Big Data: Building a Document Index From Web Crawl Archives

Usman A. Shami, Founder, #Let’sData
usmanshami@letsdata.io

1. Abstract
In this big data case study, we processed the Common Crawl Web Archives files using the #Let's Data
compute to reduce the web archives to JSON documents that could be used to create a database index.
We processed ~ 219K files, ~477 TB S3 data in 48 hours at a nominal cost of S5 per TB-Hour.

2. Problem Definition
Big Data datasets are generally huge datasets spread across a large number of files. Processing these files
at high scale and in a reasonable amount of time requires creating a data pipeline which can be a
significant engineering infrastructure effort, is rife with infrastructure costs and can take many man-
months to build and perfect.

In this Big Data use-case, we want to process the Common Crawl! Web Archives files (219K files, 477TB
uncompressed data) and transform this semi-structured data to structured JSON documents that can be
used to create a database index. Such an effort would require an understanding of the data domain
(Common Crawl Web Archive Formats), infrastructure challenges such as reliable and fault tolerant
compute infrastructure, maintainability, operability and non — trivial compute code. For example, the
compute code needs to deal with transient failures, rate limiting, batching for performance, ordering and
deduplication, checkpointing and failure restarts etc. Logging, Metrics and Diagnostics infrastructure need
to be built in.

Building such a dataset pipeline on #Let's Data eliminates these infrastructure requirements — the #Let’s
Data promise is that the enterprises should "Focus on the data, we'll manage the infrastructure". We used
#Let’s Data to process the Common Crawl Web Archives dataset — the system processed 219K files, ~477
TB of data in ~ 48 hours and extracted ~3 billion JSON documents? — this roughly translates to a TPS of 17K
documents per second!

#Let’s Data simplified the creation and management of this data compute pipelines using AWS services,
reduced the development time, costs, enabled high performance, availability, and elastic scale.

3. Solution & Architecture

There are two different types of development efforts needed for such a Big Data use-case:

1. The Functional Data Model: Understanding the data formats for the big data functional domain and
developing how to parse the data and extract output documents.

2. The Data Pipeline Infrastructure: This is the infrastructure code that is required to orchestrate the
data pipeline, reading from the source, writing to the destination, scheduling computation tasks and
data jobs, tracking errors and building in fault tolerance and the necessary diagnostics.

In traditional data pipeline development, one would spend a disproportionately large development effort

in developing the data pipeline infrastructure. With #Let’s Data, the focus is mostly on developing the

functional data model, with only an integration effort to orchestrate and run the data pipeline.

Let’s look at each of these development efforts in detail.

3.1 Common Crawl Data Model
The Common Crawl Dataset has the following characteristics:
e It has three filetypes the Archive, Metadata and Conversion files
e each data record (crawled link) has data that is spread across these three files:

1 common Crawl is an open repository of web crawl data and a fantastic resource for the www web crawl data. https://commoncrawl.org/

270 put the 3 billion number into perspective, Google processes around 8.5 billion searches per day https://www.oberlo.com/blog/google-search-statistics

mailto:usmanshami@letsdata.io
https://commoncrawl.org/
https://www.oberlo.com/blog/google-search-statistics

o the archive file has the http request and response with some high level metadata

o the metadata file has the metadata about the records in the archive file such as record
types and their record offsets etc.

o the conversion template has the converted Html document

e each of these files follows a record state machine for each data record (crawled link) — for example,

o the archive file state machine is REQUEST -> RESPONSE -> METADATA for each crawled link

o the metadata file state machine is METADATA (Request) -> METADATA(Response) ->
METADATA(Metadata) for each crawled link (remember that this is metadata about the
archive file records)

o the conversion file state machine is simple — a single CONVERSION record for each crawled
link

With this high-level information, we do the following development tasks:

e The POJOS: create Java POJOs that map to each record type — this is the majority of the work,
where you define how to create an object from a byte array and validating the integrity of the
object.

o The Parsers: define a parser state machine for each of the file using the #Let’s Data interfaces —
this is relatively simpler, you encode the record types as a state machine and specify the start and
end delimiters for each records

e The Reader: define a reader that constructs an output document from these file parser state
machines using the #Let’s Data interface — this is the simplest of the three, encode the record
retrieval logic from the parsers and then construct an output record by combining the these.

We’ve shared our implementation of the common crawl model at the Git Hub repository:
https://github.com/lets-data/letsdata-common-crawl

3.2 #let’s Data Data-Pipeline
With the above common crawl data model, we can now simply orchestrate the data pipeline by specifying
the dataset configuration. We'd be creating a pipeline that reads the common crawl dataset files from AWS
S3, writes them to AWS Kinesis and uses AWS Lambda to run the parser and extraction code. We also do
some access setup so that #Let’s Data can automatically manage the read and write resources.

