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Abstract

A core aspect of science is using data to assess the degree to which data
provide evidence various claims, hypotheses, or theories. Evidence is by defi-
nition something that should change the credibility of a claim in a reasonable
person’s mind. However, common statistics, such as significance testing and
confidence intervals have no interface with concepts of belief, and thus it is
unclear how they relate to statistical evidence. We explore the concept of
statistical evidence, and how it can be quantified using the Bayes factor. We
also discuss the philosophical issues inherent in the use of the Bayes factor.
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A core element of science is that data are used to argue for or against hy-1

potheses or theories. Researchers assume that data — if properly analysed —2

provide evidence, whether this evidence is used to understand global climate3

change (Lawrimore et al., 2011), examine whether the Higgs Boson exists4
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Low et al. (2012), explore the evolution of bacteria (Barrick et al., 2009),5

or to describe human reasoning (Kahneman and Tversky, 1972). Scientists6

using statistics often write as if evidence is quantifiable: one can have no7

evidence, weaker evidence, stronger evidence — but importatly, statistics in8

common use, such as significance tests and confidence intervals, do not admit9

such interpretations (Berger and Sellke, 1987; Jeffreys, 1961; Wagenmakers10

et al., 2008; Berger and Wolpert, 1988). Instead, they are designed to make11

decisions, such as rejecting a hypothesis, rather than providing for a measure12

of evidence. Consequently, statistical practice is often beset by a difference13

between what statistics provide and what is desired from them.14

In this paper, we explore a statistic that does have the desired interpreta-15

tion as a measure of evidence for theories from data: the Bayes factor (Good,16

1985, 1979; Jeffreys, 1961; Kass and Raftery, 1995). To arrive at the Bayes17

factor, however, we first explore the concept of evidence more generally. We18

show that formalizing evidence in a particular way — in a way that makes it19

useful, in fact — points to Bayesian statistics. We then describe how Bayes20

factors can be used in practice with an example, focusing the the philosoph-21

ical issues that arise when using Bayes factors. Finally, in the discussion we22

consider critiques of Bayes factors as measures of evidence, and difficulties23

inherent in their application.24

1. Evidence25

What is evidence? One natural answer is that the evidence presented by26

data is the impact that the data have on our evaluation of a hypothesis (e.g.,27

Fox, 2011). This is a straightforward general notion of evidence, popular28

among methodologists, epistemologists and philosophers of science alike. We29

will adopt and elaborate this view. Specifically, we review some philosophical30

ideas on the relation between scientific theory and empirical fact; or, in more31

scientific parlance, between hypotheses and data.232

Although our discussion is not specifically limited to statistics, its rele-33

vance for statistics easily becomes apparent. Our central claim is that the34

computation of Bayes factors is an appropriate, appealing method for as-35

2Although there is a huge debate within the philosophy of science about the relation
between data, facts, phenomena, and the like (e.g., Bogen and Woodward, 1988), we will
align ourselves with scientific practice here and simply employ the term “data” without
making further discriminations.
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sessing the impact of data on the evaluation of hypotheses. In short, Bayes36

factors formalize a useful and meaningful notion of evidence. In order to37

show why Bayes factors are useful, we must develop a normative account of38

evidence that ties together notions central to evidence: hypotheses, evalua-39

tion, data. In particular, we develop a notion of evidence that relates to a40

particular goal of science and introduce Bayes factors in abstract terms, as41

a natural expression of this notion of evidence. Section 2.1 then provides a42

detailed introduction into the use of Bayes factors in statistics. In section43

4, finally, we connect our notion of evidence to various possible merits and44

defects of Bayes factors in statistics.45

1.1. Epistemic goals46

Scientific inquiry is concerned with many diverse goals. One possible47

goal of science, for instance, is that we look for reliable means to manipulate48

the world and bring about certain states of affairs. This goal fits with a49

pragmatic, instrumentalist attitude, according to which theory serves as an50

instrument: it is enough to have the means to predict the world on the basis of51

a distinct set of, preferably controllable, variables. The format of a predictive52

system is secondary to this goal. In particular, there is no conclusive reason53

to expect that the predictive system will employ general hypotheses on how54

the world works, or that it will involve beliefs about those hypotheses. For55

example, the predictive system could involve a neural network with nodes56

and links that do not bear any natural interpretation.57

A second goal of science, which serves as the main focus of this article, is58

epistemic: science must offer us an adequate representation of the world, or59

at least one that lends itself for generating explanations as well as predictions.60

This goal puts some constraints on what the format of theory might be, and61

more generally on our account of evidence. For one, to serve representational62

goals scientific theory will have to interface with our beliefs. This is more63

than merely requiring that our theories interface with the principles that64

guide our actions. Of course, some principles guiding action are already cast65

in epistemic terms, e.g., standard decision theory, and this may be reason66

enough to engage with beliefs. Our point is that in an instrumentalist view67

of science the interface with belief is not mandatory, while in an epistemic68

view of science it is.69

The idea that scientific inquiry has implications for belief is common70

among scientists. One important example of recent import is the debate71

over global climate change. The epistemic nature of this debate is hard to72
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miss. Much attention has been given, for instance, to the consensus of climate73

scientists; that is, that nearly all climate scientists believe that global climate74

change is caused by humans. The available data is assumed to drive climate75

scientists beliefs; the fact of consensus then drives public opinion and policy76

on the topic. Those not believing with the consensus are called, pejoratively,77

“deniers” (Dunlap, 2013).78

A major constraint that flows from the epistemic goals of the scientific79

enterprise concerns the format of scientific theory: namely, that it contains80

components that represent nature, or the world, in some manner. We call81

those components hypotheses, here denoted as h.3 There is a remarkable82

variety of structures that may all be classified as hypotheses in virtue of their83

role in representing the world. A hypothesis might be a distinct mechanism,84

the specification of a type of process, a particular class of solutions to some85

system of equations, and so on. For all hypotheses, however, an important86

requirement is that they entail, or at least make predictions regarding, data.87

Scientists would regard hypothesis that has no empirical consequences as88

problematic. According to a deeply seated conviction among many scientists,89

the success of a theory can only be determined on the basis of its ability90

to reproduce or match patterns in the data. Science is empirical, and the91

representational means of science must accordingly be empirical as well.92

We should add that most of the above claims are subject to controversy.93

There is a long-standing debate in the philosophy of science that is concerned94

with the use and status of theory. It is far from clear that all theoretical95

structure is intended to represent, and that theoretical structure always has96

import for the empirical content of scientific theory. However, for our argu-97

ments it suffices that epistemic goals are not entirely absent in our scientific98

endeavors.499

1.2. Hypotheses and beliefs100

The foregoing considerations lead to a particular understanding of scien-101

tific theory: it consists of empirical hypotheses that somehow or other rep-102

resent the world. Within statistical analysis, we indeed find that theory has103

3In the philosophy of science literature, those structures are often referred to as models.
But in a statistical context models have a specific meaning: sets of distributions over
sample space that serve as input to a statistical analysis. To avoid confusion when we
introduce statistical models later, we use the term “hypotheses”.

4See, e.g., Psillos (1999); Bird (1998) for introductions into the so-called realism debate.

