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Two kinds of quantum theories: H-type and L-type

e H-type:

- Hilbert space with tensor structure V = ®;V/;

- A local Hamiltonian operator acting on V
— Space-time path integral well defined on mapping torus
MI-1 xSt

space
o |-type:
- Tensors for each cell in space-time lattice defined path integral

— Space-time path integral well defined on any space-time
manifold M4

space-time"*

e Lead to different classification of topo. orders and SPT orders
H-type models — Eg bosonic quantum Hall state
L-type models — (£E3)® bosonic quantum Hall state
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L-type local bosonic quantum systems

e A L-type local quantum system in d-dimensional space-time
M€ is described by (use d = 3 as an exmaple):

3

- a trianglation of M? with a branching structure,
- a set of indices {v;} on vertecies,

{e;} on edges, {¢;i} on triangles.
- two real and one complex tensors T3 =

eo1 . €01€02€03€12€13€23 -
{ WVO ’ AVO Vi (SO’J )’ Ci Vo V1 V2 V3;$123$013P023 Po12 (SO’J )}
for each 0,1, 3-cell " Vs 1 Vs
(vertex, edge, 7

tetrahedron).

. .. v v,
e Unitary condition ! 2
W, >0, A >0,
€01€02€03€12€13€23 _ ( €01€02€03€12€13€23 )*
VO V1 V2 V3;¢123P013P023 Po12 ~VoV1V2V3;0123$013$023 %012

[Kong-Wen 14]

Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015 SPT order and algebraic topology



Partition function and Correlation function

e Partition function:

2>

1€01, 012,
€01 €01€02€03€12€13€23 v v v
H Vo H AVO vi H S0123 vo vy V2 v3;$123P013 9023 P012 AA
vertex edge tetra Space—time

=2 117

where sp103 = + depends on the orientation of the tetrahedron.

e Correlation function on closed space-time manifold —
physically measurible quantities:
Modify tensor on a few simplices gives us a new partition
function T3 — Ts: Z(M9) — Z[:l'3( ), 7'3()/), R VAF

(00 Tay)) = 23 Z)(AT}S)Y S M
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Short-range correlated (SRC) system and liquid

e A infinite-system is not a single system but a sequence of
systems

- with size of space-time M3 — oo and size of simplices ~ 1.

- each vertex is shared by at most a finite number of simplices.

e A short-range correlated (SRC) infinite-system satisfies

~ ~ ~ ~ _Ix=yl

(1) (Ts(x) Ts5(y)) = (Ts(x))(Ta(y)) ~ e %

for a fixed £ in the infinite system-size limit;

(2) systems of different sizes in the sequence can deform into
each other and keep the SRC property during the deformation.

[Zeng-Wen 14] — SRC liquid
Ny Ny Ni+1

o] ¢ sesel
RN
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Short-range correlated (SRC) liquid phases

e An equivalence relation:

Two SRC infinite-systems are equivalent if the two sequences
can deform into each other while keeping the SRC property

during the deformation.

e The resulting equivalent classes are SRC liquid phases or

L-type topological orders M M

[Wen 89] N
[Chen-Gu-Wen 10] &
o,

KX

Co| 444

X

2

LU

LU

N1

Ne+1

How to classify SRC liquid phases (L-type topological

orders) in each dimension?
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L-type local bosonic systems with symmetry

(1) The indices admit a symmetry action v; — g - v;,
ej — g - €j, Gijk — & - Qjjk, where g € G.
€01€02€03€12€13€;
(2) Tas = {Wa,, AT, (SO5), Ca o tiussiona (SO0}
are invariant under the above symmetry action.

e SRC liquid phases with symmetry:
Equivalence relation: Two symmetric SRC infinite-systems
can deform into each other while keeping the symmetry
property and the SRC property during the deformation.

