

ATWILC1000

ATWILC1000 SPI Wi-Fi Link Controller

USER GUIDE

Introduction

Atmel® SmartConnect ATWILC1000 is an IEEE® 802.11b/g/n link controller

SoC for applications in the Internet-Of-Things. It is an ideal add-on to

existing powerful MCU/MPU solutions bringing Wi-Fi® and Ethernet interface

capabilities through a UART-to-Wi-Fi or SPI-to-Wi-Fi interface.

Features

 Wi-Fi IEEE 802.11 b/g/n STA, AP and Wi-Fi Direct® modes

 Wi-Fi Protected Setup (WPS)

 Support of WEP, WPA/WPA2 personal, and WPA/WPA2 Enterprise

security

 Ultra-low cost IEEE 802.11b/g/n RF/PH/MAC SoC

 Low power consumption with different power saving modes

 SPI, I2C, and UART support

 Ethernet data interface

 Low footprint host driver with the following capabilities:

– Can run on 8, 16, and 32 bit MCU

– Little and Big endian support

– Consumes about 8KB of code memory and 1KB of data memory on

host MCU

 Concurrency support in the following modes:

– Station – Station

– Station – AP

– Station – P2P client

– Station – P2P GO

Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
2

2

Table of Contents

1 Overview ... 6

1.1 Host Driver Architecture .. 6

1.1.1 WLAN API... 6

1.1.2 Host Interface ... 6

1.1.3 Board Support Package .. 7

1.1.4 Serial Bus Interface .. 7

1.2 WILC System Architecture .. 8

1.2.2 Bus Interface... 8

1.2.3 CPU .. 8

1.2.4 IEEE 802.11 MAC Hardware .. 8

1.2.5 Program Memory .. 9

1.2.6 Data Memory .. 9

1.2.7 Shared Packet Memory .. 9

1.2.8 IEEE 802.11 MAC Firmware ... 9

1.2.9 Memory Manager .. 9

1.2.10 Power Management .. 9

2 WILC Initialization and Simple Application .. 10

2.1 BSP Initialization ... 10

2.2 WILC Host Driver Initialization ... 10

2.3 WILC Event Handling .. 10

2.3.2 Asynchronous Events ... 11

2.3.3 Interrupt Handling ... 11

2.4 Code Example ... 12

3 WILC Configuration ... 13

3.1 Device Parameters .. 13

3.1.1 Firmware and Driver Version .. 13

3.2 WILC Modes of Operation ... 14

3.2.1 Idle Mode .. 14

3.2.2 Wi-Fi Station Mode ... 15

3.2.3 Wi-Fi Direct (P2P) Mode ... 15

3.2.4 Wi-Fi Hotspot (AP) Mode .. 15

3.3 Network Parameters .. 16

3.3.1 Device Name .. 16

3.3.2 Wi-Fi MAC Address .. 16

3.4 Power Saving Parameters ... 16

3.4.1 Power Saving Modes .. 17

3.4.2 Configuring Listen Interval and DTIM Monitoring .. 18

4 Wi-Fi Station Mode ... 20

4.1 Scan Configuration Parameters .. 20

4.1.1 Scan Region ... 20

4.1.2 Scan Options .. 20

4.2 Wi-Fi Scan ... 20

4.3 On Demand Wi-Fi Connection ... 21

4.4 Wi-Fi Security .. 22

4.5 Example Code ... 22

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

3

3

5 Wi-Fi AP Mode .. 24

5.1 Overview ... 24

5.2 Setting WILC AP Mode.. 24

5.3 Capabilities .. 24

5.4 Sequence Diagram .. 24

5.5 AP Mode Code Example ... 25

6 Wi-Fi Direct P2P Mode ... 26

6.1 Overview ... 26

6.2 WILC P2P Capabilities .. 26

6.3 WILC P2P Limitations.. 26

6.4 WILC P2P States .. 26

6.5 WILC P2P Listen State .. 26

6.6 WILC P2P Connection State ... 26

6.7 WILC P2P Disconnection State ... 27

6.8 P2P Mode Code Example ... 28

7 Wi-Fi Protected Setup .. 30

7.1.1 WPS Configuration Methods... 30

7.1.2 WPS Limitations ... 30

7.1.3 WPS Control Flow .. 31

7.1.4 WPS Code Example ... 32

8 Concurrency ... 33

8.1 Limitations ... 33

8.2 Controlling Second Interface ... 33

8.3 Station-Station Concurrency .. 33

8.3.1 Concurrent WPS ... 34

8.4 Station-AP Concurrency .. 35

8.5 Station-P2P Client Concurrency .. 37

9 Data Send/Receive ... 39

9.1 Send Ethernet Frame .. 39

9.2 Receive Ethernet Frame.. 39

9.3 Concurrency Send ... 40

9.4 Concurrency Receive .. 40

10 Host Interface Protocol ... 41

10.1 Chip Initialization Sequence .. 42

10.2 Transfer Sequence Between HIF Layer and WILC Firmware .. 43

10.2.1 Frame Transmit .. 43

10.2.2 Frame Receive ... 43

10.3 HIF Message Header Structure ... 44

10.4 HIF Layer APIs .. 45

10.5 Scan Code Example .. 46

11 WILC SPI Protocol ... 51

11.1 Introduction .. 51

11.1.1 Command Format ... 52

11.1.2 Response Format ... 56

11.1.3 Data Packet Format .. 57

11.1.4 Error Recovery Mechanism .. 58

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
4

4

11.1.5 Clockless Registers Access .. 60

11.2 Message Flow for Basic Transactions ... 60

11.2.1 Read Single Word ... 60

11.2.2 Read Internal Register (for Clockless Registers) .. 60

11.2.3 Read Block ... 61

11.2.4 Write Single Word ... 62

11.2.5 Write Internal Register (for Clockless Registers) .. 62

11.2.6 Write Block.. 62

11.3 SPI Level Protocol Example .. 64

11.3.1 TX (Send Request) ... 64

11.3.2 RX (Receive Response) ... 74

12 ATWILC1000 Firmware Download .. 87

Appendix A API Reference ... 89

A.1 WLAN Module ... 89

A.1.1 Defines ... 89

A.1.2 Enumeration/Typedef ... 91

A.1.3 Function .. 105

A.2 BSP .. 130

A.2.1 Defines ... 130

A.2.2 Data Types ... 130

A.2.3 Function .. 130

A.2.4 Enumeration/Typedef ... 132

13 Document Revision History .. 134

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

5

5

Icon Key Identifiers

 Useful Tips and Techniques

 Delivers Contextual Information About a Specific Topic

 Note to Quality and Performance

 Objectives to be Completed

 Actions to be Executed Out of the Target

 The Expected Result of an Assignment Step

 Procedure Which Can Result in Minor Equipment Damage

 Procedure With Potential Equipment Damage

 Procedure With Imminent Equipment Destruction

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
6

6

1 Overview

1.1 Host Driver Architecture

Figure 1-1. Host Driver Software Architecture

WILC host driver software is a C library which provides the host MCU application with necessary APIs to

perform necessary WLAN and Ethernet operations. Figure 1-1 shows the architecture of the WILC host

driver software which runs on the host MCU. The components of the host driver are described in the

following sub-sections.

