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1. INTRODUCTION 
 

 The steady state neutron diffusion theory is considered and is specialized to the situation 

of multiplying media.  Specifically, the source term in the Helmholtz equation is expressed as a 

function of the fission medium’s multiplication factor.  This leads to an eigenvalue equation, 

characteristic, or criticality equation for multiplying media.  With the appropriate boundary 

conditions, this derived equation is solved in spherical geometry for a critical reactor, and the 

results are compared to the experimental values of critical and subcritical assemblies. 

 

2. STEADY STATE NEUTRON DIFFUSION EQUATION 
 

The one group diffusion equation can be written as a neutron balance equation over an arbitrary 

volume V of a multiplying or non-multiplying medium as: 
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If the system is just critical then: 

 

Losses = Gains, 

 

and: 
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for a steady state reactor operational condition.  

The diffusion equation can be symbolically written as:  
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where:   is the neutron flux 
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a is the macroscopic absorption coefficient [cm-1], 

D is the diffusion coefficient [cm]. 

 

3. DIFFUSION COEFFICIENT 
 

From diffusion theory, the diffusion coefficient is expressed in terms of the macroscopic 

scattering cross section as: 
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where: s  is the macroscopic scattering cross section. 

However, from the more advanced transport theory it can be expressed in terms of the 

macroscopic transport, scattering and absorption cross sections as: 
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where: tr  is the macroscopic transport cross-section, 
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 tr  is the transport mean free path 

a is the macroscopic absorption cross-section, 

 s is the macroscopic scattering cross-section, 

0  is the average cosine of the scattering angle in the laboratory system. 

 

In a weakly absorbing medium where a s   , D becomes: 
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where λtr is the transport mean free path [cm]. 



 

 

In a reactor containing a number of different materials, an average value of ( 01  ) is 

calculated using the weighted sum: 
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where: n is the total number of elements present in the reactor. 

 The average cosine of the scattering angle is given by: 
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where:   is the neutron scattering angle, 

 A is the mass number of the scattering isotope, [amu]. 

 

4. THE INFINITE MEDIUM MULTIPLICATION FACTOR AND THE 

SOURCE TERM 
 

 In an infinite medium, the flux assumes a constant value, no gradient exists, and hence 

there is no neutron leakage and we can define an infinite medium multiplication factor as: 

 

neutrons produced in current fission generation

neutrons absorbed in previous fission generation
k   

 

The infinite medium multiplication factor can be expressed in terms of the four-factor 

formula: 

 

pfk 
      (6) 

 

where:    is the regeneration factor, 

    is the fast fission factor, 

 p  is the resonance escape probability, 

 f   is the fuel utilization factor. 

 

The fuel utilization factor, for a constant flux value in a homogeneous medium, is defined as: 
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where:  M stands for the  moderator, 

F stands for the fuel, 

S stands for the structure. 

 

The resonance escape probability p is that fraction of the fast neutrons, which slow down 

to thermal energies past the cross section energy resonance region without being absorbed. 

The fast fission factor   is the ratio of the total fissions produced from fast and thermal 

neutrons to the fissions produced by thermal neutrons. 

The regeneration factor   is: 

 

fuel in absorbed neutrons

fission from produced neutrons
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For U235, 
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where:   is the average number of neutrons emitted per fission, 

 ,f    are the macroscopic fission and radiative capture cross sections respectively. 

 

If we designate the ratio of the radiative capture to fission microscopic cross sections as 

the capture to fission ratio: 
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Since Eqn. 2 applies for neutrons of a single energy that are thermal, we can write for the 

thermal neutrons source term S: 

 

afkS        (11) 

 

where:  f  is the fast neutron non-leakage probability. 

 

For the transient state, Eqn. 2 can be written as: 
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Dividing into a : 
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where: 
a

2 D
L


  is the thermal diffusion area [cm2], 

L is the diffusion length [cm]. 