How to classifies SRC liquid phases with symmetry
— L-type symmetry enriched topological (SET) order
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Examples of SRC liquids

e Example 1: Tensors: non-zero only when all the indices are 1
Wy = wy, ALy =wy, C({v; =1, ej =1, ¢k = 1}) = ws,
All degrees of freedom are frozen to 1.
— Z(M?) = [T —o(wa)"™

- The above systems with different w,'s all belong to the same
SRC phase [have a trivial topological order (triTO)].

e Example 2: Tensors: non-zero only when all the edge-indices,
face indices, etc are 1; the vertex-indices v; € G
W, = wo, Aﬁl_vj =w; CH{vi,e5 =1,k = 1}) = ws,
— Z(M?) = [G|" ] ,—o(wa)""

- The above systems have a symmetry G

e A conjecture: A system with Z(M?) = 1 for all closed

orientable space-time M has a trivial topological order.
Both of the above examples have a trivial topological order.
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A general picture for SRC phases

e Non trivial TO w/o0 symm. — many phases [Wen 89]
Trivial TO w/0o symm. — one phase (no symm. breaking)
e Non trivial TO with symm. — many phases [Wen 02]

Trivial TO with symm. — many different phases [Gu-Wen 09]
may be called symmetry protected trivial (SPT) phase
or symmetry protected topological (SPT) phase

g g phase
2 \ Asy-To 1 ‘SY—TO 2 m,.um
topological order . SET phases
— topological order PSG. 777
Tol ‘ 102 sY-103 |sy-to4 | (PSG777) /A)reserve\\
/ symmetry \
SY-triTO SY-triTO 2 SPT phases ‘ ‘
HTO oo \SPT1  SPT2)
SY-tiTO 3 | $Y-uiT0 4 (?77)
§; 8 no symmetry

e SPT phases = equivalent class of symm. smooth deformation
e Examples: 1D Haldane phase[Haldane 83] 2D/3D TI[Kane-Mele 05;
Bernevig-Zhang 06] [Moore-Balents 07; Fu-Kane-Mele 07]
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SPT phases — the trivial TO with symmetry

SPT phases are SRC (gapped) quantum phases with a certain
symmetry, which can be smoothly connected to the same
trivial phase if we remove the symmetry — trivial topo order.

‘ SPT1 ‘ ‘ SPTZ‘ ‘ SPT3‘ with a symmetry G

break the symmetry

e A group cohomology thepry of SPT phases:
Using each element in 1[G, U(1)] (the d group cohomology
class of the group G with U(1) as coefficient), we can
construct a exactly soluble path integral in d-dimensional
space-time, which realize a SPT state with a symmetry G.
[Chen-Gu-Liu-Wen 11]
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SPT phases — the trivial TO with symmetry

SPT phases are SRC (gapped) quantum phases with a certain
symmetry, which can be smoothly connected to the same
trivial phase if we remove the symmetry — trivial topo order.

‘ SPT1 ‘ ‘ SPTZ‘ ‘ SPT3‘ with a symmetry G

break the symmetry
e A group cohomology thepry of SPT phases:

Using each element in 1[G, U(1)] (the d group cohomology
class of the group G with U(1) as coefficient), we can
construct a exactly soluble path integral in d-dimensional
space-time, which realize a SPT state with a symmetry G.
[Chen-Gu-Liu-Wen 11]

e How to get the above result? Construct a path integral with
symmetry G and Z,,,(M?) =1 on any closed orientable M¢.
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L-type SPT state on 141D space-time lattice

e Path integral on 1+1D space-time lattice described by tensors
Ty = {W,g, BLiie®(S0y) b eym1 = { W, = |G|, [v2(vo, vi, v2)] 2}

Vovi v
=1 (g g.8c). Z=1G]" e vi— g, g€G
where v%(g;, i, gk) = e ot and sijk = 1, %

e The above defines a
LNoM with target
space G on 1+1D
space-time lattice.

space—time
e The NLoM will have a symmetry G if g; € G and
v2(8i, &), 8k) = v2(hgi, hgj, hg), he G

e We will get a SPT state if we choose 1»(g;, gj.g,) =1 —
Ziop(M?) = 1 (which is a trivial SPT state)-
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Topological path inegral (NLoM) and SPT state

8

e (g, g;. k) give rise to a topological NLoM if g,
e %med = [T 1% (g;, g;, gx) = 1 on any sphere,
including a tetrahedron (simplest sphere). :

