = 0+1 1+1 2+1 3+1 4+1 5+1 6+1

iTOd 0 0 Z 0 Z2 0 0
Zn Zn 0 Zn 0 Zn ⊕ Zn Z〈n,2〉 Zn ⊕ Zn ⊕ Z〈n,2〉
ZT

2 0 Z2 0 Z2 ⊕ Z2 0 Z2 ⊕ 2Z2 Z2

U(1) Z 0 Z 0 Z⊕ Z 0 Z⊕ Z⊕ Z2

U(1) o Z2 Z2 Z2 Z⊕ Z2 Z2 2Z2 ⊕ Z2 2Z2 ⊕ 2Z2 Z⊕ 2Z2 ⊕ Z⊕ 2Z2

U(1)× ZT
2 0 2Z2 0 3Z2 ⊕ Z2 0 4Z2 ⊕ 3Z2 2Z2 ⊕ Z2

U(1) o ZT
2 Z Z2 Z2 2Z2 ⊕ Z2 Z⊕ Z2 ⊕ Z 2Z2 ⊕ 2Z2 2Z2 ⊕ 3Z2 ⊕ Z2

• Probe mixed SPT order described by Hk [G ,Hd−k(SO,R/Z)]:
put the state on Md = Mk ×Md−k and add a G -symmetry
twist on Mk → Induce a state on Md−k described by
Hd−k(SO,R/Z) → a iTO state in iTOd−k
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A mechanism for ZT
2 mixed SPT state in 3+1D

[Vishwanash-Senthil 12, Kapustin 14, Wen 14]

The ZT
2 mixed SPT states are classified by

H1(ZT
2 , iTO3) = Z2

The topological invariant for a ZT
2 mixed SPT state (bosonic

topological super fluid with time reversal symmetry) is
W 4

topinv = 1
2
p1 [W 14] (W 4

topinv = 1
6
p1 [VS 12, K 14])

• Start with a T-symmetry breaking state. Proliferate the
symmetry breaking domain walls to restore the T-symmetry.

→ a trivial SPT state.

• Bind the domain walls to (E8)3 [W 14] (E8 [VS 12, K 14])
quantum Hall state, and then proliferate the symmetry
breaking domain walls to restore the T-symmetry.

→ a non-trivial ZT
2 SPT state.
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Z2 SPT phases and their physical properties

• Topological terms:
∮
AZ2 = 0, π; a1 ≡

AZ2

π
;

d = Hd [Z2] W d
topinv

0 + 1 Z2
1
2
a1

1 + 1 0

2 + 1 Z2
1
2
a3

1

3 + 1 0

• In 0 + 1D, W 1
topinv = k

AZ2

2π
= ka1.

Tr(U twist
π e−H) = e2π i

∮
S1 Wtopinv

= e ikπ
∮
S1 a1 = e ikπ = ±1

→ ground state Z2-charge: k = 0, 1
• In 2 + 1D,

∫
M3 W

3
topinv =

∫
M3

1
2
a3

1.

Here we do not view a1 as 1-form
but as 1-cocycle a1 ∈ H1(M3,Z2), and a3

1 ≡ a1 ∪ a1 ∪ a1:∫
M3 a1 ∪ a1 ∪ a1 = 0 or 1 → e2π i

∮
M3 Wtopinv = eπ i

∮
M3 a3

1 = ±1

• Poincaré duality: 1-cocycle a1 ↔ 2-cycle N2 (2D submanifold)
N2 is the surface across which we do the Z2 symmetry twist.
Choose M3 = M2 o S1

As we go around S1:
.

(a) (b)

.

(c)∫
M3 a

3
1 = # of loop creation/annihilation + # of line reconnection
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The edge of Z2 SPT phase must be gapless

or symmetry breaking Chen-Liu-Wen 11; Levin-Gu 12

Assume the edge of a Z2 SPT phase is gapped with no
symmetry breaking. We use Z2 twist try to create excitations
(called Z2 domain walls) at the edge. We may naively expect
those Z2-domain walls are trivial, but they are not. They have
a non-trivial fusion property: different fusion order can differ
by a − sign.

So the Z2 domain walls on the boundary form a non-trivial
fusion category.
→ the bulk state must carry a non-trivial topological order.
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The boundary of the 2+1D Z2 SPT state has

a 1+1D bosonic global Z2 anomaly [Chen-Wen 12]

The 1+1D bosonic global Z2 anomaly → The edge of Z2

SPT phase must be gapless or symmetry breaking.

• One realization of the edge is described by 1+1D XY model or
U(1) CFT. The primary field (vertex operator) Vl ,m has

dimensions (hR , hL) = ( (l+2m)2

8
, (l−2m)2

8
).

• The Z2 symmetry action Vl ,m → (−)l+mVl ,m

Such a 1+1D Z2 symmetry is anomalous:

(1) The XY model has no UV completion in 1+1D such that
the Z2 symmetry is realized as an on-site symm. U =

∏
i σ

x
i .

(2) If we gauge the Z2, the 1+1D Z2 gauge theory has no UV
completion in 1+1D as a bosonic theory.
(3) The XY model has a UV completion as boundary of 2+1D
lattice theory w/ the Z2 symmetry realized as an on-site symm.
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