Rearranging, we get after dividing by 2L : 
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where: 
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 The terminology for the geometrical buckling arises in the field of structural mechanics 

where it describes the degree of deformational buckling of a column under external forces applied 

to its ends. 

 

5. THE CRITICALITY EQUATION 
 

For steady state, 0
t





, and Eqn. 12 implies that for criticality and a self-sustained chain 

reaction, the following condition where the geometric buckling is equal to the material buckling 

must apply: 
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 In general: 
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where: B2 is called the buckling in short. 

 As a criticality condition, the geometrical and material bucklings should thus be equal for 

a nuclear reactor to become critical and be able to establish a steady-state self-sustained neutron 

chain reaction. 

 This criticality condition expresses the need to match the material properties of the medium 

expressed in the equation for the material buckling, to the geometry of the system expressed by its 

geometrical buckling. 

Rearranging the expression for the material buckling, we get: 
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 The last equation represents a just critical system.  In general though, we can define an 

effective multiplication factor as: 
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where: th  is the thermal neutrons non-leakage probability,  
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where: f  is the fast neutrons non-leakage probability 

1effk  , for a subcritical reactor, 

1effk  , for a supercritical reactor, 

1effk  , for a just critical reactor. 

 

6. SOLUTION OF THE UNREFLECTED REACTOR EIGENVALUE 

EQUATION 
 

From the definition of the geometrical buckling: 
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we get: 
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In spherical geometry, expressing the Laplacian Operator, we get 
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The solution of this equation is: 
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If the flux is finite throughout the reactor, then A = 0 (since:
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unphysical situation of an infinite value for the flux, and we are compelled to choose as a physical 

solution: 
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As r0, from l’Hospital’s Rule the value of the flux at the center of the reactor is: 
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from which: 
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where:  0  is the flux at the reactor center. 

A second boundary condition is that of the flux vanishing at the extrapolated radius: 
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where:  d is the extrapolated length: 
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From transport theory, a better estimate of d is usually used:  

 

0.71 trd  . 

 

Applying this condition, we get: 
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For the main harmonic solution or n = 1 eigenvalue,  
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and the flux distribution becomes: 
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7. EFFECT OF REACTOR POWER, SEMI INFINITE SLAB REACTOR 
 

 The effect of the reactor power level can be included in the magnitude constant of 

integration to the reactor criticality equation.  Mathematically, for the eigen-value equation: 
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the solution for the flux multiplied by any constant is still a solution to the equation.  Physically, 

this means that we can operate the nuclear reactor at any power level we wish, provided enough 

cooling to extract the heat generated is provided.  Otherwise, if the energy release is not extracted, 

this would lead to melting and possibly evaporation of the reactor core. 

 For a hypothetical semi-infinite slab reactor of thickness a in the x direction with the origin 

taken at the center of the slab, and infinite in extent in the y and z directions, with a power produced 

per unit area P, the reactor equation can be written in one dimensional Cartesian coordinates as: 
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Its solution is harmonic as: 
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Since the flux cannot be zero and reaches a maximum at the origin we reject the sin (Bx) 

solution implying that C = 0: 
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Applying the boundary condition of a vanishing flux at the boundaries + a/2 and – a/2, and 

neglecting the extrapolated length for a large reactor, 
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Considering the fundamental mode or main harmonic n = 1, we can write: 
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 The reactor power per unit area can be expressed as: 
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where:  Ef is the extractable energy release per fission event = 190 [MeV/fission] 

 The constant of integration A can be expressed as: 
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and the flux distribution will be dependent on the power per unit area P as: 
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suggesting that the reactor can be operated at any desired power level P, provided enough cooling 

is provided; a limiting property of the used materials at high temperatures that it shares with any 

other power producing engine, including a fossil power plant boiler or an automobile engine. 