1.1.1 WLAN API

This module provides an interface to the application for all Wi-Fi operations and any non-IP related

operations. This includes the following services:

 Wi-Fi STA management operations

– Wi-Fi Scan

– Wi-Fi Connection management (Connect, Disconnect, Connection status, etc.)

– WPS activation/deactivation

 Wi-Fi AP enable/disable

 Wi-Fi Direct enable/disable

 Wi-Fi power save control API

 Wi-Fi monitoring (Sniffer) mode

This interface is defined in the file: m2m_wifi.h.

1.1.2 Host Interface

The Host Interface (HIF) is responsible for handling the communication between the host driver and the

WILC firmware. This includes interrupt handling, DMA, and HIF command/response management. The

host driver communicates with the firmware in a form of commands and responses formatted by the HIF

layer.

The interface is defined in the file: m2m_hif.h.

The detailed description of the HIF design is provided in Chapter 10.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

7

7

1.1.3 Board Support Package

The Board Support Package (BSP) abstracts the functionality of a specific host MCU platform. This allows

the driver to be portable to a wide range of hardware and hosts. Abstraction includes: pin assignment,

power on/off sequence, reset sequence and peripheral definitions (Push buttons, LEDs, etc.).

The minimum required BSP functionality is defined in the file: nm_bsp.h.

1.1.4 Serial Bus Interface

The Serial Bus Interface module abstracts the hardware associated with implementing the bus between

the Host and the WILC. The serial bus interface abstracts I2C, SPI, or UART bus interface. The basic bus

access operations (Read and Write) are implemented in this module as appropriate for the interface type

and the specific hardware.

The bus interface APIs are defined in the file: nm_bus_wrapper.h.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
8

8

1.2 WILC System Architecture

Figure 1-2 shows the WILC system architecture. In addition to its built-in Wi-Fi IEEE-802.11 physical layer

and RF front end, the WILC ASIC has an embedded APS3S-Cortus 32-bit CPU to run the WILC firmware.

The firmware comprises the Wi-Fi IEEE-802.11 MAC layer and embedded protocol stacks which offload

the host MCU. The components of the system are described in the following sub-sections.

Figure 1-2. WILC System Architecture

1.2.2 Bus Interface

Hardware logic for the supported bus types for WILC communications.

1.2.3 CPU

The SoC contains an APS3S-Cortus 32-bit CPU running at 40MHz clock speed which executes the

embedded WILC firmware.

1.2.4 IEEE 802.11 MAC Hardware

The SoC contains a hardware accelerator to ensure fast and compliant implementation of the IEEE

802.11 MAC layer and associated timing. It offloads IEEE 802.11 MAC functionality from firmware to

improve performance and boost the MAC throughput. The accelerator includes hardware

encryption/decryption of Wi-Fi traffic and traffic filtering mechanisms to avoid unnecessary processing in

software.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

9

9

1.2.5 Program Memory

128KB Instruction RAM is provided for execution of the WILC firmware code.

1.2.6 Data Memory

64KB Data RAM is provided for WILC firmware data storage.

1.2.7 Shared Packet Memory

128KB memory is provided for TX/RX packet management. It is shared between the MAC hardware and

the CPU. This memory is managed by the Memory Manager SW component.

1.2.8 IEEE 802.11 MAC Firmware

The system supports IEEE 802.11 b/g/n Wi-Fi MAC including WEP and WPA/WPA2 security supplicant.

Between the MAC hardware and firmware, a full range of IEEE 802.11 features are implemented and

supported including beacon generation and reception, control packet generation and reception and packet

aggregation and de-aggregation.

1.2.9 Memory Manager

The memory manager is responsible for the allocation and de-allocation of memory chunks in both shared

packet memory and data memory.

1.2.10 Power Management

The Power Management module is responsible for handling different power saving modes supported by

the WILC and coordinating these modes with the Wi-Fi transceiver.

EAP-TTLS/MSCHAPV2.0

This module implements the authentication protocol EAP-TTLS/MsChapv2.0 used for establishing a Wi-Fi

connection with an AP by with WPA-Enterprise security.

WI-FI PROTECTED SETUP

For WPS protocol implementation, see Chapter 7: Wi-Fi Protected Setup for details.

WI-FI DIRECT

For Wi-Fi Direct protocol implementation, see Chapter 6: Wi-Fi Direct P2P Mode for details.

CRYPTO LIBRARY

The Crypto Library contains a set of cryptographic algorithms used by common security protocols. This

library has an implementation of the following algorithms:

 SHA-1 Hash algorithm

 SHA-256 Hash algorithm

 DES Encryption (used only for MsChapv2.0 digest calculation)

 MS-CHAPv2.0 (used as the EAP-TTLS inner authentication algorithm)

 AES-128, AES-256 Encryption (used for securing WPS and TLS traffic)

 BigInt module for large integer arithmetic (for Public Key Cryptographic computations)

 RSA Public Key cryptography algorithms (includes RSA Signature and RSA Encryption algorithms)

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

0

10

2 WILC Initialization and Simple Application

After powering-up the WILC device, a set of synchronous initialization sequences must be executed, for

the correct operation of the Wi-Fi functions. This chapter aims to explain the different steps required

during the initialization phase of the system. After initialization, the host MCU application is required to call

the WILC driver entry point to handle events from WILC firmware.

 BSP Initialization

 WILC Host Driver Initialization

 Call WILC driver entry point

 Failure to complete any of the initializations steps will result in failure in
WILC startup.

2.1 BSP Initialization

The BSP is initialized by calling the nm_bsp_init API. The BSP initialization routine performs the

following steps:

 Resets the WILC (see the note below) using corresponding host MCU control GPIOs

 Initializes the host MCU GPIO which connects to WILC interrupt line. It configures the GPIO as an

interrupt source to the host MCU. During runtime, WILC interrupts the host to notify the application

of events and data pending inside WILC firmware.