4



this character: statistical hypotheses are distributions that represent a pop-104

ulation, and they entail probability assignments to events in a sample space.105

Notice that the theoretical structure from which the distribution arises may106

be far richer than the distribution itself, involving exemplars, stories, bits107

of metaphysics, and so on. In the philosophy of statistics, there is ongoing108

debate about the exact use of this theoretical superstructure, and the extent109

to which it can be detached from the empirical substructure.5110

It may seem a trivial matter that scientific theory takes on the format of111

empirical hypotheses. But a closer look at science can give us a more nuanced112

view of what theory might be. Consider a statistical tool like principal com-113

ponent analysis, in which the variation among data points is used to identify114

salient linear combinations of manifest variables. Importantly, this is a data-115

driven technique that does not rely on any explicitly formulated hypothesis.116

The use of neural networks and other data-mining tools for identifying em-117

pirical patterns are also cases in point. The message here is that scientific118

theory need not always have components that do representational work. But119

the account of evidence that motivates Bayes factors does rely on hypotheses120

as representational items.121

Another major consequence of the treating science as an epistemic en-122

terprise, already touched on in the foregoing, is that scientific theory must123

interface with our epistemic attitudes. These attitudes include expectations,124

convictions, opinions, commitments, assumptions, and more, but for ease of125

reference we will speak of beliefs in what follows. Now that we have identi-126

fied the representational components of scientific theory as hypotheses, the127

requirement is that hypotheses must feature in our beliefs. Our account of128

evidence must accommodate such a role.129

The exact implications of the involvement of belief depend on what we130

take to be the nature of beliefs, and the specifics of the items featuring in131

it. There is not a uniquely best way of representing beliefs or the targets132

of beliefs. For example, when expressing the strength of our adherence to a133

belief, one extreme is to take them as categorical, e.g., dichotomous between134

accepted and rejected. But beliefs may be captured by more fine-grained135

formalizations, e.g., degrees of belief, imprecise probabilities, plausibility or-136

derings and so on (see Halpern, 2003, for an overview). Moreover, the beliefs137

5Romeijn (2013) offers a recent discussion of this point, placing hierarchical Bayesian
models in the context of explanatory reasoning in science.
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need not concern the hypothesis in isolation. We are seeking an account of138

evidence that accommodates the epistemic goals of science. But in such an139

account, the beliefs might just as well pertain to distinct pairs of hypotheses140

and data.141

The upshot of this is that the involvement of hypotheses and beliefs does142

not, by itself, impose the use of Bayesian methods to the exclusion of others.143

Numerous interpretations of, and add-ons to, classical statistics have been144

developed to accommodate the need for an epistemic interpretation of results145

(for an overview see Romeijn, 2014). Nothing is said, as yet, about the kind146

of belief involved in the evaluation of hypotheses, and for good reasons: a147

normative account of evidence that is supposed to motivate a particular148

statistical method must not itself presuppose such a method.149

1.3. Beliefs and probabilities150

The evaluation of empirical hypotheses consists in determining how well151

the hypotheses align with the data. But how can the data serve as evidence,152

i.e., how precisely do the data engage in our beliefs towards hypotheses? To153

answer this question, we first discuss a means of expressing beliefs. This sets154

the stage for a discussion of how beliefs and data interface.155

Beliefs may be expressed in many ways. One important choice concerns156

the representation of the items about which we have beliefs. For example,157

we might frame our beliefs as pertaining to sentences, or some other kind158

of linguistic entity. A very general framework for beliefs presents them as159

as pertaining to elements from an algebra that represents events in, or facts160

about a target system. The beliefs themselves may then be formalized in161

terms of a function over the algebra, e.g., with truth value ascriptions or162

more fine-grained valuations. In what follows we will adopt this framework.163

In philosophy, psychology, artificial intelligence, and in statistics, it is164

commonplace to formalize beliefs in terms of probability assignments over165

the algebra of events. In classical statistics the primary interpretation of166

these probabilities is, of course, different: they reflect frequencies in a popu-167

lation rather than beliefs. But even those frequencies are typically taken as168

a basis for expectations concerning random variables, and thus they relate to169

a particular kind of belief, albeit in a derivative way. For present purposes,170

the salient point is that if we decide to formalize beliefs—predictions, expec-171

tations, convictions, commitments—as part of an analysis of the evaluation172

of hypotheses, then there are convincing reasons for doing this in terms of173
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probability assignments (Cox, 1946; de Finetti, 1995; Joyce, 1998; Ramsey,174

1931).175

The use of probabilities to express beliefs suggests a particular way of176

formalizing the evaluation of hypotheses by data. We express our beliefs177

in a probability assignment, i.e., by a measure function over an algebra.178

Items that obtain a probability, like data and possibly also hypotheses, are179

elements of this algebra. The relation between a hypothesis, denoted h,180

and data, denoted y, can thus be captured by certain valuations of this181

probability function. As will become apparent, a key role is reserved for182

the probability of the data on the assumption of a hypothesis, written ph(y)183

or p(y | h) depending on the exact role given to hypotheses; in particular,184

classical statisticians might object to the appearance of h within the scope185

of the probability function p. If viewed as a function of the hypothesis, this186

expression is referred to as the (marginal) likelihood of the hypothesis h for187

the (known and fixed) data y.188

At this point it should be noted that the use of probability assignments189

puts further constraints on the nature of empirical hypotheses: the hypothe-190

ses must be such that a distinct probability assignment over possible data191

can be specified. In other words, the hypothesis must be statistical. More-192

over, if the hypothesis under consideration is composite – meaning that it193

consists of a number of different distributions over sample space – then we194

must suppose a probability assignment over these distributions themselves195

in order to arrive at a single-valued probability over sample space. For in-196

stance, if we are interested in the probability θ that an unfair coin lands with197

heads showing, then the hypothesis θ > 0, which specifies that the coin is198

biased toward heads, is such a composite hypothesis. Each possible value199

for θ implies a different sampling distribution over the number of heads. In200

addition to these sampling distributions we must have a weighting over all201

possible θ values. Without a probability assignment over these component202

distributions, the marginal likelihood of the hypothesis cannot be computed,203

thereby leaving the empirical content of the hypothesis unspecified.204

So far we have argued that, insofar as scientific theory serves the goal of205

adequate representation, it involves beliefs concerning hypotheses. Following206

a deeply rooted assumption of empiricism, these beliefs are determined by207

the relations that obtain between hypotheses and data. And finally, we have208

argued that probability assignments offer a natural means for expressing209

these beliefs. Against this background, we will now investigate how data210

impacts on hypotheses and thereby turns into evidence. To motivate the use211
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of likelihoods, we need a qualitative account of the relation between scientific212

theory and data.213

1.4. Support: comparative and context-sensitive214

The data—in the context of statistics, elements from a sample space—do215

not present evidence all by themselves. The term evidence is suggestive of a216

context that turns dry database entries into something meaningful: that is,217

a context in which the data play a distinct role. To specify that context, we218

focus on the relative and comparative nature of support relations as a basis219

for our account of evidence. Subsequently we offer an account of evidence220

itself.221

One way of adopting a belief about a hypothesis is by evaluating the222

hypothesis directly: e.g., by offering, in the light of the data, an absolute223

verdict regarding its truth or falsity. By contrast, we might also evaluate224

the relation between hypothesis and data, e.g., by forming a belief regarding225

the support that the data give to the hypothesis. The notion of support226

concerns a relation between hypothesis and data, and this is different from227

a belief that only pertains to the hypothesis in isolation. In statistics, for228