 

 

 

8. THE MODIFIED ONE GROUP CRITICALITY EQUATION 
 

Defining a fast neutrons diffusion area also referred to as neutron age   [cm2], then in 

analogy to the expression for the thermal non-leakage probability: 
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we can write an expression for the fast non-leakage probability as: 
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Thus Eqn.13 for the effective multiplication factor can be written for a critical system as: 
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  so that we can neglect B4 with respect to B2 in the case of a large 

reactor with a large radius R, and write the modified one group theory criticality equation: 
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where:  22 LM  is designated as the migration area. 
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9. DETERMINATION OF REACTOR’S CRITICAL DIMENSION 

 

If we now write the expression for the buckling, and rearrange to get: 
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From which: 
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is obtained as the reactor critical radius. 

 

10. THE CRITICAL RADIUS OF AN UNREFLECTED AND 

UNMODERATED CRITICAL FISSILE SPHERE 

 

Table 1.  One Group Fast Group Constants, from ANL-5800 [4]. 

 

Nuclide 

Neutrons per 

fission event 

 

Fission cross 

section 

f 

[barn] 

Capture cross 

section 

c 

[barn] 

Transport cross 

section 

tr 

[barn] 

Plutonium239 2.98 1.85 0.260 6.8 

Uranium235 2.6 1.40 0.250 6.8 

Uranium238 2.6 0.095 0.16 6.9 

Fe - - 0.006 2.7 

Na - - 0.0008 3.3 

Al - - 0.002 3.1 

 

If we consider an unmoderated fissile reactor, the neutron spectrum would be a fast one, 

since no moderator is present to moderate the energy of the neutrons to thermal energy.  The cross 

section data must be considered as weighed by a fast neutron spectrum instead of a thermal neutron 

spectrum in the case of moderated systems.  Such fast one group constants differ from one source 

in the literature to another because of the flux weighting procedure that is adopted.  One such set 

is shown in Table 1. 

 

11. CRITICALITY OF BARE, UNREFLECTED AND UNMODERATED 

FAST REACTOR 

 

As an example, we shall calculate the critical radius, volume, and mass of a sphere of U235 

, given the following fast spectrum data from Wirtz [3]: 
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 These data are chosen for a fast neutron spectrum since no moderator in included to slow 

the neutrons down.  We shall use one-group theory, and neglect the extrapolation distance.  The 

solution then proceeds as follows. 

Equating the material and geometrical bucklings for a sphere in one-group theory: 
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Note that for the modified two-group theory L2
f is to be replaced by the migration area M2.  

From the last equation the critical radius is: 

 

2

1

f

c

L
R

k







 
 

where:  infinite medium multiplication factor pfk 
 

fast neutrons diffusion area 
2

f

a

D
L 


 

fast neutrons diffusion coefficient 
tr3

1
D




 
 

For a pure U235 sphere the fuel utilization factor is: 
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Thus the critical radius is: 
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The corresponding critical volume is: 
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And the critical mass becomes: 

 

2,480.054 18.75 46,501.013 46.5c cM V gm kg    
 

 

Table 2.  Effective multiplication factor of unreflected and reflected fast reactor assemblies. 

 

Assembly Core Reflector 
Core Radius 

[cm] 
keff 

U233 - 5.965 1.0115 

Godiva, U235 - 8.710 0.9912 

Jezebel, Pu239 - 6.285 1.0039 

37.5 % U235 - 14.57 0.9855 

16.7 % U235 7.6 cm U 20.32 0.9893 

U235 1.8 cm U 7.725 0.9907 

U235 8.9 cm U 6.391 0.9939 

Topsy, U235 U 6.045 0.9907 

U235 5.1 cm Fe 7.3900 0.9756 

U235 4.6 cm Th 7.800 0.9905 

ZPR-III 48 30 cm U 47.4200 1.0160 

 

This compares to the radius of 8.71 cm and the critical mass of 48.8 kg for the Godiva 

critical experiment, which is a 93.9 percent U235  enriched system Oralloy compostion.  The core 

radii of different fast critical assemblies are shown in Table 2.  The Zero Power Reactor ZPR-III 

48 experiment simulated a fast reactor with a core consisting of carbides of uranium235 and 



 

 

plutonium239.  Sodium was used as a coolant, iron as the structural material, and uranium was used 

as a reflector. 