 Initializes the host MCU delay function used within nm_bsp_sleep implementation

Note: Refer to the ATWILC1000 datasheet [R03] for more information about WILC hardware reset

sequence.

2.2 WILC Host Driver Initialization

The WILC host driver is initialized by calling the m2m_wifi_init API. The Host driver initialization

routine performs the following steps:

 Initializes the bus wrapper, I2C, SPI, or UART, depending on the host driver software bus interface

configuration compilation flag USE_I2C, USE_SPI, or USE_UART respectively

 Registers an application-defined Wi-Fi event handler

 Initializes the driver and ensures that the current WILC firmware matches the current driver version

 Initializes the host interface and the Wi-Fi layer and registers the BSP Interrupt

 A Wi-Fi event handler is required for the correct operation of any WILC

application.

2.3 WILC Event Handling

The WILC host driver API allows the host MCU application to interact with the WILC firmware. To facilitate

interaction, the WILC driver implements the Host Interface (HIF) Protocol described in Chapter 10. The

HIF protocol defines how to serialize and de-serializes API requests and response callbacks over the

serial bus interface: I2C, UART, or SPI.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

1

11

Figure 2-1. WILC System Architecture

Host Interface Protocol

HOST MCU

WILC HOST Driver

Host MCU Application

WINC

WILC Hardware

WILC Firmware

WILC host driver API provides services to the host MCU applications that are mainly divided in two major

categories: Wi-Fi control services and Ethernet interface services. The Wi-Fi control services allow actions

such as channel scanning, network identification, connection and disconnection. Ethernet interface

services allow application to transfer Ethernet frames once a Wi-Fi connection has been established.

2.3.2 Asynchronous Events

Some WILC host driver APIs are synchronous function calls, where the result is ready by the return of the

function. However, most WILC host driver API functions are asynchronous. This means that when the

application calls an API to request a service, the call is non-blocking and returns immediately, most often

before the requested action is completed. When completed, a notification is provided in the form of a HIF

protocol message from the WILC firmware to the host which, in turn, is delivered to the application via a

callback (see the note below) function. Asynchronous operation is essential when the requested service

such as Wi-Fi connection may take significant time to complete. In general, the WILC firmware uses

asynchronous events to signal the host driver about status change or pending data.

The HIF uses “push” architecture, where data and events are pushed from WILC firmware to the host

MCU in FCFS manner. For instance, suppose that WILC received two Ethernet packets, then HIF shall

deliver the frame data in two HIF protocol messages in the order they were received. HIF does not allow

reading packet 2 data before packet 1 data.

Note: The callback is C function which contains an application-defined logic. The callback is registered

using the WILC host driver registration API to handle the result of the requested service.

2.3.3 Interrupt Handling

The HIF interrupts the host MCU when one or more events are pending in WILC firmware. The host MCU

application is a big state machine which processes received data and events when WILC driver calls the

event callback function(s). In order to receive event callbacks, the host MCU application is required to call

the m2m_wifi_handle_events API to let the host driver retrieve and process the pending events from

the WILC firmware. It's recommended to call this function either:

 Host MCU application polls the API in main loop or a dedicated task

 Or at least once when host MCU receives an interrupt from WILC firmware

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

2

12

 All the application-defined event callback functions registered with

WILC driver run in the context m2m_wifi_handle_events API.

The above HIF architecture allows WILC host driver to be flexible to run in the following configurations:

 Host MCU with no operating system configuration: In this configuration, the MCU main loop is

responsible to handle deferred work from interrupt handler.

 Host MCU with operating system configuration: In this configuration, a dedicated task or thread is

required to call m2m_wifi_handle_events to handle deferred work from interrupt handler.

 Host driver entry point m2m_wifi_handle_events is non-reentrant. In the

operating system configuration, it is required to protect the host driver

from reentrance by a synchronization object.

 When host MCU is polling m2m_wifi_handle_events, the API checks for
pending unhandled interrupt from WILC. If no interrupt is pending, it
returns immediately. If an interrupt is pending, m2m_wifi_han-
dle_events reads all the pending the HIF message sequentially and dis-
patches the HIF message content to the respective registered callback.
If a callback is not registered to handle the type of message, the HIF
message content is discarded.

2.4 Code Example

The code example below shows the initialization flow as described in previous sections.

static void wifi_cb(uint8_t u8MsgType, void *pvMsg)

{

}

int main (void)

{

 tstrWifiInitParam param;

 nm_bsp_init();

 m2m_memset((uint8*)¶m, 0, sizeof(param));

 param.pfAppWifiCb = wifi_cb;

 /*intilize the WILC Driver*/

 ret = m2m_wifi_init(¶m);

 if (M2M_SUCCESS != ret){

 M2M_ERR("Driver Init Failed <%d>\n",ret);

 while(1);

 }

 while(1){

 /* Handle the app state machine plus the WILC event handler */

 while(m2m_wifi_handle_events(NULL) != M2M_SUCCESS) {

 }

 }

}

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

3

13

3 WILC Configuration

WILC firmware has a set of configurable parameters that control its behavior. There is a set of APIs

provided to host MCU application to configure these parameters. The configuration APIs are categorized

according to their functionality into: device, network, and power saving parameters.

Any parameters left unset by the host MCU application shall use their default values assigned during the

initialization of the WILC firmware. A host MCU application needs to configure its parameters when

coming out of cold boot or when a specific configuration change is required.

3.1 Device Parameters

3.1.1 Firmware and Driver Version

During startup, the host driver requests the firmware version through nm_get_firmware_info API

which returns the structure tstrM2mRev containing the minimum supported driver version and the current

WILC firmware version.

 If the current driver version is less than the minimum driver version re-
quired by WILC firmware, the driver initialization will fail.