example, the notion of support hinges on the aforementioned probability that229

the hypothesis assigns to the data, written p(y | h).230

Whether we opt for a verdict about a hypothesis itself, or for one that231

pertains to the relation between hypothesis and data, a crucial role is played232

by the alignment of hypotheses to those data. A natural way of spelling233

out this so-called empirical adequacy is by a measure of predictive accuracy.234

That is, hypotheses are scored and compared according to how well they235

predict the data. Notice that predictions based on a hypothesis have an236

epistemic nature—they are expectations—but that their standard formaliza-237

tion in terms of probability is usually motivated by the probabilistic nature of238

something non-epistemic: often hypotheses pertain to frequencies or chances,239

and the latter can be formalized using probability theory as well. The use240

of predictions for evaluating hypotheses thus involves two subtle conceptual241

steps. The probability p(y | h) refers to a chance ascription, which is then242

turned into an epistemic expectation, and subsequently into a score that243

expresses the support for the hypothesis by the data.244

Apart from the relational nature of support, support can be considered245

in absolute or in relative terms. We might conceive of the support as some-246

thing independent of the theoretical context in which our belief regarding247

the support is reached. For example, we may be tempted link the notion of248
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support solely to how well the hypothesis predicts the data. It might appear249

that the predictive performance may be judged independently of how well250

other hypotheses – which may or may not be under consideration – predict251

those data. By contrast, we might also conceive of support as an essentially252

comparative affair. For example, we may consider one hypothesis to be bet-253

ter supported by the data than another because it predicts the data better,254

without saying anything about the absolute support that either receives from255

the data.256

We think the comparative reading fits better with our intuitive under-257

standing of support, namely as something context-sensitive. Indeed, we258

maintain that the data simply cannot offer support in absolute terms: they259

can only do so relative to rival hypotheses. Imagine that the hypothesis h260

predicts the empirical data y with very high probability. We will only say261

that the data y support the hypothesis h if other hypotheses h′ do not pre-262

dict the same data. If the other hypotheses also predict the data, perhaps263

because it is rather easy to predict them, then it seems that those data do264

not offer support either way. Moreover, even if the data are surprising in the265

sense that they have a low probability according to all the other hypotheses266

under consideration, then still, they are only surprising relative to those other267

hypotheses. In short, the notion of support seems to be dependent on what268

candidate hypotheses are being considered. We note, however, that relative269

support is a meaningful measure of the quality of a hypothesis, regardless270

of whether absolute support is considered attainable. We therefore advance271

a notion of support that is inherently relative, keeping open that relative272

support might lead to absolute support.273

Summing up, we argued that support can be measured by predictive274

success, that it has a comparative and context-sensitive character, and that it275

may apply to hypotheses themselves or to the relations that obtains between276

hypotheses and data. In the remainder of this section, we will integrate277

these insights into an account of evidence and argue that Bayes factors offer278

a natural expression of this kind of evidence.279

1.5. Bayes factors280

Let us return to the conception of evidence that was sketched at the start281

of this section. We stipulated that the evidence presented by the data is the282
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impact that these data have on our evaluation of theory.6 First, we associated283

theory with empirical hypotheses that have a role in representation. It was284

then argued that the evaluation of hypotheses involves beliefs, which were285

represented as probabilities and related to a notion of support. Finally,286

this impact will now be spelled out as the difference between our beliefs287

concerning hypotheses, before and after we received the data.288

We can develop the idea of impact in several ways, depending on the289

contents of our beliefs about hypotheses. One option we have previously290

noted is to spell out the beliefs about hypotheses in terms of the relational291

notion of support. The evidence presented by a datum is then defined as the292

impact it has on the support relation. Using predictive accuracy, measured293

by the probability assignment p(y | h), as expression of support, we might294

formalize the evidence presented by a new datum y against the background295

knowledge b, in terms of changes to the likelihoods upon receiving y. This296

would lead to some expression involving p(b) and p(y ∩ b). A comparative297

version of that would also involve these terms for alternative hypotheses h′.298

In what follows we adopt a slightly different notion of evidence, in which299

hypotheses themselves are the subject of evaluation. Hence we look at the300

way in which data impact on the evaluation of hypotheses hi as such. Ig-301

noring background knowledge for notational ease, the evidence presented by302

the datum y can thus be formalized in terms of the change in the probability303

that we assign to the hypotheses, i.e., the change in probability prior and304

posterior to receiving the datum. To signal that these probabilities may be305

considered separate from the probability assignments over sample space, we306

denote priors and posteriors as π(hi) and π(hi | y) respectively. A natural307

expression of the change between them is the ratio of prior and posterior.308

The use of probability assignments over hypotheses means that we opt309

for a Bayesian notion of evidence. As is well known, Bayes’ rule relates priors310

and posteriors as follows:311

πy(hi)

π(hi)
=
p(y | hi)

p(y)
,

6See Kelly (2014) for a quick presentation and some references to a discussion on the
merits of this approach to evidence. Interestingly, others have argued that we can identify
the meaning of a datum with the impact on our beliefs (cf. Veltman, 1996). This is
suggestive of particular parallels between the concepts of evidence and meaning, but we
will not delve into these here.
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where π indicates a prior belief function over hypotheses, πy indicates the312

belief function after observing data y. In the above expression, the notion313

of evidence hinges entirely on the likelihoods p(y] | hi) for the range of314

hypotheses hi that are currently under consideration. In order to assess the315

relative evidence for two hypotheses hi and hj, we may focusing on the ratio316

of priors and posteriors for two distinct hypotheses:317

πy(hi)

πy(hj)
=
p(y | hi)

p(y | hj)
× π(hi)

π(hj)
.

The crucial term – the one that measures the evidence – is the ratio of the318

probabilities of the data y, conditional on the two hypotheses that are being319

compared. This ratio is known as the Bayes factor.320

We can quickly see that the Bayes factor has the properties discussed321

in the foregoing, and that it is therefore a suitable expression of evidence.322

Obviously, the ratio323

p(y | hi)

p(y | hj)

involves our beliefs concerning empirical hypotheses. More specifically, it324

directly involves an expression for the empirical support for the hypotheses.325

The support is expressed by predictive accuracy, in particular by the proba-326

bility of the observed data under the hypotheses. Moreover, the evaluation327

is comparative, since we only look at the ratios: we express evidence as the328

factor between the ratio of priors and posteriors of two distinct hypotheses.329

The Bayes factor has all the properties we desired for an account of statistical330

evidence.331

We now return briefly to the fact that we opted for a Bayesian account332

of evidence. We did so because we decided to spell out our beliefs regarding333

hypotheses directly, rather than focusing on our beliefs regarding the support334

relation. However, while our account of evidence involves probability assign-335

ments to hypotheses and is thereby typically Bayesian, the crucial expression336

involves probability assignments over data. It merely compares the support337

for the hypotheses that is offered by the datum under consideration. As a338

result, as long as hypotheses are not composite, our account of evidence can339

also be adopted by other statistical methodologies, certainly those that focus340

on our beliefs regarding support itself (e.g., Royall, 1997). Having said that,341

our own preference for a Bayesian notion of evidence should at this point be342

clear.343
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1.6. The subjectivity of evidence344