* v(gi, g, 8k) € U(1) & %

e On a tetrahedron — 2-cocycle condition

vo(g1, &2, 83)2(80: €1, 83)1 (80 &2, 83)V5 (&0, 81, 82) = 1
The solutions of the above equation are called group cocycle.

e The 2-cocycle condition has many solutions:
B1(g1,82)B1(80.81)

v2(8o, 81, 8) and (g0, 81, 82) = 12(80, 81, &2) B1(80.22)
are both cocycles. We say v, ~ 7, ( equivalent).

e The set of the equivalent classes of 1, is denoted as
H?[G, U(1)] = mo(space of the solutions).
e H?[G, U(1)] describes 1+1D SPT phases protected by G.
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Topological invariance in topological NLoMs
8o 83 8o 83
8o 82 8o 82 \ A
REANCANSNY RVZE N
81 3 81 83 81 81

As we change the space-time lattice,

the action amplitude ¢~ does not change:
v2(8o, 81, 82)V5 (81, 82, 85) = v2(80, 81, 83) V5 (8o, &2, &3)
va(go, 81, 82)v5 (81, &2, 83)v2(80, 82, 83) = 12(80, &1, 83)

as implied by the cocycle condition:

va (81, &2, 83)v2(80s 81, 83)V (0, &2, 83)15 (80, 81, &2) = 1
The topological NLoM is a RG fixed-point.
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Topological invariance in topological NLoMs
8o 83 8o 83
8o 82 8o 82 \ A
REANCANSNY RVZE N
81 3 81 83 81 81

As we change the space-time lattice,
the action amplitude ¢~ does not change:

Vo (80, 81, 82)V5 (81, &2, 83) = va(80, &1, 83) V5 (&0 &2, &3)

va(go, &1, 82)V5 (81, 82, 83)2(80, &2, &3) = 1280, &1, &3)

as implied by the cocycle condition:

va(g1, & 83)v2(80, 81, 83)V5 (80, &2, 83)V> (&0, 81, 82) = 1

The topological NLoM is a RG fixed-point.

e The Z(M?) = 1 if M9 can be obtained
by gluing spheres. The NLoM describes =
a SPT state with trivial topo. order.
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Bosonic SPT phases from H9[G, U(1)]

Symmetry G/ d =

0+1

141

2+1 3+1

“Zy " time reversal,
“trans”: translation,
0 — only trivial phase.

LRE | ‘

(tensor category)

LRE 2

U(].) X Z2T (tOp. ins.) 7 Lo (O) 7o (ig) Z% (ig)
U(1) x Z) x trans Z |ZxZy| ZxZ5 | ZxZ8
U(1) x ZJ (spin sys.) 0 73 0 73
U(1) x Z] x trans 0 73 73 73
Z7 (top. SC) 0 [Z(2) ] 000) | Z (0)
Z) x trans 0 Zs 73 73
U(1) Z 0 Z 0
U(1) x trans Z Z 72 z*
Z, Zn, 0 Zon 0
Z, X trans Zn Zon Y/ 74
D2h = Z2 X ZQ X ZzT Z% Zg Zg Zg
50(3) 0 Zo Z 0
SO(3) x ZJ 0 73 Zo 73
821 opological order  SASY-LRE I|SY-LRE2 |  SET orders

(tensor category

— intrinsic topo. order —
w/ symmetry)

SB-LRE 1 |$B-LRE ]

(7Z) — free fermion result

SRE

symmetry breaking
SB-SRE 1 SB-SRE 2 (group theory)
SY-SRE1 | SY-SRE2 SPT orderes

(group cohomology

SPT order and algebraic topology
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Universal probe for SPT orders

e How do you know the constructed NLoM ground states carry
non-trivial SPT order? How do you probe/measure SPT order?

Universal probe = one probe to detect all possible orders.
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Universal probe for SPT orders

e How do you know the constructed NLoM ground states carry
non-trivial SPT order? How do you probe/measure SPT order?

Universal probe = one probe to detect all possible orders.

e Universal probe for crystal order
= X-ray diffraction: @ ’
Incident 5;@"‘“ 3106‘ i
X-rays W‘F‘ H (102)
S T ‘ ) 1;7;2’\7;;“ gt
.1, 3)23”/
sampe ch U L

Transmission
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Universal probe for SPT orders

e How do you know the constructed NLoM ground states carry
non-trivial SPT order? How do you probe/measure SPT order?