The version parameters provided are:

 M2M_FIRMWARE_VERSION_MAJOR_NO: Firmware Major release version number

 M2M_FIRMWARE_VERSION_MINOR_NO: Firmware Minor release version number

 M2M_FIRMWARE_VERSION_PATCH_NO: Firmware patch release version number

 M2M_DRIVER_VERSION_MAJOR_NO: Driver Major release version number

 M2M_DRIVER_VERSION_MINOR_NO: Driver Minor release version number

 M2M_DRIVER_VERSION_PATCH_NO: Driver patch release version number

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

4

14

3.2 WILC Modes of Operation

The WILC firmware supports the following modes of operation:

 Idle Mode

 Wi-Fi STA Mode

 Wi-Fi Direct (P2P)

 Wi-Fi Hotspot (AP)

 Sniffer mode (Monitoring mode)

Figure 3-1. WILC Modes of Operation

IDLESTA

m2m_wifi_connect

P2P

AP

Sniffer

m2m_wifi_enable_ap

m2m_wifi_p2p

m2m_wifi_enable_monitoring_mode

M2M_WIFI_RESP_CON_STATE_CHANGED
m2m_wifi_disconnect

m2m_wifi_p2p_disconnect

m2m_wifi_disable_ap

m2m_wifi_disable_monitoring_mode

3.2.1 Idle Mode

After the host MCU application calls the WILC driver initialization m2m_wifi_init API, WILC remains in

idle mode waiting for any command to change the mode or to update the configuration parameters. In this

mode WILC will enter power save in which it disables the IEEE 802.11 radio and all unneeded peripherals

and suspends the WILC CPU. If WILC receives any configuration commands from the host MCU, WILC

will update the configuration, send back the response to the host MCU and then go back the power save

mode.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

5

15

3.2.2 Wi-Fi Station Mode

WILC enters station (STA) mode when the host MCU requests connection to an AP using the

m2m_wifi_connect API. WILC exits STA mode when it receives a disconnect request from the Wi-Fi

AP conveyed to the host MCU application via the event callback

M2M_WIFI_RESP_CON_STATE_CHANGED or when the host MCU application decides to terminate the

connection via m2m_wifi_disconnect API. WILC firmware ignores mode change requests while in this

mode until WILC exits the mode.

 The supported API functions in this mode use the HIF command types:

tenuM2mConfigCmd and tenuM2mStaCmd. See the full list of commands

in the header file m2m_types.h.

For more information about this mode, refer to Chapter 4: Wi-Fi Station Mode.

3.2.3 Wi-Fi Direct (P2P) Mode

In Wi-Fi direct mode, WILC can discover, negotiate and connect wirelessly to Wi-Fi Direct capable peer

devices. To enter P2P mode, host MCU application calls m2m_wifi_p2p API. To exit P2P mode, the

application calls m2m_wifi_p2p_disconnect API. WILC firmware ignores mode change requests

while in this mode until WILC exits the mode.

 The supported API functions in this mode use the HIF command types:
tenuM2mP2pCmd and tenuM2mConfigCmd. See the full list in the header

file m2m_types.h.

For more information about this mode, refer to Chapter 6: Wi-Fi Direct P2P Mode.

3.2.4 Wi-Fi Hotspot (AP) Mode

In AP mode, WILC allows Wi-Fi stations to connect to WILC. To enter AP mode, host MCU application

calls m2m_wifi_enable_ap API. To exit AP mode, the application calls m2m_wifi_disable_ap API.

WILC firmware ignores mode change requests while in this mode until WILC exits the mode.

 The supported API functions in this mode use the HIF command types:

tenuM2mApCmd and tenuM2mConfigCmd. See the full list of commands

in the header file m2m_types.h.

For more information about this mode, refer to Chapter 5: Wi-Fi AP Mode:

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

6

16

3.3 Network Parameters

3.3.1 Device Name

The device name is used for the Wi-Fi Direct (P2P) mode only. Host MCU application can set the WILC

P2P device name using the m2m_wifi_set_device_name API.

 If no device name is provided, the default device name is the WILC MAC

address in colon hexadecimal notation e.g. aa:bb:cc:dd:ee:ff.

3.3.2 Wi-Fi MAC Address

The WILC firmware provides two methods to assign the WILC MAC address:

 Assignment from host MCU: when host MCU application calls the

m2m_wifi_set_mac_address API after initialization using m2m_wifi_init API

 Assignment from WILC OTP (One Time Programmable) memory: WILC supports an internal

MAC address assignment method through a built-in OTP memory. If MAC address is programmed

in the WILC OTP memory, the WILC working MAC address defaults to the OTP MAC address

unless the host MCU application sets a different MAC address programmatically after initialization

using the API m2m_wifi_set_mac_address.

 OTP MAC address is programmed in WILC OTP memory at manufactur-

ing time.

For more details, refer to description of the following APIs in Section/Chapter 0.

API Reference:

 m2m_wifi_get_otp_mac_address

 m2m_wifi_set_mac_address

 m2m_wifi_get_mac_address

 Use m2m_wifi_get_otp_mac_address API to check if there is a valid

programmed MAC address in WILC OTP memory. The host MCU appli-
cation can also use the same API to read the OTP MAC address octets.

m2m_wifi_get_otp_mac_address API not to be confused with the

m2m_wifi_get_mac_address API which reads the working WILC MAC

address in WILC firmware regardless from whether it is assigned from
the host MCU or from WILC OTP.

3.4 Power Saving Parameters

When a Wi-Fi station is idle, it disables the Wi-Fi radio and enters power saving mode. The AP is required

to buffer data while stations are in power save mode and transmit data later when stations wake up. The

AP transmits a beacon frame periodically to synchronize the network every beacon period. A station

which is in power save wakes up periodically to receive the beacon and monitor the signaling information

included in the beacon. The beacon conveys information to the station about unicast data which belong to

the station and currently buffered inside the AP while the station was sleeping. The beacon also provides

information to the station when the AP is going to send broadcast/multicast data.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

7

17

3.4.1 Power Saving Modes

WILC firmware supports multiple power saving modes which provide flexibility to the host MCU application

to tweak the system power consumption. The host MCU can configure the WILC power saving policy

using the m2m_wifi_set_sleep_mode and m2m_wifi_set_lsn_int APIs. WILC supports the

following power saving modes:

 M2M_PS_MANUAL

 M2M_PS_AUTOMATIC

 M2M_PS_H_AUTOMATIC

 M2M_PS_DEEP_AUTOMATIC

 M2M_PS_DEEP_AUTOMATIC mode recommended for most applications.

3.4.1.1 M2M_PS_MANUAL

This is a fully host-driven power saving mode.

 WILC sleeps when the host instructs it to do so using the m2m_wifi_request_sleep API. During

WILC sleep, the host MCU can decide to sleep also for extended durations.

 WILC wakes up when the host MCU application requests services from WILC by calling any host

driver API function, e.g., Wi-Fi or data operation

 In M2M_PS_MANUAL mode, when WILC sleeps due to m2m_wifi_re-

quest_sleep API. WILC does not wakeup to receive and monitor AP

beacon. Beacon monitoring is resumed when host MCU application
wakes up the WILC.

For an active Wi-Fi connection, the AP may decide to drop the connection if WILC is absent because it

sleeps for long time duration. If connection is dropped, WILC detects the disconnection on the next wake

up cycle and notifies the host to reconnect to the AP again. In order to maintain an active Wi-Fi

connection for extended durations, the host MCU application should wake up the WILC periodically so

that WILC can send a keep-alive Wi-Fi frame to the AP. The host should choose the sleep period carefully

to satisfy the tradeoff between keeping the Wi-Fi connection uninterrupted and minimizing the system

power consumption.