 

 

Figure 1.  The Jezebel critical plutonium sphere experiment. 

 

12. THE JEZEBEL CRITICAL PLUTONIUM SPHERE 
 

 Critical experiments are conducted to experimentally check the calculated values of the 

critical masses.  Figure 1 shows a critical experiment for a plutonium239 sphere, designated as 

Jezebel, where the sphere is divided into three parts remotely brought together along sliding wires. 

 The Jezebel experiment, set up in 1954-1955, was a spherical bare unreflected 

homogeneous assembly of Pu that is stabilized with 3 – 4.5 atomic percent rare earth element 

gallium into the delta phase at room temperature.  In 1956 its measured critical mass was 

determined as 16.45 +/- 0.04 kg. This value was updated in 1969 to 16.57 +/- 0.10 kg. A later 

estimation by the X-Division at the Los Alamos National Laboratory (LANL) in 2016 establishes 

a value of 16.624 +/- 0.065 kg. 

 Solid plutonium is most malleable in the delta phase.  This phase is the most suitable for 

its fabrication.  The delta phase of pure plutonium is stable only between 600 and 700 kelvin well 

above the 293 kelvin of room temperature. The delta phase can be stabilized at room temperature 

with gallium, offering easier machinability, higher corrosion resistance and a melting temperature 

 



 

 

at 650 oC. Unalloyed plutonium melts at a relatively low temperature around 640 oC to yield a 

liquid of higher density than the solid form from which it melts.  The elastic properties of the delta 

face centered cubic (fcc) phase of plutonium are highly directional or anisotropic.  This means that 

the elasticity of the metal varies widely along different crystallographic directions by a factor of 

six to seven. 

 The delta fcc form of plutonium is stable at high temperatures and the highly symmetric 

fcc structure can be retained at room temperature by adding 2 atomic percent of an alloy rare earth 

metal such as gallium. 

 

13. EFFECT OF EXTRAPOLATION DISTANCE 
 

If the extrapolation distance is not neglected in the treated example, then: 
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and since in this case the extrapolated radius is: 
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Thus the critical assembly radius is: 

 

8.397 1.793 6.604cR cm  
 

The critical volume will be: 
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and the critical mass can be calculated as: 

 

  1,206.451 18.75 22,620.962 22.6cM gm kgs   
 

 

This is much different from the previously determined value, almost by a factor of one half, 

emphasizing the need to account for the extrapolation distance in small reactors.  In large reactors 

it can be neglected.  In addition, more sophisticated methods than one-group diffusion theory, such 

as transport theory are needed to theoretically determine the accurate sizes of critical assemblies. 

 

14. CRITICALITY OF MODERATED HOMOGENEOUS REACTORS 

WITH DIFFERENT GEOMETRIES 
 



 

 

Let us consider a large reactor that is composed of a homogeneous mixture of pure U235 

and graphite as carbon.  There is one atom of U235 for every 10,000 atoms of carbon, or: 
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N
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N
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The migration area is M2 = 3,040 cm2.  We ask ourselves the following questions: 

 

1. What is the material buckling ? 

2. If the reactor is a bare cylinder with a height equal twice the radius, what is the critical radius ? 

3. If the reactor is a bare sphere, what is its critical radius ? 

4. If the reactor is a cube, what is its critical radius ? 

 

We shall compare the required critical volumes for the three last cases and estimate the 

U235 mass required for criticality in each case.  We proceed with the solution in the following way. 

From the modified one-group theory, the material buckling is given by: 
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where: M2 is the migration area.  

Neglecting fast fissions, then 1 , and neglecting resonance absorption, then p 1 .  

The regeneration factor can be written as: 
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The thermal utilization factor is: 

 

1

1

aF

C aCaF aC

F aF

f
N

N






 
  

 
 

Substituting: 
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we get: 

 

f = 0.988. 