Universal probe = one probe to detect all possible orders.

©020)

e Universal probe for crystal order
= X-ray diffraction:

& of

o o
Incident 590”‘“ *{a‘i Y
Rerays 28
— -
Beam

Sampie
Transmission

(1\(0)&)

/( 3)2

e Partitional function as an universal probe,

but Z377(M?) = 1 — does not work.

e Twist the symmetry by “gauging” the symmetry on M?
— A — G gauge field.
> ZET(A M) # 1.

[Levin-Gu 12; Hung-Wen 13]
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Universal topo. inv.: “gauged” partition function

Z(AM?) _ [Dge JE& A0
Z(0.m9) [ Dge~ /e de)
L VVtopinv(A) and W}

topinv

(A) are equivalent if
1
(A) - VVtopinv(A) - /\7TI‘(F2) + ..
g

e The equivalent class of the gauge-topological term W,qyin, (A)
is the topological invariant that probe different SPT state.

W/

topinv

e The topological invariant Wi (A) are Chern-Simons terms
or Chern-Simons-like terms.

e Such Chern-Simons-like terms are classified by
HY(BG,Z) = HI[G, U(1)] [Dijkgraaf-Witten 92]
The topological invariant Wiopin,(A) can probe all the SPT
states (constructed so far)
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U(1) SPT phases and their physical properties

e Topo. terms for U(1) SPT state: a= 2

Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015

=50 0= ‘21—;‘, aci =alc
d= | HINUQ)] | Wipiny
0+1 Z a
1+1 0

241 Z acy
3+1 0
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U(1) SPT phases and their physical properties

e Topo. terms for U(1) SPT state: a= £, c; = 92, aci =aA

e In0+1D, Wi, = ki = ka. d= [ HIUQ] [ W,
0+1 Z a
141 0
241 Z acy
3+1 0
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U(1) SPT phases and their physical properties

e Topo. terms for U(1) SPT state: a= 2

eIn0+1D, W}

_ A _
topinv. k% = ka.

Tr( U;wiste—H) — oikfsr AWSE _ ikO

— ground state carries charge k
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U(1) SPT phases and their physical properties

e Topo. terms for U(1) SPT state: a= £, c; = 92, aci =aA
eIn0 +1D’ VVt%)PinV.: k%: ka'. d= Hd[U(l)] |/Vt(gpinv
Tr(U;W'Ste_H) — elkffsl Atwist — elk@ 0+1 7 2
— ground state carries charge k 141 0
3 _ L AdA _
eln2+ 1D, Weopiny = k(zﬂ)2 = kacj. 21 7 act
3+1 0
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U(1) SPT phases and their physical properties

e Topo. terms for U(1) SPT state:

eIn0+1D, W}

_ A _
topinv. k% = ka.

Tr( U;wiste—H) — oikfsr AWSE _ ikO

— ground state carries charge k

o In2+1D, W, = k{5

)
— Hall conductance o,, = 2k%

— The edge of U(1) SPT phase

= kacy.

az%,ng—;‘,aqza/\q
d= | #HUQ)] | Wegin
0+1 Z a
1+1 0

241 Z acy
3+1 0

must be gapless: left/right movers + anomalous U(1) symm.
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U(1) SPT phases and their physical properties

e Topo. terms for U(1) SPT state: a= £, c; = 92, aci =aA

1 _ A

e In 0+ 1D, Wi, = k3 = ka.
Tr( U;wiste—H) — oikfsr AWSE _ ikO
— ground state carries charge k

o In2+1D, W, = k{5

)
— Hall conductance o,, = 2k%

— The edge of U(1) SPT phase

= kacy.

d= | HUUD)] | Wpiny
0+1 7 a
141 0

241 Z acy
3+1 0

must be gapless: left/right movers + anomalous U(1) symm.