This mode is useful for applications which send notifications very rarely due to a certain trigger. It fits also

applications which send notifications periodically with a very long spacing between notifications. Careful

power planning is required when using this mode. If the host MCU decides to sleep for very long period, it

may use M2M_PS_MANUAL or may power off WILC (see the note below) completely. The advantage of

this mode compared to powering off WILC is that M2M_PS_MANUAL saves the time required for WILC

firmware to boot since the firmware is always loaded in WILC memory. The real pros and cons depend on

the nature of the application. In some applications, the sleep duration could be long enough to be a

power-efficient decision to power off WILC and power it on again and reconnect to the AP when host

MCU wakes up. In other situations, a latency-sensitive application may choose to use M2M_PS_MANUAL

to avoid WILC firmware boot latency on the expense of slightly increased power consumption.

During WILC sleep, WILC in M2M_PS_MANUAL mode saves more power than M2M_PS_DEEP_AUTOMATIC

mode since in the former mode WILC skips beacon monitoring while the latter it wakes up to receive

beacons. The comparison should also include the effect of host MCU sleep duration: if host MCU sleep

period is too large, the Wi-Fi connection may drop frequently and the power advantage of

M2M_PS_MANUAL is lost due to the power consumed in Wi-Fi reconnection. In contrast,

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

8

18

M2M_PS_DEEP_AUTOMATIC can keep the Wi-Fi connection for long durations at the expense of waking

up WILC to monitor the AP beacon.

Note: Refer to WILC datasheet in [R03] for hardware power off sequence.

3.4.1.2 M2M_PS_AUTOMATIC

This mode is deprecated and kept for backward compatibility and development reasons. It should not be

used in new implementations.

3.4.1.3 M2M_PS_H_AUTOMATIC

This mode implements the Wi-Fi standard power saving method in which WILC will sleep and wakeup

periodically to monitor AP beacons. In contrast to M2M_PS_MANUAL, this mode does not involve the host

MCU application.

In this mode, when WILC enters sleep state, it only turns off the IEEE 802.11 radio, MAC and PHY. All

system clocks and the APS3S-Cortus CPU are on.

This mode is useful for a low-latency packet transmission because WILC clocks are on and ready to

transmit packets immediately unlike the M2M_PS_DEEP_AUTOMATIC which may require time to wake up

the WILC to transmit a packet if WILC was sleep mode.

M2M_PS_H_AUTOMATIC mode is very similar to M2M_PS_DEEP_AUTOMATIC except that the former power

consumption is higher than the latter the since WILC system clock is on.

3.4.1.4 M2M_PS_DEEP_AUTOMATIC

Like M2M_PS_HS_AUTOMATIC, this mode implements the Wi-Fi standard power saving method. However,

when WILC enters sleep state, system clock is turned off.

Before sleep, the WILC programs a hardware timer (running on an internal low-power oscillator) with a

sleep period determined by the WILC firmware power management module.

While sleeping, the WILC will wake up if one of the following events happens:

 Expiry of the hardware sleep timer. WILC wakes up to receive the upcoming beacon from AP.

 WILC wakes up (see the note below) when the host MCU application requests services from WILC

by calling any host driver API function, e.g. Wi-Fi or data operation.

Note: The wakeup sequence is handled internally in the WILC host driver in the hif_chip_wake API.

Refer to the reference Chapter 15 for more information.

3.4.2 Configuring Listen Interval and DTIM Monitoring

WILC allows the host MCU application to tweak system power consumption by configuring beacon

monitoring parameters. The AP sends beacons periodically every beacon period (e.g. 100ms). The

beacon contains a TIM element which informs the station about presence of unicast data for the station

buffer in the AP. The station negotiates with the AP a listen interval which is how many beacons periods

the station can sleep before it wakes up to receive data buffer in AP. The AP beacon also contains the

DTIM which contains information to the station about the presence of broadcast/multicast data. Which the

AP is ready to transmit following this beacon after normal channel access rules (CSMA/CA).

The WILC driver allows the host MCU application to configure beacon monitoring parameters as follows:

 Configure DTIM monitoring: I.e. enable or disable reception of broadcast/multicast data using the

API:

– m2m_wifi_set_sleep_mode(desired_mode, 1) to receive broadcast data

– m2m_wifi_set_sleep_mode(desired_mode, 0) to ignore broadcast data

 Configure the listen interval: Using the m2m_wifi_set_lsn_int API

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

9

19

 Listen interval value provided to the m2m_wifi_set_lsn_int API is

expressed in the unit of beacon period.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
2

0

20

4 Wi-Fi Station Mode

This chapter provides information about WILC Wi-Fi station (STA) mode described in section 3.2.2: Wi-Fi

Station Mode. Wi-Fi station mode involves scan operation; association to an AP using parameters (SSID

and credentials) provided by host MCU or using AP parameters stored in WILC non-volatile storage

(default connection). The chapter also provides information about supported security modes along with

code examples.

4.1 Scan Configuration Parameters

4.1.1 Scan Region

The number of RF channels supported varies by geographical region. For example, 14 channels are

supported in Asia while 11 channels are supported in North America. By default the WILC initial region

configuration is equal to 14 channels (Asia), but this can be changed by setting the scan region using: the

m2m_wifi_set_scan_region API.

4.1.2 Scan Options

During Wi-Fi scan operation, WILC sends probe request Wi-Fi frames and waits for some time on the

current Wi-Fi channel to receive probe response frames from nearby APs before it switches to the next

channel. Increasing the scan wait time has a positive effect on the number of access pointed detected

during scan. However, it has a negative effect on the power consumption and overall scan duration. WILC

firmware default scan wait time is optimized to provide the tradeoff between power consumption and scan

accuracy. WILC firmware provides flexible configuration options to the host MCU application to increase

the scan time. For more detail, refer to the m2m_wifi_set_scan_options API.

4.2 Wi-Fi Scan

A Wi-Fi scan operation can be initiated by calling the m2m_wifi_request_scan API. The scan can be

performed on all 2.4GHz Wi-Fi channels or on a specific requested channel.

The scan response time depends on the scan options. For instance, if the host MCU application requests

to scan all channels, the scan time will be equal to NoOfChannels (14) *

M2M_SCAN_MIN_NUM_SLOTS* M2M_SCAN_MIN_SLOT_TIME (refer to the 0 for how to customize the

scan parameters).