 

From which: 
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The material buckling becomes: 
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For an unreflected bare cylindrical core, neglecting the extrapolation lengths, the 

geometrical buckling is: 
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Since the height of the reactor H = 2R, we get: 
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Equating the geometrical buckling to the material buckling the critical radius is: 
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For an unreflected bare sphere: 
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For a cube: 

 

,)
a

π
(3B 22

g 
 

 



 

 

and:  
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The critical volumes are: 
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We can notice that even though: 

 

Rc(cylinder) < Rc(sphere) < ac(cube),  

 

we have: 

Vc(sphere.) < Vc(cylinder) < Vc(cube). 

 

The mass of uranium needed for criticality in each case can be calculated as follows: 
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From which: 
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where:  gU is the weight of 235U in volume V [gms], 

VU is the volume occupied by 235U, 
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Substituting for the constants: 
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From which: 
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We can notice that: 
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This implies that a sphere is the optimal geometry from the point view of minimum fissile 

mass requirements for attaining criticality. 

 

15. CRITICALITY OF REACTOR CORE WITH AN INFINITE 

REFLECTOR 
 

Let us consider a spherical reactor of radius R and surrounded by an infinite reflector.  We 

shall use the modified one-group theory to find the corresponding criticality conditions and the 

flux distribution in the core and in the reflector.  A reflector is considered “infinite” if its thickness 

is equal to a large number of neutron mean free paths in it. 

The modified one-group thermal diffusion equations in the core and reflector are: 
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The solution in the core is: 
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The solution in the reflector is: 
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For an infinite reflector and a finite flux, F = 0. 

 

Applying the continuity of the flux and the current using Fick’s law at the interface between 

the core and the reflector r = R, we get: 
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Dividing both equations we get: 
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 This is a transcendental equation that can be solved graphically or by an iterative numerical 

method to obtain the critical radius, volume and mass, as well as the flux distribution in the core 

and reflector. 

 

16. CRITICALITY OF REACTOR CORE WITH A FINITE SIZE 

REFLECTOR 
 

A reflector of a scattering material surrounding a fissile core will reflect the neutrons that 

are leaking from the surface.  This leads to a smaller critical mass for the fissile core.  For a finite 



 

 

reflector of thickness T, the magnitude of 0C  , and it is more convenient to write the solution in 

the reflector as: 
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Applying the condition for the vanishing of the flux at r = R+T+d, we get: 
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thus: 
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Applying the conditions of continuity of the flux and current at r = R, we get: 
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Dividing both equations: 
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Thus we get as a criticality condition for a reflector of thickness T, a transcendental 

equation to be solved graphically or numerically for the critical dimensions and flux distributions: 
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17. STANDING-WAVE FAIL-SAFE REACTOR CORE 
 

 Systems engineers have a maxim that: “If a system is not designed to be fail-safe, tested 

under all combinations of extreme conditions, and operated perfectly, it will fail.” Hence it is 

mandatory that nuclear reactors designs must follow this maxim both at the design and the 

operational stages.  Murphy’s Law: “If anything can go wrong, it will,” or: “Anything that can go 

wrong, will go wrong,” forces us to infer that our engineering systems will eventually fail if they 

were not developed so as to not fail in the first place. We thus attempt the consideration of a 

definitely fail-safe reactor design. 

 Consider a spherical, or a cylindrical reactor core with core radius R surrounded with an 

infinite reflector.  If the core infinite medium multiplication factor is chosen to be exactly unity: 
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Figure 2.  Geometry of a spherical or cylindrical core with an infinite reflector and a neutron 

source reflector interface. 

 

the system would be essentially subcritical even with the presence of the reflector because of the 

leakage from the core to the reflector leading to a value of the effective multiplication factor of 

less than unity: 

 

    1effk   

 

This would be a desirable inherently fail-safe situation encountered, for instance, during 

the rocket launch of a reactor into space or during its transport.  Once the launch is safely completed 

the system can be made critical or armed if a neutron source of fissile material such as U235 is 

introduced to displace a void or an absorbing layer (for added safety) between the core and the 

reflector.   