e Probe: 27m flux in space M? induces km unit of charge —

Hall conductance o,, = 2ke?/h.
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U(1) SPT phases and their physical properties

e Topo. terms for U(1) SPT state: a= £, c; = 92, aci =aA

© In0-+1D, Wiy, = kit = ko [d = [HUD] | Wegm
Tr(U;W'Ste_H) — elk}fSlA""'s — elk9 0+ 1 Z 3
— ground state carries charge k 141 0
3 _ AdA _
eln2+ 1D, Weopiny = k(%)2 = kzcl. i1 7 act
— Hall conductance o, = 2k 341 0
— The edge of U(1) SPT phase

must be gapless: left/right movers + anomalous U(1) symm.
e Probe: 27m flux in space M? induces km unit of charge —
Hall conductance o,, = 2ke?/h.
e Mechanism: Start with 2-+1D bosonic superfluid:
proliferate vortices — trivial Mott insulator.
proliferate vortex+2k-charge — U(1) SPT state labeled by k.
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A mechanism for 241D U(1) x Z} SPT state

e 2+1D boson superfluid + gas of vortex
— boson Mott insulator.

e 241D boson superfluid + gas of S*-vortex (
— boson topological insulator (U(1) x Z, SPT state)
- The boson superfluid + spin-1 system

S7%-vortex = @ oh b a ©4 é m>, b B
vortex + (S, = +1)-spin "Oh 6 0% G davata0’
anti S“-vortex = 099 o 0 ) ; Lo @0 % %6
anti-vortex + (S, = —1)-spin & “o o0 et ‘ HOM b’
Probing 2+1D U(1) x Z] SPT state [Liu-Gu-Wen 14]

Let ® e be the creation operator of the vortex. Then

7—_1q>vortex T = (Dj/ortexa or T_lq)Sz—vortexT - q)T

Sz-vortex*

U(1) m-flux in the non-trivial SPT phase is a Kramer doublet
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HY(G,IR/Z) does not produce all the SPT phases

with symm. G: Topological states and anomalies
SPT order from H9(G,R/Z)

theory
with
gauge
Symmetry/(symm.)
anomaly

gZ . | g2 SY-TO 1 | SY-TO 2
topological order SET phases

—— topological order PSG. 777
TO1 | 102 SY-TO 3 |SY—TO4 ( 177)

SY-triTO 1|  SY-triTO 2

SPT phases
SY-tiTO 3 | SY-tuiT0 4 (?77)

8 8,

triTO
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HY(G,IR/Z) does not produce all the SPT phases

with symm. G: Topological states and anomalies

SPT order from H9(G,R/7Z) Topological order

thpﬁry
wit
symmetry,{ gauge) ordered
symm.
anomaly state

gZ . | g2 SY-TO 1 | SY-TO 2
topological order

SET phases
TO 1 | TO2 (PSG, 777)

—— topological order
SY-TO 3 | SY-TO 4

SY-triTO 1|  SY-triTO 2

SPT phases
(777)

triTO
SY-triTO 3 | SY-triTO 4

8 8,
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HY(G,IR/Z) does not produce all the SPT phases

with symm. G: Topological states and anomalies

SPT order from H9(G,R/7Z) Topological order

effective
Topologically | theory

with
ordered gravitational
state

SPT order beyond HY(G,R/Z)

gZ . | gZ SY-TO 1 | SY-TO 2
topological order B ol0gical order SET phases

9299
TO 1 | 02 sy 103 |sytos| (PSG-77)

SY-triTO 1|  SY-triTO 2

SPT phases
SY-tiTO 3 | SY-tiT0 4 (777)

8 8,

triTO
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CS-like topological terms <+ SPT and topo. orders

Pure SPT order within H?(G,R/7Z): wd

topinv -
Vl/tipinv only depend on A — the gauge G-connection

ac
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CS-like topological terms <+ SPT and topo. orders

Pure SPT order within H?(G,R/7Z): Wi = ac1

Vl/tipinv only depend on A — the gauge G-connection
topological order : Wiy = W3, 3WaW3
W e only depend on ' — the gravitational SO-connection

p1 is the first Pontryagin class, dws = p;, and w; is the
Stiefel-Whitney classes.