The scan operation is illustrated in Figure 4-1.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

2

1

21

Figure 4-1. Wi-Fi Scan Operation

M2M APPLICATION M2M HOST DRIVER

m2m_wifi_request_scan(WiFi_Channel_ID)

wifi_cb(M2M_WIFI_RESP_SCAN_DONE,

tstrM2mScanDone*);

 Read the number of found APs(N).

 Start reading the SCAN result list.

m2m_wifi_req_scan_result(0)

wifi_cb(M2M_WIFI_RESP_SCAN_RESULT,

tstrM2mWifiscanResult*);

m2m_wifi_req_scan_result(N - 1)

Process the Scan

result(*)

4.3 On Demand Wi-Fi Connection

The host MCU application may establish a Wi-Fi connection on demand if all the required connection

parameters (SSID, security credentials, etc.) are known to the application. To start a Wi-Fi connection on

demand, the application shall call the API m2m_wifi_connect.

 Using m2m_wifi_connect implies that the host MCU application has

prior knowledge of the connection parameters. For instance, connec-
tion parameters can be stored on non-volatile storage attached to the
host MCU.

The Wi-Fi on demand connection operation is described in Figure 4-2.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
2

2

22

Figure 4-2. On Demand Wi-Fi Connector

M2M APPLICATION M2M HOST DRIVER

m2m_wifi_connect(Sec_Type, SSID,SSID_Len,

Key,Key_Len ,Channel_ID
(*)
);

wifi_cb(M2M_WIFI_REQ_CON_STATE_CHANGED,

tstrM2mWifiStateChanged*);

wifi_cb(M2M_WIFI_REQ_DHCP_CONF, uint8*);

 Set the IP Address.

 Start M2M socket Application.

4.4 Wi-Fi Security

The following types of security are supported in WILC Wi-Fi STA mode.

 M2M_WIFI_SEC_OPEN

 M2M_WIFI_SEC_WEP

 M2M_WIFI_SEC_WPA_PSK (WPA/WPA2-Personal Security Mode i.e. Passphrase)

 M2M_WIFI_SEC_802_1X (WPA-Enterprise security)

 The currently supported 802.1x authentication algorithm is EAP-TTLS

with MsChapv2.0 authentication.

4.5 Example Code

#define M2M_802_1X_USR_NAME "user_name"

#define M2M_802_1X_PWD "password"

#define AUTH_CREDENTIALS {M2M_802_1X_USR_NAME, M2M_802_1X_PWD }

int main (void)

{

 tstrWifiInitParam param;

 tstr1xAuthCredentials gstrCred1x = AUTH_CREDENTIALS;

 nm_bsp_init();

 m2m_memset((uint8*)¶m, 0, sizeof(param));

 param.pfAppWifiCb = wifi_event_cb;

 /* intilize the WILC Driver

*/

 ret = m2m_wifi_init(¶m);

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

2

3

23

 if (M2M_SUCCESS != ret)

 {

 M2M_ERR("Driver Init Failed <%d>\n",ret);

 while(1);

 }

 /* Connect to a WPA-Enterprise AP

*/

m2m_wifi_connect("DEMO_AP", sizeof("DEMO_AP"), M2M_WIFI_SEC_802_1X,

 (uint8*)&gstrCred1x, M2M_WIFI_CH_ALL);

 while(1)

 {

 /**/

 /* Handle the app state machine plus the WILC event handler */

 /**/

 while(m2m_wifi_handle_events(NULL) != M2M_SUCCESS)

 {

 }

 }

}

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
2

4

24

5 Wi-Fi AP Mode

5.1 Overview

This chapter provides an overview of WILC Access Point (AP) mode and describes how to setup this

mode and configure its parameters.

5.2 Setting WILC AP Mode

WILC AP mode configuration parameters should be set first using tstrM2MAPConfig structure.

There are two functions to enable/disable AP mode.

 sint8 m2m_wifi_enable_ap(CONST tstrM2MAPConfig* pstrM2MAPConfig)

 sint8 m2m_wifi_disable_ap(void);

For more information about structure and APIs, refer to the API reference in 0.

5.3 Capabilities

 The AP supports up to 8 associated stations and up to 7 in case of concurrency (see Section

Station-AP Concurrency).

 Supports all modes of security (Open, WEP, and WPA/WPA2)

 Can be started concurrently with a station interface (see section Station-AP Concurrency).

5.4 Sequence Diagram

Once the AP mode has been established, no data interface exists until after a station associates to the

AP. Therefore the application needs to wait until it receives a notification via an event callback. This

process is shown in Figure 5-1.

Figure 5-1. WILC AP Mode Establishment

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

2

5

25

5.5 AP Mode Code Example

The following example shows how to configure WILC AP Mode with “WILC_SSID” as broadcasted SSID

on channel one with open security and an IP address equals 192.168.1.1.

#include "m2m_wifi.h"

#include "m2m_types.h"

void wifi_event_cb(uint8 u8WiFiEvent, void * pvMsg)

{

 switch(u8WiFiEvent)

 {

 break;

 default:

 break;

 }

}

int main()

{

 tstrWifiInitParam param;

 /* Platform specific initializations. */

 param.pfAppWifiCb = wifi_event_cb;

 if (!m2m_wifi_init(¶m))

 {

 tstrM2MAPConfig apConfig;

 strcpy(apConfig.au8SSID, "WILC_SSID"); // Set SSID
 apConfig.u8SsidHide = SSID_MODE_VISIBLE; // Set SSID to be broadcasted

 apConfig.u8ListenChannel = 1; // Set Channel

 apConfig.u8SecType = M2M_WIFI_SEC_WEP; // Set Security to WEP

 apConfig.u8KeyIndx = 0; // Set WEP Key Index

 apConfig.u8KeySz = WEP_40_KEY_STRING_SIZE; // Set WEP Key Size

 strcpy(apConfig.au8WepKey, "1234567890"); // Set WEP Key
 // Start AP mode

 m2m_wifi_enable_ap(&apConfig);

 while(1)

 {

 m2m_wifi_handle_events(NULL);

 }

 }

}

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
2

6

26

6 Wi-Fi Direct P2P Mode

6.1 Overview

Wi-Fi Direct or “Peer to Peer” (P2P) allows two wireless devices to discover each other, negotiate on

which device will act as a group owner, form a group including WPS key generation and make a

connection. The WILC supports a subset of this functionality that allows the WILC firmware to connect to

other P2P capable devices that are prepared to become the group owner.