Here are the dataset configuration details:
e Read Connector configuration:
o the S3 Bucket to read from
o the JAR file that has the #Let’s Data interface implementations
o the mapping of #Let’s Data interfaces to file types (archive file type -> archive file parser
class name etc.)
Write Connector Configuration
o the Kinesis stream that we need to write to
o the number of shards for the Kinesis stream
e Error Connector Configuration
o the S3 Bucket to write the error records to
Compute Engine Configuration
o AWS Lambda compute details — these are the function concurrency, timeout, memory and
log level
Manifest file
o the manifest file that defines the list of all the files that should be processed and their
mapping — example:

Archive : filel.archive | Metadata : filel.metadata | Conversion : filel.conversion
Archive : file2.archive | Metadata : file2.metadata | Conversion : file2.conversion

https://github.com/lets-data/letsdata-common-crawl

o Eachline in the manifest file becomes a #Let’s Data task that can be tracked from creation
to completion and has its own progress, errors and diagnostics tracing.

We use the #Let’s Data CLI to create this dataset and monitor its execution via the CLI and Console.

create the dataset
$ > ./letsdata datasets create --configFile dataset.json --prettyPrint

view the dataset, monitor its creation
$ > ./letsdata datasets view --datasetName <datasetName> --prettyPrint

list the datset's tasks

$ > ./letsdata tasks list --datasetName <datasetName> --prettyPrint

Here is the overall architecture of the data pipeline solution and the components (shaded in blue) that
the customer was required to build.

Billing

(Stripe)
Payment
F .
- » | AWS Services
r&wm
Authentication Usage Metrics:
(AWS Cognito) §] & Billing AW B
ervices
AuthZ
«—
AuthN Authz External Services
--- BN e R e e o i
[’ < 8] Let's Data Services
- Metrics [Data Lifecycle |
Logging |—|
Tenant DB|| User DB Scaler / Descaler
| o |
Scale / Lifecycle /
Tenant & User Service Datasets & Tasks Service Diagnostlcsr Interfaces Costs Service
A
Log:n / Signup I?‘atasel / Task Diagnostics Resource
User it M
A\
#Let's Data Services
Let's Data Services
External - Let's Data Compute
Regd Connector Compute Output Document
estination : Management
7 %, o
P,
:Paés> Parser Type 1 [:Pa:se:> Write Connector
: Destination
Files Type 1 Error Document External
s3 :
D EP@
) 2 Error Connector
Files Type 2 : Destination
N~
AWS Lambda Function
fLoce Bt Compite] The #Let’s Data

Legend

Customer Responsibility

D Everything else - Let's Data Managed Infrastructure

Let's Data Architecture

Results

We ran this common crawl use-case on #Let’s Data to test the limits of our infrastructure and were
pleasantly surprised by the staggering scale we were able to achieve at nominal costs. Here are some

results at a glance:

Simplification

The system processed 73K tasks (73K x 3 files) in ~ 48 hours

Tasks executed on AWS Lambda with a concurrency of 500 parallel tasks
219K files processed, read 477 TB of uncompressed data from S3, wrote 13 TB to AWS Kinesis.
Extracted ~ 3 billion records? that were written to AWS Kinesis Stream. ~16 million error records

were written to AWS S3 as error records (0.5 % errors)

The system peaked at reading 455 GB per minute from S3 and writing 12.36 GB per minute in

AWS Kinesis, extracting 2.7 million records per minute (~45K records per second!)

310 put the 3 billion number into perspective, Google processes around 8.5 billion searches per day https://www.oberlo.com/blog/google-search-statistics

https://www.oberlo.com/blog/google-search-statistics

e The costs for the dataset were $36,000 - approximate cost of $75 for each TB (uncompressed)
and a $1.67 per TB-Hour

Here are some cool graphs to go with these results:

Task Success (%) & Number of Tasks (sum)

I ==k Success (%) I Number of Tasks (count)

I FA R CP IR RE P IS REF IS DO FA O DO P OO © G S P O
,L\%,{f”,p FELSFITIPILIILLF LS R SRS AR R R R «"-“,:c@q? a0 o W8

&

e Left (red): the percentage of tasks that completed successfully at that minute
e Right (green): number of tasks that completed at that minute

Task Records Processed (sum)

Il Tosk Records Processed (count) [l Task Records Skipped (count) [l Task Records Errors {count)

3,000,000
2,500,000
il
2,000,000 :
1,500,000 i
2 It I 0:21
|| Task Records Processed (count): 2,497,845
1,000,000 Task Records Errors (count): 11,940 r
' ' s || |
{y n!
500,000 l“ i
0
A . LT N R P N S - A o IR S Ao >N D DA
q:i\-@.‘? S SPrPL PP IR PSP & \g?\,‘-”.a e \56“’\5\? FEF L FFFFE
&

e Left: the sum of the number of records processed (red), skipped (green) and errored (blue) by
each task at that minute

Task Write Connector Put Volume (sum) & Latency (avg)

I V/rite Connector Put Volume (count) [l Write Connector Put Latency (millisec)

L B B TR R S L Al S R N BN
b S) L R O P - P - A < - M -
> FELFLEFTIFFEFTS TSI

e Left (red): the sum of the Write Connector's Put API call by each task at that minute
e Right (green): the average latency of the Write Connector’s Put API call
e Each Put API call is a batch call

Task Write Connector Put Retries (%)

I \\rite Connector Put Retries (36)

LT T R Q0. TR, PR+, .-, DA o
R N R S S N T AP S

R T PR - s B s
20 K= M~ i R
¥ of O ,G7 WY

e the average percentage of the Write Connector Put API calls that were retried by the tasks
e The Kinesis stream was underscaled in this test — ideally this should be zero (no retries). We
could have scaled the Kinesis shards higher and gotten better results!