[Kapustin 14]
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CS-like topological terms <+ SPT and topo. orders

Pure SPT order within H?(G,R/7Z): wd

topinv — 9€1

Vl/t‘ipinv only depend on A — the gauge G-connection
Invertible topological order (iTO): Wiy = W3, 3WaW3

Topo. order w/ no topo. excitations

W e only depend on ' — the gravitational SO-connection
p1 is the first Pontryagin class, dws = p;, and w; is the
Stiefel-Whitney classes.

- The Z-~class of 241D iTO'’s are generated by w3, a (Eg)® state.
Eg state is anomalous as a L-type theory, but not as a H-type

- Zp~class of 441D iTO'’s are generated by %W2 ws. [Kapustin 14]
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CS-like topological terms <+ SPT and topo. orders

Pure SPT order within H?(G,R/7Z): wd

ac

topinv -
Vl/t‘ipinv only depend on A — the gauge G-connection
Invertible topological order (iTO): Wiy = W3, 3WaW3

Topo. order w/ no topo. excitations

W e only depend on ' — the gravitational SO-connection
p1 is the first Pontryagin class, dws = p;, and w; is the
Stiefel-Whitney classes.

- The Z-~class of 241D iTO'’s are generated by w3, a (Eg)® state.
Eg state is anomalous as a L-type theory, but not as a H-type

- Zp~class of 441D iTO'’s are generated by %W2 ws. [Kapustin 14]

Mixed SPT order beyond H/(G.R/Z):  WJ,.,
W< . depend on both A and I

topinv

= Qw3
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A model to realize all (?) bosonic pure STP orders,

mixed SPT orders, and invertible topological orders

e NLoM (group cohomology) approach to pure SPT phases:
(1) NLoM-+topo. term: ;|dg|> + 2riW(gt0g), g € G
(2) Add symm. twist: 55[(0 — iA)g|* + 2mi W[(0 — iA)g]
(3) Integrate out matter field: Ziyoq = €271/ Wiopins(4)
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A model to realize all (?) bosonic pure STP orders,

mixed SPT orders, and invertible topological orders

e NLoM (group cohomology) approach to pure SPT phases:
(1) NLoM-+topo. term: ;|dg|> + 2riW(gt0g), g € G
(2) Add symm. twist: 55[(0 — iA)g|* + 2mi W[(0 — iA)g]
(3) Integrate out matter field: Ziyoq = €271/ Wiopins(4)

e G x SO, NLoM (group cohomology) approach:
(1) NLoM: |9g|? + 2riW(g10g), g € G x SO
(2) Add twist: 25 [(0 — 1A —ilNg|> + 2ri W[(0 — 1A — ilg]

P
(3) Integrate out matter field: Zgyeg = 271 Weepin(AT)
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A model to realize all (?) bosonic pure STP orders,

mixed SPT orders, and invertible topological orders

e NLoM (group cohomology) approach to pure SPT phases:
(1) NLoM-+topo. term: ;|dg|> + 2riW(gt0g), g € G
(2) Add symm. twist: 55[(0 — iA)g|* + 2mi W[(0 — iA)g]
(3) Integrate out matter field: Ziyoq = €271/ Wiopins(4)

e G x SO, NLoM (group cohomology) approach:
(1) NLoM: |9g|? + 2riW(g10g), g € G x SO
(2) Add twist: 25 [(0 — 1A —ilNg|> + 2ri W[(0 — 1A — ilg]

P
(3) Integrate out matter field: Zseq = 271 Weopin(AT)

e All possible topo. terms are classified by H9(G x SO, R/Z)
Pure/mixed SPT orders, and iTOs are classified by
HY(G x SO,R/Z)
= HI(G,R/Z) &=L H¥[G, HI (SO, R/Z)] & H(SO,R/7Z)
But not one-to-one. Need to quotient out something ?(G).
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Trying to classify bosonic pure STP orders,

mixed SPT orders, and invertible topological orders

e Pure STP: HY(G,R/Z) one-to-one
e Mixed SPT: ©{_1H [G, H*(SO,R/Z)] many-to-one
¢ iTO’s: H(SO,R/Z) many-to-one

- Pure STP orders are classified by H¢(G,R/Z)
CS-like topo. inv. W< . (A) are classified by H"}(BG,7Z)

topinv
Pure STP orders are also classified by W (A)