6.2 WILC P2P Capabilities

 P2P client mode is supported

 P2P device discovery

 P2P listen state

6.3 WILC P2P Limitations

 GO mode is not supported (P2P negotiation with GO intent set to 1)

 No support for GO-NOA Notice-Of-Absence

 Power save is disabled during P2P mode

 WILC cannot initiate the P2P connection; the other device must be the initiator

6.4 WILC P2P States

Figure 6-1. P2P Mode State Diagram

Station mode
Listen /

Group formation

state

Connecting

state

Connected

state

m2m_wifi_p2p

m2m_wifi_p2p_disconnect m2m_wifi_disconnect

m2m_wifi_connect m2m_wifi_request_dhcp_client

WILC P2P device can be in any of the above mentioned states based on the function call executed; a

brief of each of these states will be explained in the following sections.

6.5 WILC P2P Listen State

The WILC device becomes discoverable to other P2P devices on a predefined listen channel, ready to

accept any connection initiations. To enter the listen state, the user must call the m2m_wifi_p2p function

to set the WILC firmware in the listening state at a certain listen channel defined through the

MAIN_WLAN_CHANNEL.

6.6 WILC P2P Connection State

The peer P2P device will initiate group owner (GO) negotiation and the WILC device will always decline to

become group owner. Assuming the peer device will take the GO role, the WILC will then perform a

WPS exchange to establish a mutual shared key. The information about the remote device (which is now

acting as an AP), is received by an event via the Wi-Fi callback with the P2P GO information. The

Application can then use this information to connect to the GO in the same manner that the WILC

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

2

7

27

connects to any conventional AP (using the m2m_wifi_connect function). The following sequence

diagram shows the above connection flow for the WILC P2P device:

Figure 6-2. P2P Connection Flow

6.7 WILC P2P Disconnection State

To terminate the P2P connection, the GO can send a disconnection that is received through the Wi-Fi

callback with the event M2M_WIFI_RESP_CON_STATE_CHANGED. However, this will not change the P2P

listen state, unless a P2P disable request is made.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
2

8

28

6.8 P2P Mode Code Example

#include "driver/include/m2m_wifi.h"

#include "driver/source/nmasic.h"

#define MAIN_WLAN_DEVICE_NAME "WILC1000_P2P" /* < P2P Device Name */

#define MAIN_WLAN_CHANNEL (6) /* < Channel number */

static void wifi_cb(uint8_t u8MsgType, void *pvMsg)

{

 switch (u8MsgType)

 {

 case M2M_WIFI_RESP_CON_STATE_CHANGED:

 {

 tstrM2mWifiStateChanged *pstrWifiState = (tstrM2mWifiStateChanged *)pvMsg;

 if (pstrWifiState->u8CurrState == M2M_WIFI_CONNECTED) {

 printf("Wi-Fi P2P connected\r\n");

 } else if (pstrWifiState->u8CurrState == M2M_WIFI_DISCONNECTED) {

 printf("Wi-Fi disconnected\r\n");

 }

 break;

 }

 default:

 {

 break;

 }

 }

}

int main(void)

{

 tstrWifiInitParam param;

 int8_t ret;

 // Initialize the BSP.

 nm_bsp_init();

 // Initialize Wi-Fi parameters structure.

 memset((uint8_t *)¶m, 0, sizeof(tstrWifiInitParam));

 // Initialize Wi-Fi driver with data and status callbacks.

 param.pfAppWifiCb = wifi_cb;

 ret = m2m_wifi_init(¶m);

 if (M2M_SUCCESS != ret) {

 printf("main: m2m_wifi_init call error!(%d)\r\n", ret);

 while (1) {

 }

 }

 // Set device name to be shown in peer device.

 ret = m2m_wifi_set_device_name((uint8_t *)MAIN_WLAN_DEVICE_NAME,

 strlen(MAIN_WLAN_DEVICE_NAME));

 if (M2M_SUCCESS != ret) {

 printf("main: m2m_wifi_set_device_name call error!\r\n");

 while (1) {

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

2

9

29

 }

 }

 // Bring up P2P mode with channel number.

 ret = m2m_wifi_p2p(MAIN_WLAN_CHANNEL);

 if (M2M_SUCCESS != ret) {

 printf("main: m2m_wifi_p2p call error!\r\n");

 while (1) {

 }

 }

 printf("P2P mode started. You can connect to %s.\r\n", (char *)MAIN_WLAN_DEVICE_NAME);

 while (1) {

 /* Handle pending events from network controller. */

 while (m2m_wifi_handle_events(NULL) != M2M_SUCCESS) {

 }

 }

 return 0;

}

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
3

0

30

7 Wi-Fi Protected Setup

Most modern Access Points support Wi-Fi Protected Setup (WPS) method, typically using the push button

method. From the user’s perspective WPS is a simple mechanism to make a device connect securely to

an AP without remembering passwords or passphrases. WPS uses asymmetric cryptography to form a

temporary secure link which is then used to transfer a passphrase (and other information) from the AP to

the new station. After the transfer, secure connections are made as for normal static PSK configuration.

7.1.1 WPS Configuration Methods

There are two authentication methods that can be used with WPS:

1. PBC (Push button) method: a physical button is pressed on the AP which puts the AP into WPS

mode for a limited period of time. WPS is initiated on the ATWILC1000 by calling m2m_wifi_wps

with input parameter WPS_PBC_TRIGGER.

2. PIN method: The AP is always available for WPS initiation but requires proof that the user has

knowledge of an 8-digit PIN, usually printed on the body of the AP. Because WILC is often used in

“headless” devices (no user interface) it is necessary to reverse this process and force the AP to

use a PIN number provided with the WILC device. Some APs allow the PIN to be changed through

configuration. WPS is initiated on the ATWILC1000 by calling m2m_wifi_wps with input parameter

WPS_PIN_TRIGGER. Given the difficulty of this approach it is not recommend for most applications.

The flow of messages and actions for WPS operation is shown in Figure 7-1.