Our notion of evidence hinges on the theoretical context: if we consider345

different hypotheses, our evidence changes as well. This points to a subjective346

element in evidence that affects statistical analyses in general.347

An illustration from statistics may help to clarify this point, and put348

it in perspective. It is well-known that statistical procedures depend on349

modeling assumptions made at the outset. Hence, from one perspective,350

every statistical procedure is liable to model misspecification (Box, 1979).351

For instance, if we obtain observations that have a particular order structure352

but analyze those observations using a model of Bernoulli hypotheses, the353

order structure will simply go unnoticed. The data still present evidence for354

the hypotheses under consideration, but they do not provide evidence for355

an order structure, because there is no statistical context for identifying this356

order structure.357

It may be argued that the context-sensitivity of evidence is more pro-358

nounced in Bayesian statistics, because a Bayesian inference is closed-minded359

about which hypotheses can be true: after the prior has been chosen, hy-360

potheses with zero probability cannot enter the theory (cf. Dawid, 1982). As361

recently argued in Gelman and Shalizi (2013), classical statistical procedures362

are more open-minded in this respect: the theoretical context is not as fixed.363

For this reason, the context-sensitivity of evidence may seem a more press-364

ing issue for Bayesians. However, as argued in Hacking (1965); Good (1988)365

among others, classical statistical procedures have a context-sensitivity of366

their own. It is well known that some classical procedures violate the likeli-367

hood principle. Roughly speaking, these procedures do not only depend on368

the actual data but also on data that, according to the hypotheses, could369

have been collected, but was not. The nature of this context sensitivity is370

different from the one that applies to Bayesian statistics, but it amounts to371

context sensitivity all the same.372

The contextual and hence subjective character of evidence may raise some373

eyebrows. It might seem that the evidence that is presented by the data374

should not be in the eye of the beholder. We believe, however, that depen-375

dence on context is natural. To our mind, the context-sensitivity of evidence376

is an apt expression of the widely held view that empirical facts do not come377

wrapped in their appropriate interpretation. The same empirical facts will378

not have the same interpretation to all people in all situations, in all times.379

We ourselves play a crucial part in this interpretation, by framing the em-380

pirical facts in a theoretical context. This formative role for theory echoes381
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ideas from the philosophy of science that trace back to Popper (1959) and382

Kuhn (1962).383

2. Bayesian statistics: formalized statistical evidence384

For previous section lays out a general way of approaching the relation-385

ship between evidence and rational belief change. The applications of such386

principles is broadly applicable to economic, legal, medical, and scientific387

reasoning. In some applications the principle concern is drawing inferences388

from quantitative data. Bayesian statistics is the application of the concepts389

of evidence and rational belief change to statistical scenarios.390

Bayesian statistics is built atop two ideas: first, that the plausibility we391

assign to a hypothesis can be represented as a number between 0 and 1; and392

second, that Bayesian conditioning provides the rule by which we use the393

data to update beliefs. Let y be the data, θ be a vector of parameters that394

characterizes the hypothesis, or the statistical model, h of the foregoing, and395

let p(y | θ)) be the sampling distribution of the data given θ: that is, the396

statistical model for the data. Then Bayes conditioning implies that397

πy(θ) = p(θ | y) =
p(y | θ)

p(y)
π(θ).

This is Bayes’ rule. A simple algebraic step yields the above variant, which398

we reproduce here:399

πy(θ)

π(θ)
=
p(y | θ)

p(y)
. (1)

The left-hand side is a ratio indicating the change in belief for a specific θ400

due to seeing the data y: that is, the weight of evidence. The right-hand side401

is the ratio of two predictions: the numerator is the predicted probability of402

the data y for θ, and the denominator is the average predicted probability of403

the data over all θ. Comparison of Eq. (1) with Eq. (1.5) shows that Eq. (1)404

reveals its link with the evidence. The evidence favors an explanation – in405

this case, a model with specific θ – in proportion to how successfully it has406

predicted the observed data.407

For convenience we denote evidence ratio408

B(θ, π,y) =
p(y | θ)

p(y)
.

13



as a function of θ, the prior beliefs π, and the data y that determines how409

beliefs should change across the values of θ, for any observed y. As above,410

we use bold notation to indicate that the data, parameters, or both could411

be vectors. We should note that evidence ratio B is not what is commonly412

referred to as a Bayes factor because it is a function of parameter values,413

θ. The connection between B and Bayes factors is straightforward and will414

become apparent below.415

To make our discussion more concrete, suppose we were interested in416

the probability of buttered toast falling butter-side down. Murphy’s Law –417

which states that “anything that can go wrong will go wrong” – has been418

taken to imply that the buttered toast will tend to land buttered-side down419

(Matthews, 1995), rendering it inedible and soiling the floor7. We begin by420

assuming that toast flips have the same probability of landing butter-side421

down, and that the flips are independent, and thus the number of butter-422

down flips y has a binomial distribution. There is some probability θ that423

represents the probability that the toast lands butter down. Figure 1 shows424

a possible distribution of beliefs, π(θ), about θ; the distribution is unimodal425

and symmetric around 1/2. Beliefs about θ are concentrated in the middle426

of the range, discounting the extreme probabilities. The choice of prior is a427

critical issue in Bayesian statistics; we use this prior for the sake of demon-428

stration and defer discussion of choosing a prior.429

In Bayesian statistics, most attention is centered on distributions of pa-430

rameters, either before observing data (prior) or after observing data (poste-431

rior). We often speak loosely of these distributions as containing the knowl-432

edge we’ve gained from the data. However, it is important to remember that433

the parameter is inseparable from the underlying statistical model that links434

the parameter with the observable data, p(y | θ). Jointly, the parameter and435

the data make predictions about future data. The parameters specify partic-436

ular chances, or else they specify our expectations about future observations,437

and thereby they make precise a statistical hypothesis, i.e., a particular rep-438

resentation. As we argued above, an inference regarding a hypothesis should439

center on the degree to which a proposed constraint is successful in its pre-440

dictions. With this in mind, we examine the ratio B – a ratio of predictions441

7There is ongoing debate over whether the toast could be eaten if left on the floor for
less than five seconds (Dawson et al., 2007). We assume none of the readers of this article
would consider such a thing.
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Figure 1: A: A prior distribution over the possible values θ, the probability that toast
lands butter-side down. B, C: Probability of outcomes under two models.

15



for data – in detail.442

The function B is a ratio of two probability functions. In the numerator is443

the probability of data y given some specific value of θ: that is, the numerator444

is a set of predictions for a specific model of the data. We can understand this445

as proposal: what predictions does this particular constraint make, and how446

successful are these predictions? For demonstration, we focus the specific447

θ = 0.5. The light colored histogram in Figure 1B, labelled p(y | θ = 0.5),448

shows the predictions for the outcomes y given θ = 0.5, as derived from the449

binomial(50, 0.5) probability mass function:450

p(y | θ = 0.5) =

(
50

y

)
0.5y(1− 0.5)50−y.