This can also be the basis of a fail-safe fission reactor configuration with a fission region 

neutron source or a neutron source from a DD or DT fusion reactor or an accelerator-driven 
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spallation system. The system falls automatically into a subcritical configuration once the neutron 

source is absent. 

Assuming a thin thickness T of fissile material with a macroscopic absorption cross section 

a, and macroscopic fission cross section f, the neutron source introduces a net current at the 

interface equal to: 
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where:  c R is the value of the flux at the core and reflector interface where the neutron source is 

introduced. 

 We can write diffusion equations for the core and reflector regions as: 
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Now we can suggest that for a fast unmoderated reactor material in the core with unity 

resonance escape probability p and fast fission factor ε: 
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Substituting in the core and reflector diffusion theory equations: 

 

   

2 2

2

2 2

2

( 1)
0,

1
0,

c
c c c

c ac

r
r r r

r ar

k D
L

L

D
L

L

 

 

    


   


 

 

 If the material of the core is chosen with an infinite medium multiplication factor of unity, 

the material buckling in the core is: 
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 The zero material buckling of the core means that a flat flux distribution exists in the core 

implying a uniform power distribution, a desirable feature leading to uniform fuel burnup as well 

as heat generation.   

 

18. SPHERICAL CORE 

 

In spherical geometry: 
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 For a finite flux in the core, C = 0, and: 
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19. SEMI INFINITE SLAB GEOMETRY 

 

 In slab cartesian geometry, for a semi-infinite slab, this reduces to: 
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 For a finite flux in the core, C = 0, and again: 

 

   (x) constant.c F    

 

20. SEMI INFINITE CYLINDER GEOMETRY 

 

 In cylindrical geometry, for a semi-infinite cylinder, this reduces to: 
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 For a finite flux in the core, C = 0, and again: 
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 The flux solution in the infinite reflector is: 
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For a finite flux, G = 0 and: 
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 We can now apply the thin interface boundary conditions since the neutron source shell is 

considered as thin. The continuity of the flux and current at the interface yields: 

 

   
 

( ) ( )

( )

c r

cn rn neutron
source

R R

J R J R J

 

 
 

 

 The flux continuity at the boundary implies: 
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 The current boundary condition becomes: 
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 The constant A cancels out yielding the critical condition for the assembly as: 
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EXERCISES 
 

1. You are given a bare spherical fast reactor of pure fissile material. 

a) By equating the geometrical buckling to the material buckling, derive expressions for: 

1) The critical radius 

2) The critical volume 

3) The critical mass. 

b) Calculate these values for a U235 spherical reactor with: 



 

 

microscopic transport cross section = 8.246 [barns] 

microscopic absorption cross section = 2.844 [barns] 

density = 18.75 [gm/cm3] 

product of average number of neutrons released in fission() and the microscopic fission cross 

section = 5.297 [neutrons.barn]. 

Compare your result to the actual critical mass of the Godiva Experiment composed of 93.9 percent 

enriched uranium235 where Mcritical= 48.8 kgs. 

c) Calculate these values for a Pu239 spherical reactor with: 

microscopic transport cross section = 6.8 barns 

microscopic radiative capture cross section = 0.26 barns 

density = 19.74 [gm/cm3] 

average number of neutrons released per fission  = 2.98 

microscopic fission cross section = 1.85 barns  

Compare your result to the actual critical mass of the Jezebel Experiment composed of pure Pu239 

where M(critical)= 20.53 kgs. 

d) Discuss the criticality situation for a sphere made out of U238 with the following data:  

microscopic transport cross section = 6.9 barns 

microscopic radiative capture cross section = 0.16 barns 

density = 19.05 [gm/cm3] 

average number of neutrons released per fission  = 2.6  

microscopic fission cross section = 0.095 barns. 

Discuss the results of your calculations for the attainable critical masses for these materials. 

 

2. Derive the expression for the flux distribution in a spherical reactor of radius R in terms of its 

power level P. 
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