- But iTOs are not one-to-one classified by W2 ('so) in
H¥*1(BSO, Z), because different W,Z . (I'so) and
‘/Vt(ipinv(rso) may SatiSfy Vvtgpinv(rso) - M/t(cj)pinv(rso) when

[so is the SO-connection of the tangent bundle of MY,
Wl WY — the same iTO — iTOY = #9(SO.R/Z)/T¢

topinv? topinv
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Trying to classify bosonic pure STP orders,

mixed SPT orders, and invertible topological orders

e Pure STP orders: H?(G,R/7Z)
¢ iTQ’s: iTOY = HI(SO,R/Z)/T¢
e Mixed SPT order ©{_1#*(G,iTOY )

(the black entries below)

(using Wu class and Sg")
®H¥[G,HI~¥(SO,R/Z)]

ri(G)
G\d= 0+1 | 1+1 2+1 3+1 4+1 5+1 6-+1

iTo? 0 0 Z 0 Zy 0 0

Zn Zin 0 Zin 0 Zin ® Zn Z(n,2) Zin ® Zn ® Z(n,2)

z] 0 Zy 0 Zy & Ly 0 Zp & 27 Zy

U(1) Z 0 Z 0 YASYA 0 ZDL DLy
U(l) X 2o T Zp YASYL Zo 270 D 7o 270 P 27 17D 27> ®L D 27>
U(1) x 22T 0 272 0 3Zo @ Zo 0 47 @D 372 27n D Zn
U(l) X Z2T Z Z Zo 270 @ Zo YASY XYW 275 P 27 272 D 370 ® 7o
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Trying to classify bosonic pure STP orders,

mixed SPT orders, and invertible topological orders

e Pure STP orders: H?(G,R/7Z)
¢ iTQ’s: iTOY = HI(SO,R/Z)/T¢
e Mixed SPT order ©{_1#*(G,iTOY )

(the black entries below)

(using Wu class and Sg")
®H¥[G,HI~¥(SO,R/Z)]

ri(G)
G\d= 0+1 | 1+1 2+1 3+1 4+1 5+1 6-+1

iTo? 0 0 Z 0 Zy 0 0

Zn Zin 0 Zin 0 Zin ® Zn Z(n,2) Zin ® Zn ® Z(,,Y2>

z] 0 Zy 0 Zy & Ly 0 Zp & 27 Zy

U(1) Z 0 Z 0 YASYA 0 ZDL DLy
U(l) X 2o T Zp YASYL Zo 270 D 7o 270 P 27 17D 27> ®L D 27>
U(1) x 22T 0 272 0 3Zo @ Zo 0 47 @D 372 27n D Zn
U(l) X Z2T Z Z Zo 270 @ Zo YASY XYW 275 P 27 272 D 370 ® 7o

e Probe mixed SPT order described by H*[G, H? (SO, R/Z)]:
put the state on M¢ = M* x M=% and add a G-symmetry
twist on M* — Induce a state on M?~* described by

HI (SO, R/Z) — a iTO state in iTOY*
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A mechanism for Z mixed SPT state in 341D

[Vishwanash-Senthil 12, Kapustin 14, Wen 14]
The Z] mixed SPT states are classified by
HY(Z),iTO?) = Z,
The topological invariant for a Z,) mixed SPT state (bosonic
topological super fluid with time reversal symmetry) is
Vvtipinv = %pl (W 14] (Vvtipinv - %Pl [VS 12, K 14])

e Start with a T-symmetry breaking state. Proliferate the
symmetry breaking domain walls to restore the T-symmetry.
— a trivial SPT state.

e Bind the domain walls to (E3)* [w 14] (Eg [VS 12, K 14])
quantum Hall state, and then proliferate the symmetry
breaking domain walls to restore the T-symmetry.