These predictions are centered around 25 butter-side down flips, as would be451

expected given that θ = 0.5 and N = 50.452

The denominator of the ratio B is another set of predictions for the data:453

not for a specific θ, but averaged over all θ.454

p(y) =

∫ 1

0

p(y | θ)π(θ) dθ

The predictions p(y) are called the marginal predictions, shown as the dark455

histogram in Figure 1B. These marginal predictions are necessarily more456

spread out than those of θ = 0.5, because they do not commit to a specific457

θ. Instead, they use the uncertainty in θ along with the binomial model458

to arrive at these marginal predictions. The spread of the predictions thus459

reflects all of the uncertainty about θ contained in the prior π(θ). The the460

marginal probability of the observed data – that is, when y and p(y) have a461

specific values – is called the marginal likelihood.462

The ratio B is thus the ratio of two competing models’ predictions for463

the data. The numerator contains the predictions of the model where the464

parameter θ is constrained to a specific value, and the denominator contains465

the predictions of the full model, with all uncertainty from π(θ) included.466

For notational convenience, we call the restricted numerator model M0 and467

the full, denominator model M1. In statistics, models play the role of the468

hypotheses hi discussed in the previous section.469

Suppose we assign a research assistant to review hundreds of hours of470

security camera footage at a popular breakfast restaurant, she finds N = 50471

instances where the toast fell onto the floor; in y = 30 of these instances, the472
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toast landed butter down. We wish to assess the evidence in the data; or,473

put another way, we wish to assess how the data should transform π(θ) into474

a new belief based on y, πy(θ). Eq. (1) tells us that the weight of evidence475

favoring the model M0 is precisely the degree to which it predicted y = 30476

better than the full model, M1. Figure 1C (inside the rectangle) shows the477

probability of y = 30 under M0 and M1. Thus,478

B =
p(y = 30 | θ = 0.5)

p(y = 30)
=

0.042

0.037
= 1.145.

The plausibility of θ = 0.5 has grown by about 15%, because the observation479

y = 30 was 15% more probable under M0 than M1.
8

480

We can compute the factor B for every value of θ. The curve in Figure 2A481

the probability that y = 30 data under every point restriction of θ; the482

horizontal line shows the marginal probability p(y = 30). For each θ, the483

height of the curve relative to the constant p(y) gives the factor by which484

beliefs are updated in favor of that value of θ. Where the curve is above485

the horizontal line (the shaded region), the value of the θ is more plausible,486

after observing the data; outside the shaded region, plausibility decreases.487

Figure 2B shows how all of these factors stretch the prior, making some488

regions higher and some regions lower. The effect is to transform the prior489

belief function π(θ) into a new belief function πy(θ) which has been updated490

to reflect the observation y.491

The prior and posterior are both shown in Figure 2C. Instead of being492

centered around θ = 0.5, the new updated beliefs have been shifted consistent493

with the data proportion y/N = 0.6, and have smaller variance, showing the494

gain in knowledge from the sample size N = 50. Although simplistic, the495

example shows that the core feature of Bayesian statistics is that beliefs –496

modeled using probability – are driven by evidence weighed proportional to497

predictive success, as required by Bayes’ theorem.498

2.1. The Bayes factor499

Suppose that while your research assistant was collecting the data, you500

and several colleagues were brainstorming about possible outcomes. You501

8We loosely speak of the plausibility of θ here but strictly speaking, because θ is con-
tinuous and π(θ) is a density function, we are referring to the collective plausibility of
values in an arbitrarily small region around θ.
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Figure 2: A: Likelihood function of θ given the observed data. Horizontal line shows the
average, or marginal, likelihood. B: The transformation of the prior into the posterior
through weighting by the likelihood. C: The prior and posterior. The shaded region in A
and B shows the values of θ for which the evidence is positive.
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assert that if Murphy’s law is true, then θ > .5; that is, anytime the toast falls,502

odds are that it will land butter-side down. A colleague points out, however,503

that the goal of the data collection is to assess Murphy’s law. Murphy’s law504

itself suggests that if Murphy’s law is true, your attempt to test Murphy’s505

law will fail. She claims that for the trials assessed by your research assistant,506

Murphy’s law entails that θ < .5. A second colleague thinks that the toast507

is probability biased, does not specify a direction of bias: that is, θ is could508

be any probability between 0 and 1. A third colleague thinks believes that509

θ = .5: that is, the butter does not bias the toast at all.510

You would like to assess the evidence for each of these hypotheses when511

your research assistant sends you the data. Because evidence is directly512

proportional to degree to which the observed outcomes were predicted, we513

need to posit predictions for each of the hypotheses. The predictions for514

θ = .5 are the exactly those ofM0, shown in Figure 1B, while the predictions515

of the unconstrained model are the same as those of M1. For θ < .5 and516

θ > .5, we must define plausible prior distributions over these ranges. For517

simplicity of demonstration, we assume that these prior distributions arise518

from restriction of the π(θ) in Figure 1A to the corresponding range (they519

each represent half of π(θ)). We now have three models: M0, in which520

θ = .5; M+, the “Murphy’s law” hypothesis in which θ > .5; and M−, the521

hypothesis in which our test of Murphy’s law fails because θ < .5.522

Having defined each of the models in such a way that they have predictions523

for the outcomes, we can now outline how the evidence for each can be524

assessed. For any two models Ma and Mb we can define prior odds as the525

ratio of prior probabilities:526

π(Ma)

π(Mb)

The prior odds are the degree to which one’s beliefs favor the numerator527

model over the denominator model. If our beliefs are equivocal, the odds are528

1; to the degree that the odds diverge from 1, the odds favor one model or the529

other. We can also define posterior odds; these are the degree to which beliefs530

will favor the numerator model over the denominator model after observing531

the data:532

πy(Ma)

πy(Mb)

If we are interested in the evidence, then we want to know how the prior533

odds must be changed by the data to become the posterior odds. We again534
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call this ratio B, and an application of Bayes’ rule yields535

B(Ma,Mb,y) =
πy(Ma)

πy(Mb)

/
π(Ma)

π(Mb)
=
p(y | Ma)

p(y | Mb)
(2)

Here, B – the relative evidence yielded by the data for Ma against Mb – is536

called the Bayes factor. Importantly, Eq. (2) has the same form as Eq. (1),537

which showed how a posterior distribution is formed from the combination538

of a prior distribution and the evidence. The ratio B in Eq. (1) was formed539

from the rival predictions of a specific value of θ against a general model in540

which all possible values of θ were weighted by a prior. Eq. (2) generalizes541

this to any two models which predict data through a marginal likelihood.542

We can now consider the evidence for each of our four models,M0,M1,543

M−, and M+. In fact, we have already computed the evidence for M0544

against M1. The Bayes factor in this case is precisely factor by which the545

density of θ = .5 increased against M1 in the previous section: 1.145. This546

is not an accident, of course; a posterior distribution is simply a prior dis-547

tribution that has been transformed through comparison against the “back-548

ground” model M1. If the Bayesian account of evidence is to be consistent,549

the evidence forM0 must be the same whether we are considering it as part550

of a posterior distribution or not.551

Figure 3A shows the marginal predictions of three models,M0,M−, and552

M+. The predictions forM0 are the same as they were previously. ForM−553

and M+, we average the probability of the data over the554

p(y | M+) =

∫ 1

.5

p(y | θ)π(θ | θ > .5) dθ

and likewise forM−. As shown in Figure 3A, these marginal predictions are555

substantially more spread out than those M0 because they are formed from556

ranges of possible θ values. To assess the evidence provided by y = 30 we557

need only restrict our attention to the probability that each model assigned558

to the outcome. These probabilities are shown in Figure 3B.559

The Bayes factor of M+ to M0 is560

B(M+,M0, y) =
p(y = 30 | M+)

p(y = 30 | M0)
=

0.066

0.042
= 1.585,

The evidence favors M+ by a factor of 1.585 because y = 30 is 1.585 times561

as probable as M+ than under M0. Visually, this can be seen in Figure 1B562

20



0 10 20 30 40 50

0.00
0.02
0.04
0.06
0.08
0.10

Number of butter−down flips (y)