Task Individual Record Latencies (avg) and N

of Samples

I record Latency Avg (millisec) [l Record Latency Min (millisec) |l Record Latency Max (millisec) [l Number of Samples (count)

60,000 3,000,000
50,000 2,500,000
40,000
2,000,000
30,000
1,500,000
20,000
_|Record Latency Avg (millisec): 11.506 {
10,000 |Record Latency Min (millisec): O i 1,000,000
N Record Latency Max (millisec): 480 '
__|Number of Samples (count): 2,586,645
0 J 500,000
-10,000 0
ool Ao O dOEEREN DS SN DERAPOERSO DD P A
é‘q{.ﬁﬁ q:\:b f{?»" q,’,;ﬁ SIS Y P S P ,53-\)9?3 \.\-’.b _\ﬁ-l’.‘ ,{1?)‘,,,-’.5 \.,{.\ _\.,-".3' ’&_}‘F‘ Kid \,\-Q) _&?‘ \Q;b)‘059 9-’? qs_{.b Q:\S)
:@’
W
&

e Left: the (avg, min and max) latency of extraction of the record by the user handlers (readers
and parser).
e Right: the sample count for the latency metric.

Task 53 Bytes Read (sum) & Write Connector Bytes Written (sum)

I s: Bytes Read (KB) [Vrite Connector Bytes Written (KB)

500,000,000 14,000,00C
450,000,000 23:51 s k
[[]53 Bytes Read (KB): 426,778,935.799 .) 12,000,00C
400,000,000 [“Iwrite Connector Bytes Written (KB): 12,102,800.281 1) .
- .

350,000,000 10,000,00C

300,000,000 8,000,000

250,000,000

200,000,000 6,000,000

150,000,000 4,000,000

100,000,000
[2,000,000

50,000,000

0 0

© B N S & R R Y W SO .
b . f N s N { M . Ly
6‘,1:3?09 B SN A LR LR SR SRR ARSI T SRR GRS AR Sy
3
::L’J

e Left (Red): the bytes read by the readers from S3 (in KBs) each minute
e Right (Green) the bytes written by the task to Write Connector (in KBs) each minute

TCO Analysis
Developing on the #Let’s Data infrastructure has huge cost and time savings — here is a side by side
comparison:

Traditional Pipeline #Let’s Data Pipeline
Development

S3 Read Module — Development | 2 dev weeks 0

S$3 Read Module — Integ. Test 2 dev week 0

S3 Read Module — Perf 2 dev week 0

Kinesis Module — Development 3 dev weeks 0

Kinesis Module — Integ Test 2 dev weeks 0

Kinesis Module — Perf 2 dev week 0

Lambda Module 3 dev weeks 0

Lambda Module — Integ Tests 2 dev weeks 0

Lambda Module — Perf 2 dev weeks 0

Task Management module 4 dev weeks 0

Resource Management 2 dev weeks 0

Error Records Handling 3 dev weeks 0

Logging 1 dev week 0

Metrics 1 dev week 0

Functional Domain Data Model | 3 dev weeks 3 dev weeks

Let’s Data Interfaces 1 dev week

State Machines 1 dev week 0 (included above)

Integration Tests 3 dev weeks 1 dev week

Prod Run — Devops support 3 dev weeks 2 dev week

Read Kinesis docs 1 dev week 1 dev week
Total 42 dev weeks 8 dev weeks

This is a 5X reduction!

Lessons Learned
This case study validated our engineering MVP — we can process large datasets at scale with a large
reduction TCO. The case study also did find issues that we fixed:

o Simplified dataset configuration removing redundant / not needed fields

¢ Schema fixes where data partitioning was not working effectively for large datasets

¢ Initialization workflow fixes — 80K task ingestion caused our initialization workflow to timeout

e Enable Log Levels — verbose logging was enabled during the test run which resulted in a larger
than expected amount of logs (and costs)

o Token Sizes — We generate a of tokens dynamically on each API call - with 80K tasks, the difference
between a 1024 bytes pagination token vs a 512 bytes pagination token quickly adds up - we were
hitting API response size limits and such reductions doubled the number of results we could return
in each page.

e Manually tweaked the AWS Kinesis Stream's shard scaling during the run which accounts for
difference in throughput and latencies during the run — need to write a dynamic optimizer (scaler
/ descaler)

e This was the first real large scale test of the system - while the system performed really well, we
made a large number of fit and finish fixes across the stack

	Big Data: Building a Document Index From Web Crawl Archives
	1. Abstract
	2. Problem Definition
	3. Solution & Architecture
	3.1 Common Crawl Data Model
	3.2 #Let’s Data Data-Pipeline

	Results
	TCO Analysis
	Lessons Learned