— a non-trivial Z,” SPT state.
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Z> SPT phases and their physical properties

e Topological terms: $Az, =0, a1 = %?
d= | HZ)] Wt‘épinv
0+1 Loy %31
1+1 0
2+1| Zo s
3+1 0

Xiao-Gang Wen, MIT/PI, IPAM, Jan. 26, 2015 SPT order and algebraic topology



Z> SPT phases and their physical properties

e Topological terms: $Az =0, a = %;
eIn0+1D, W), =k52 =ka. [d=|HIZ] | Wi,
0+1| Z zap
1+1 0
241 | Zs 1a3
3+1 0
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Z> SPT phases and their physical properties

e Topological terms: $AZ =0, a = %;
e In 0 + ].D VVt%)pmv kAZ2 - kal d= Hd[z2] |/Vt(cf)pinv
Tr( U7tTW|st ) e27i $a1 Wtoplnv 0+1 Zo %al

— elkrfaa — e“‘”:il 1+1 0
— ground state Z,-charge: k = 0,1 241 7, %a?
3+1 0
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Z> SPT phases and their physical properties

e Topological terms: $AZ =0, a = %;
e In 0 + ].D VVt%)pmv kAZ2 - kal d= Hd[z2] |/Vt(cf)pinv
Tr( U7tTW|st ) | e27i $a1 Wtoplnv 0+1 Zo %al

= e”‘”fslda1 = eI; :hil o1 1+1 0
— ground state Z>-charge: k = U, 1.3
2+1 Zz =a
e ln 2+1D fMa top|nv_f[\/]3 %3:1)) 341 0 27
Here we do not view a; as 1-form

but as 1-cocycle a; € H'(M3,7Z,), and a3 = a; U a; U a;:
[ypaiUaiUar=0or1 — e fis Wsin = mihipat = £+
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Z> SPT phases and their physical properties

e Topological terms: $AZ =0, a = %;
e In 0 + ].D VVt%)pmv kAZ2 - kal d= Hd[z2] |/Vt(cf)pinv
Tr( U7tTW|st ) e27i $a1 Wtoplnv 0+1 Zo %31

— elkﬂfsldal = 1; —hil o1 1+1 0
— ground state Z>-charge: k = U, 1.3
2+1 Zz =a
e ln 2+1D jM3 top|nv_f[\/]3 %3:1)) 341 0 27
Here we do not view a; as 1-form

but as 1-cocycle a; € H'(M3,7Z,), and a3 = a; U a; U a;:
fyparUaUa =0o0r1— 21 e Waopiny — o™i fyz 3l = 41

e Poincaré duality: 1-cocycle a; +» 2-cycle N? (2D submanifold)
N? is the surface across which we do the Z, symmetry twist.

Choose M3 = M? x St E>O Oﬁ> ><E>X

As we go around S*:

fM3 a3 = # of loop creatlon/annlhllatlon + # of line reconnection
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The edge of Z, SPT phase must be gapless

or symmetry breaking Chen-Liu-Wen 11; Levin-Gu 12

Assume the edge of a Z, SPT phase is gapped with no
symmetry breaking. We use Z, twist try to create excitations
(called Z, domain walls) at the edge. We may naively expect
those Z,-domain walls are trivial, but they are not. They have
a non-trivial fusion property: different fusion order can differ
by a — sign. I:>

\ \ \
~ 7/ ~ 7/ <7/

o o

I e L I::> I
\ \ ! / \ /
N - - N -

So the Z, domain walls on the boundary form a non-trivial
fusion category.
— the bulk state must carry a non-trivial topological order.
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The boundary of the 241D Z, SPT state has

a 141D bosonic global Z, anomaly [chen-wen 12]

The 141D bosonic global Z, anomaly — The edge of 2,
SPT phase must be gapless or symmetry breaking.

e One realization of the edge is described by 1+1D XY model or
U(1) CFT. The primary field (vertex operator) V; ,, has
dimensions (hg, h;) = ((I+2m)2 M) 1

8 8
e The Z, symmetry action V, ,, — (—=)"™V,,

Such a 141D Z, symmetry is anomalous:

(1) The XY model has no UV completion in 141D such that
the Z, symmetry is realized as an on-site symm. U =[], o7
(2) If we gauge the Z,, the 1+1D Z, gauge theory has no UV
completion in 141D as a bosonic theory.

(3) The XY model has a UV completion as boundary of 2+1D
lattice theory w/ the Z, symmetry realized as an on-site symm.
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