P
ro

ba
bi

lit
y

p(y | θ < 0.5) p(y | θ > 0.5)

p(y | θ = 0.5)
A

26 28 30 32 34
0.00
0.02
0.04
0.06
0.08
0.10

Number of butter−down flips (y)

P
ro

ba
bi

lit
y

B
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by the fact that the height of the bar forM+ is 58% higher than the one for563

M0. This Bayes factor means that to adjust for the evidence in y = 30, we564

would have to multiply our prior odds – whatever they are – by a factor of565

1.585.566

The Bayes factor favoring of M+ to M− is much larger:567

B(M+,M−, y) =
p(y = 30 | M+)

p(y = 30 | M−)
=

0.066

0.007
= 9.82,

indicating that the evidence favoring the “Murphy’s law” hypothesis θ > .5568

over its complement θ < .5 is much stronger than that favoring the “Murphy’s569

law” hypothesis over the “unbiased toast” hypothesis θ = .5.570

Conceptually, the Bayes factor is simple: it is the ratio of the probabilities571

– or densities if the data are continuous – of the observed data under two572

models. It makes use of the same evidence that is used by Bayesian parameter573

estimation; in fact, Bayesian parameter estimation can be seen as a special574

case of Bayesian hypothesis testing, where many point alternatives are each575

compared to an assumed full model. Comparison of Eq. (1) and Eq (2) makes576

this clear.577

Having defined the Bayes factor and its role in Bayesian statistics, we now578

move to an example that is closer to what one might encounter in research.579

We use this example to elucidate some of the finer philosophical points that580

arise from the use of the Bayes factor.581

3. Examples582

In this section, we illustrate how researchers may profitably use Bayes583

factors to assess the evidence for models from data using a realistic example.584

Consider the question of whether working memory abilities the same for585

men and women; that is that working memory is invariant to gender (e.g.,586

Shibley Hyde, 2005). Although this research hypothesis can be stated in a587

straightforward manner, by itself this statement has no implications for the588

data. In order to test the hypothesis, we must instantiate the hypothesis as589

a statistical model. To show the statistical evidence for various theoretical590

positions, in the form of Bayes factors, may be compared, we first specify a591

general model framework. We then then instantiate competing theoretical592

positions as constraints within the framework.593
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To specify the general model framework, let xi and yi , i = 1, . . . , I, be the594

scores for the ith woman and man, respectively. The modeling framework is:595

xi ∼ N(µ+ σδ/2, σ2) and yi ∼ N(µ− σδ/2, σ2), (3)

where µ is a grand mean, δ is the standardized effect size (µx − µy)/σ, and596

σ2 is the error variance.597

The focus in this framework is δ, the effect-size parameter. The theo-598

retical position that working memory ability is invariant to gender can be599

instantiated within the framework by setting δ = 0, shown in Figure 4A600

as the arrow. We denote the model as Me, where the e is for equal abil-601

ities. With this setting, the Model Me makes predictions about the data,602

which are best seen by considering δ̂, the observed effect size, δ̂ = (x̄− ȳ)/s,603

where x̄, ȳ, and s are sample means and a pooled sample standard deviation,604

respectively. The prediction for δ̂ is605

δ̂

√
I

2
∼ T (ν), (4)

where T is a t-distribution and ν = 2(I − 1) are the appropriate degrees-of-606

freedom for this example.9 Predictions for sample effect size for Model Me607

for I = 40 are shown in Figure 4B as the solid line. As can be seen, under608

the gender-invariant model of working memory performance, relatively small609

sample effect sizes are predicted.610

Thus far, we have only specified a single model. In order to assess the611

evidence for Me, we must determine a model against which to compare.612

Because we have specified a general model framework, we can compare to613

alternative models in the same framework that do not encode the equality614

constraint. We consider the case of two teams of researchers, Team A and615

Team B who, after considerable thought, instantiate different alternatives.616

Team A follows (Jeffreys, 1961) and (Rouder et al., 2009) who recommend617

using a Cauchy distribution to represent uncertainty about δ:618

Mc : δ ∼ Cauchy(r),

9Prior distributions must be placed on (µ, σ2). These two parameters are common
across all models, and consequently the priors may be set quite broadly. We use the
Jeffreys priors, π(µ, σ2) ∝ 1/σ2, and the predictions in (4) are derived under this choice.
We note, however, that the distribution of the t statistic depends only on the effect size,
δ, so by focusing on the t statistic we make the prior assumptions for σ2 and µ moot.
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Figure 4: Models and predictions. A. Competing models on true effect size (δ) used by
Team A. B. Corresponding predictions for observed effect size. The filled and open points
show the density values for observed effect sizes of δ̂ = .2 and δ̂ = .5, respectively. The
ratio of these densities at an observed value is the Bayes factors, the evidence for one
model relative another. C.-D. The models and corresponding predictions used by Team
B, respectively.
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where the Cauchy has a scale parameter, r, which describes the spread of619

effect sizes under the alternative.10 The scale parameter r must be set a620

priori and the team follows the recent advice of Morey and Rouder (Morey621

and Rouder, 2014) to set r =
√

2/2. With this setting the model on δ,622

denoted Mc is shown in Figure 4A as the dashed line. As can be seen this623

model is a flexible alternative that has mass spread across small and large624

effects, but very large effect sizes are substantially less likely than smaller625

ones. The symmetry of the distribution encodes an a priori belief that it is626

as likely that women outperform men as that men outperform women. The627

corresponding prediction on sample effect size is shown in Figure 4B as the628

dashed line, and the model predicts a greater range of observed effect sizes629

than Model Me.630

Team B considers a different alternative formed by representing their631

uncertainty about the effect size with a symmetric, but bimodal, distribution.632

This bimodal distribution is formed by joining gamma distributions in a633

back-to-back configuration as shown in Figure 4C as the dashed line. Similar634

bimodal priors were recommended by Johnson and Rossell (2010) and Morey635

and Rouder (2011). We denote this alternative as Mg, and this alternative636

makes a commitment that if there are effects, they are moderate in value.637

11 Compared to Team A’s alternative, Team B’s alternative has less mass638

for very large and very small magnitudes of effect size while retaining the639

symmetry constraint. A defense of such a prior could be that where gender640

effects are observed, say in mental rotation (see Matlin, 2003), they tend to641

be moderate in value. The corresponding prediction on sample effect size is642

shown in Figure 4B as the dashed line.643

10The scaled Cauchy distribution has density

f(δ) =
1

rπ
[
1 +

(
δ
r

)2]
for r > 0.

11The density of the model on δ is

f(δ) =

{
g(δ, 3, 4)/2, δ ≥ 0,
g(−δ, 3, 4)/2, δ < 0,

where g(δ, ν, λ) is the density function of a gamma distribution with shape ν and rate λ
evaluated at the value δ.
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It is critical to realize that neither Team A’s nor Team B’s choice need be644

considered more “correct” in their specification. Each team is interpreting the645

theoretical statement that men and women have different working memory646

capacities on average in good faith and their priors add value. In order to647

compute statistical evidence, choices such as these must be made. Hence,648

variation among priors is the reasonable and expected among analysts. It649

should be viewed as part of the everyday variation across researchers and650

research labs much as variations in experimental methods across laboratories651

are viewed as reasonable and expected. As with variations in experimental652

designs, so long as the choices made are transparent the answers will be653

interpretable.654

Suppose the experiment resulted in an observed effect size of δ̂ = 0.2,655

indicating that women somewhat outperformed men. For Team A, the pre-656

dicted densities of observing δ̂ of 0.2 are shown as filled points in Figure 4B.657

The Bayes factor is the ratio of the predicted densities under Me and Mc.658

Because the density is 3.041 times higher under Me than under Mc, the659

evidence yielded by δ̂ = 0.2 is a Bayes factor of 3.041. Team A can then660

state the evidence for the equality of working-memory performance by this661

same factor. Team B computes their Bayes factor analogously. Because the662

density is 4.018 times higher underMe than underMg, the relative evidence663

yielded by δ̂ = 0.2 is a Bayes factor of 4.018. Team B states evidence for the664

equality of working-memory performance by this factor. Although Team A665

and Team B reach the same conclusions, their evidence differs by a factor of666

32%.667

The open circles in Figure 4B show the same two analyses for a different668

hypothetical observed effect size, in this case δ̂ = 0.5. The Bayes factors669

reached by Team A and Team B are about 2-to-1 and 3-to-1 in favor of a670

performance effect, and once again, these values differ.671

Although it may appear problematic that two teams assessed the evi-672

dence in the same data differently, it is important to note that the two teams673

asked slightly different statistical questions; that is, the teams used different674

instantiations of the theoretically relevant statement into statistical models.675

Team A compared the null hypothesis δ = 0 to their unimodal Cauchy prior,676

and Team B compared the null hypotheses to their bimodal prior. As we677

have argued, however, this dependence on context is a natural property of678

statistical evidence. Whereas the variation in modeling is expected and rea-679

sonable, so is the variation in evidence values. Data cannot impact different680
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researchers in the same way across all contexts. We discuss this further in681

the next section.682

4. Discussion683

In this paper, we defined evidence in a straightforward way: the evidence684

presented by data is given by the change in belief that it affects. We for-685

malized this definition and showed how it can be put to use in statistics. A686

Bayesian notion of evidence arises when it is assumed that ”beliefs” are repre-687

sented by probabilities, and that belief change is manifested by conditioning688

the probability of hypotheses on the data. These choices can be questioned,689

of course. If one wants to quantify statistical evidence in another manner,690

it would be necessary to flesh out other models that tie together hypothesis,691

data, and evaluation (e.g., fiducial statistics; Fisher, 1930).692

Given the importance to scientists of quantifying statistical evidence, why693

have researchers not moved from frequentist techniques to other techniques694

more suited to their goals? There are several reasons for this. First, re-695

searchers believe, falsely, that currently popular methods serve their purposes696

(Gigerenzer et al., 2004; Oakes, 1986; Haller and Krauss, 2002; Hoekstra697

et al., ress). Second, there are several major critiques of Bayes factors that,698

thus far, have kept them from widespread usage. Here we outline some ma-699

jor critiques of Bayes factors that prevent them from being used as measures700

of evidence by working scientists: that Bayes factors are overly-sensitive to701

prior distributions, that prior distributions are too difficult to choose, and702

that Bayes factors depend on the true model being considered.703

4.1. Sensitivity to prior distributions704

A number of authors have critiqued the use of Bayes factors for inference705

on the grounds that they are sensitive to the prior distribution chosen to706

represent the hypothesis (e.g., Aitkin, 1991; Liu and Aitkin, 2008; O’Hagan,707

1995; Grünwald, 2000). In the example in Section 3, this was apparent:708

Team A and Team B chose different prior distributions over the effect size709

δ. Each team had to decide what prior distribution best represented the710

alternative that women and men do have the same working memory ability on711

average. Although the two teams were nominally testing the same hypothesis,712

the Bayes factors computed by the two teams differed. This leads to the713

appearance that the Bayes factors are overly-dependent on the priors, which714

in turn causes the evidence to be arbitrary.715
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To some extent we defer this criticism to Bayesian statistics in general.716

As our development of the Bayes factor in Section 2 should make clear, the717

Bayes factor is neither less nor more dependent on the prior than any other718

Bayesian method. In fact, the transformation from prior to posterior is a719

special case of a Bayes factor analysis, where every point-restriction in a720

full model is compared to the full model itself. Any general critique of Bayes721

factors as a method is a critique of the foundations of Bayesian analysis itself.722

To avoid already well-trod ground, we refer the reader to other proponents723

of Bayesianism (Edwards et al., 1963; Jeffreys, 1961). In our account of724

evidence, we simply assume the Bayesian perspective.725

It is important, however, to emphasize that the Bayes factor is not sen-726

sitive to prior distributions in all cases; the use of Bayes factors does not727

always require the specification of a prior distribution. Inspection of Eq. 2728

reveals that the Bayes factor is solely a function of the probability of the data729

under the two hypotheses in question. Whenever the hypotheses are com-730

posite, these probabilities will be obtained through marginalizing over priors.731

But this is not the only way of obtaining predictions. It may so happen that732

the hypothesis, or model, under consideration does not involve any further733

parameters, and hence does not require any priors over the parameters (e.g.,734

Jefferys and Berger, 1991)12.735

Even if the Bayes factors depend on the choice of a prior, a case can be736

made that this is as it should be. We obtain the marginal likelihoods of a737

model by taking an average of the likelihoods of the component hypotheses,738

weighted by the prior distribution. The prior distribution thus ensures that739

the model has a definite marginal likelihood, and thus establishes a bridge740

between the hypothesis and the data. Importantly, the Bayes factor is not741

dependent on the priors in any other way than through this marginal likeli-742

hood. Moreover, it is sensitive to the priors only insofar as the priors impact743

on the predictions of a model or a hypothesis. Arguably, this sensitivity of744

the Bayes factor to the priors is precisely what one would expect: the priors745

are included in the evaluation insofar as they have empirical content (see also746

Vanpaemel, 2010).747

For users of classical significance testing, the above idea can at first be748

12It may be thought that all modeling is accompanied by some degree of freedom but
this need not be. A good example is given by statistical predictions about measurements
of radioactive decay and subatomic particle spin. Predictions for these quantities can be
derived from quantum mechanics, and they have unique distributions under the theory.
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counter-intuitive. Consider a pair of standard classical hypotheses assuming749

known σ:750

z ∼ Normal(δ
√
N, 1) (5)

H0 : δ = 0 (6)

Ha : δ 6= 0. (7)

The Bayes factor analysis cannot be run on this pair of hypotheses: one can751

never determine the support of this particular instantiation of Ha, because it752

makes no predictions at all. In a classical significance test, by contrast, there753

are two possible outcomes: either we retain H0, or we reject it. One cannot754

make any positive claims about the evidence in favor of H0, and so the test755

is asymmetric, allowing only an argument for Ha. A classical account of the756

evidence, in other words, is incomplete.757

The use of Bayes factors requires that one instantiate hypotheses in such758

a way that they have constrained predictions for the data. One cannot test759

empty hypotheses such as “the population mean is not 100”, because the760

marginal likelihood of such hypotheses is left indeterminate. But in order to761

arrive at a definite likelihood, we need a prior probability. And we believe762

that this is as it should be; any valid inference will hinge on the marginal763

data predictions, and hence on the choice of a prior. Even stronger, we764

believe that this prior dependence signals an important property of inference765

in general: evidence for or against a hypothesis should always be based on766

that hypothesis’ empirical content – in our case: its predictions. However,767

because the choice of prior distributions is sometimes critical, we are required768

to put careful thought into this when we construct hypotheses.769

4.2. Choosing prior distributions770

As we said, the use of Bayes factors forces the analyst to specify what771

the empirical content of a hypothesis is. But specifying the empirical con-772

tent of a hypothesis may require substantial work. If used well, the Bayes773

factor rewards the analyst with an easily-interpretable measure of statisti-774

cal evidence. If used badly, however, the Bayes factor is useless. Careless,775

automatic application of Bayes factors will inevitably lead to meaningless776

evidence measures that compare hypotheses not of interest to anyone. Solv-777

ing the problem of careless, automatic application of Bayes factors is not778

trivial. For some relatively simple classes of models – e.g., linear models – it779
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is possible to define flexible families of alternative models to compare (Liang780

et al., 2008; Rouder et al., 2012; Zellner and Siow, 1980).781

However, for testing complex, non-nested models, the challenge of plac-782

ing priors over unknown parameters is a serious impediment to the use of783

Bayes factors. There are several ways we might meet the challenge. One784

seemingly attractive way to instantiate the assumption that the values of the785

unknown parameters is irrelevant is to assume a so-called ”non-informative”786

(possibly improper) prior over the parameter space. This sort of prior can be787

specially chosen to reflect indifference across possible values of the parame-788

ters (Bernardo, 1979; Berger and Bernardo, 1992; Jeffreys, 1961, 1946, e.g.,).789

However, given the development above, such a prior would be unwise. Bayes790

factors with improper priors have many issues stemming from the fact that791

the priors are not true probability distributions, and the marginal likelihood792

is not uniquely defined (Atkinson, 1978; Bartlett, 1957; Spiegelhalter and793

Smith, 1982).794

Another approach to avoiding the arbitrariness of noninformative priors795

is to always specify “reasonable” priors. Lindley was a strong advocate of796

this approach. In his critique of O’Hagan’s (1995), he wrote: “It is better797

to think about [the parameter] and what it means to the scientist. It is his798

prior that is needed, not the statistician’s. No one who does this has an799

improper distribution.” Although this approach is attractive in principle,800

in practice it can be daunting for a scientist to think of prior distributions.801

Some parameters can be difficult to interpret, and when there are hundreds802

or thousands of parameters in a statistical model, a scientist may not be able803

to realistically come up with priors (c.f. Goldstein, 2006; Berger, 2006, and804

discussion)805

Another possible solution is to build a “default” prior for the parameters806

using the data itself. Because improper priors can yield proper posteriors807

given a minimal sample size, one could use a small part of the sample to808

compute the priors needed for the marginal likelihood to be defined for each809

model, then compute the Bayes factor as the ratio of the marginal likelihoods810

for the remaining data, given the priors built from the training data. Varia-811

tions on this basic approach, called “partial Bayes factors,” have been sug-812

gested by multiple authors, including Aitkin (1991); Atkinson (1978); Berger813

and Pericchi (1996, 1998); Spiegelhalter and Smith (1982). O’Hagan (1995)814

has suggested using a fraction of the likelihood itself as a prior. These ap-815

proaches all attempt to circumvent, in some way, the problem of generating816

a reasonable prior for model comparison.817
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Discussion of the details of each of these statistics is outside the scope818

of this paper. However, we agree with the principle put forward by Berger819

and Pericchi (1996): “Methods that correspond to use of plausible default820

(proper) priors are preferable to those that do not correspond to any possible821

actual Bayesian analysis.” Not all of the above default methods correspond822

to actual Bayesian analyses (see Berger and Pericchi, 1998, for discussion).823

The methods that correspond to a plausible default priors will have an inter-824

pretation in terms of statistical evidence for some pair of hypotheses; meth-825

ods that do not correspond to any possible Bayesian analysis will not. Of826

course, even if a default method corresponds to a possible one must always827

ask whether the comparison offered by a default method is interesting.828

4.3. Selection versus comparison, truth versus representation829

Bayes factors are often described as a model selection method; that is,830

one may compute the Bayes factors across a number of models, and select831

the model that has the highest Bayes factor as the “best” model. We have832

deliberately avoided discussion of model selection. In our minds, the most833

useful feature of the Bayes factor is its interpretation of the Bayes factor834

as a measure of evidence. Our view is that the concept of evidence is of835

paramount value. How one uses the evidence is a separate issue from the836

weighing of the evidence itself (see Fisher, 1955, for a similar point).837

The distinction between model comparison and model selection is crit-838

ically important. Selecting a model on the basis of a Bayes factor implies839

that one believes that the model is “good enough” in some way. However,840

as Gelman and Rubin (1995) point out, this cannot be argued on the basis841

of the Bayes factor alone. A model with the highest Bayes factor in a set of842

models may nonetheless fit badly. A model having the highest Bayes factor843

means nothing more than that the model had the highest amount of evidence844

in favor of it out of the models currently under consideration. However, a845

new model that could be considered may perform substantially better. We846

have stressed here and elsewhere that a model comparison perspective – as847

opposed to a model selection perspective – respects the fact that the evi-848

dence is always relative (Morey et al., 2013). This will not be so surprising849

to scientists, who are used to the tentative nature of scientific conclusions.850

Finally, it has been argued the use of Bayes factors requires an implicit851

belief that one of the models under consideration is true (Gelman and Shalizi,852

2013; Sanborn and Hills, 2014; Yu et al., 2014). Some statistical properties853

of Bayes factors — for instance, their convergence to the true model under854
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regularity conditions — do depend on the “true” model model being in the set855

of considered models Schervish (1995). We believe, however, that in scientific856

practice the notion of true or false models is misguided. Statistical models are857

impoverished representations that attempt to capture an important aspect858

of a phenomenon. Although they may be used to generate propositions that859

can be true or false, by themselves they are not true or false. Or at least,860

put more carefully, their truth conditions are far from clear.861

This may appear to threaten the entire enterprise of quantifying statis-862

tical evidence. After all, if models are not necessarily true or false, what863

does it mean to accumulate evidence for a model? We suggest that just as864

statistical models are proxies for real-world phenomena, statistical evidence865

is a proxy for real-world evidence. The applicability of the computed statis-866

tical evidence to the scientific question at hand will depend on a number of867

factors, including the degree to which the models compared correspond to868

the scientific question at hand (Morey et al., 2013). The rarefied property of869

statistics applies as much to statistical evidence as it does to other aspects870

of statistics. For instance, often statistical inferences are described as be-871

ing about populations. However, the idea of a population is abstract, and a872

single, unique population – in the statistical sense – may not meaningfully873

exist. This, of course, does not not prevent the population from being a874

useful concept; likewise, that a model may not be true does not mean that875

statistical evidence for the model is not interesting. Careful consideration876

is required to know whether a statement of statistical evidence is useful in877

understanding the phenomenon of interest to the researcher.878
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