7.1.2 WPS Limitations

 WPS is used to transfer the WPA/WPA2 key only; other security types are not supported

 The WPS standard will reject the session (WPS response fail) if the WPS button pressed on more

than one AP in the same proximity, and the application should try after couple of minutes

 If no WPS button pressed on the AP, the WPS scan will timeout after two minutes since the initial

WPS trigger

 The WPS is responsible to deliver the connection parameters to the application, the connection

procedure and the connection parameters validity is the application responsibility

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

3

1

31

7.1.3 WPS Control Flow

Figure 7-1. WPS Operation for Push Button Trigger

APPLICATION

Start WPS Scan

WPS Session Ends

and AP credentials

are obtained

m2m_wifi_wps

M2M_WIFI_REQ_WPS

M2M_WIFI_REQ_WPS

M2M_WIFI_REQ_WPS

HOST

DRIVER
WINC

WPS Button

Pressed on AP

WPS Registration

Protocol

Wi-Fi Connection

Procedure

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
3

2

32

7.1.4 WPS Code Example

void wifi_event_cb(uint8 u8WiFiEvent, void * pvMsg)

{

 if(u8WiFiEvent == M2M_WIFI_REQ_WPS)

 {

 tstrM2MWPSInfo *pstrWPS = (tstrM2MWPSInfo*)pvMsg;

 if(pstrWPS->u8AuthType != 0)

 {

 printf("WPS SSID : %s\n",pstrWPS->au8SSID);

 printf("WPS PSK : %s\n",pstrWPS->au8PSK);

 printf("WPS SSID Auth Type : %s\n",

 pstrWPS->u8AuthType == M2M_WIFI_SEC_OPEN ? "OPEN" : "WPA/WPA2");

 printf("WPS Channel : %d\n",pstrWPS->u8Ch + 1);

 // Establish Wi-Fi connection

 m2m_wifi_connect((char*)pstrWPS->au8SSID, (uint8)m2m_strlen(pstrWPS->au8SSID),

 pstrWPS->u8AuthType, pstrWPS->au8PSK, pstrWPS->u8Ch);

 }

 else

 {

 printf("(ERR) WPS Is not enabled OR Timedout\n");

 }

 }

}

int main()

{

 tstrWifiInitParam param;

 // Platform specific initializations.

 // Driver initialization.

 param.pfAppWifiCb = wifi_event_cb;

 if(!m2m_wifi_init(¶m))

 {

 // Trigger WPS in Push button mode.

 m2m_wifi_wps(WPS_PBC_TRIGGER, NULL);

 while(1)

 {

 m2m_wifi_handle_events(NULL);

 }

 }

}

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

3

3

33

8 Concurrency

ATWILC1000 firmware supports different modes of concurrent operations as follows:

 Station-Station

 Station-AP

 Station-P2P client

8.1 Limitations

 Single channel concurrency, this means the two logical interfaces should operate on the same

channel

 Single MAC Address, on current HW revision, the two interfaces will share the same MAC address,

this limitation shouldn’t make a conflict on the AIR because the two interfaces would always work on

different basic service set (BSS)

8.2 Controlling Second Interface

Second interface is controlled with the same APIs that is control the first interface however the driver first

needs to set which interface is currently under control using the API “sint8 m2m_wifi_set_control_ifc(uint8

u8IfcId)”, this API takes two values to the u8IfcId either 1 to control the first interface and this is the default

value or 2 to control the second interface.

If the function “m2m_wifi_set_control_ifc” is never called, all the control functions would go for the first

interface by default.

8.3 Station-Station Concurrency

In this mode of concurrency, driver would be able to connect to two different APs operating in any security

modes but should be operating on the same channel.

 It is recommended to wait for the first connection status before trying to
connect on the second interface as the next example does.

Below is a code example to connect to two different Aps:

#define DEMO_WLAN_SSID "Demo_AP"
#define DEMO_WLAN_AUTH M2M_WIFI_SEC_WPA_PSK
#define DEMO_WLAN_PSK "1234567890"

#define DEMO_WLAN_SSID_1 "Demo_AP_1"
#define DEMO_WLAN_AUTH_1 M2M_WIFI_SEC_WPA_PSK
#define DEMO_WLAN_PSK_1 "1234567890"

static void wifi_cb(uint8_t u8MsgType, void *pvMsg)
{
 switch (u8MsgType)
 {
 case M2M_WIFI_RESP_CON_STATE_CHANGED:
 {
 static int interfaceNo = 1;
 tstrM2mWifiStateChanged *pstrWifiState = (tstrM2mWifiStateChanged *)pvMsg;
 if (pstrWifiState->u8CurrState == M2M_WIFI_CONNECTED) {
 printf("Wi-Fi interface [%d] connected\r\n",interfaceNo);
 } else if (pstrWifiState->u8CurrState == M2M_WIFI_DISCONNECTED) {
 printf("Wi-Fi interface [%d] disconnected\r\n",interfaceNo);
 }
 if(interfaceNo == 1)
 {
 printf("Trying to connect on interface 2\r\n");
 m2m_wifi_set_control_ifc(2);

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
3

4

34

 ret = m2m_wifi_connect((char *)DEMO_WLAN_SSID_1,
sizeof(DEMO_WLAN_SSID_1),
 DEMO_WLAN_AUTH_1, (char *)DEMO_WLAN_PSK, M2M_WIFI_CH_ALL)
 if (M2M_SUCCESS != ret) {
 printf("main: m2m_wifi_p2p call error!\r\n");
 while (1) {
 }
 }
 interfaceNo = 2;

 }
 break;
 }
 default:
 {
 break;
 }
 }
}

int main(void)
{
 tstrWifiInitParam param;
 int8_t ret;

 // Initialize the BSP.
 nm_bsp_init();

 // Initialize Wi-Fi parameters structure.
 memset((uint8_t *)¶m, 0, sizeof(tstrWifiInitParam));

 // Initialize Wi-Fi driver with data and status callbacks.
 param.pfAppWifiCb = wifi_cb;
 ret = m2m_wifi_init(¶m);
 if (M2M_SUCCESS != ret) {
 printf("main: m2m_wifi_init call error!(%d)\r\n", ret);
 while (1) {
 }
 }
 printf("Trying to connect on interface 1\r\n");
 // connect to the first AP on interface 1
 ret = m2m_wifi_connect((char *)DEMO_WLAN_SSID, sizeof(DEMO_WLAN_SSID),
 DEMO_WLAN_AUTH, (char *)DEMO_WLAN_PSK, M2M_WIFI_CH_ALL)
 if (M2M_SUCCESS != ret) {
 printf("main: m2m_wifi_p2p call error!\r\n");
 while (1) {
 }
 }
 while (1) {
 /* Handle pending events from network controller. */
 while (m2m_wifi_handle_events(NULL) != M2M_SUCCESS) {
 }
 }
 return 0;
}

8.3.1 Concurrent WPS

WPS session could be started on both interfaces to get the connection parameters as described in 7: Wi-

Fi Protected Setup, but it is not allowed to the sessions to overlap, the first session should be completed

either be success or failure before trying to start a new session on the second interface.

void wifi_event_cb(uint8 u8WiFiEvent, void * pvMsg)
{
 static int interfaceNo = 1;
 if(u8WiFiEvent == M2M_WIFI_REQ_WPS)
 {
 tstrM2MWPSInfo *pstrWPS = (tstrM2MWPSInfo*)pvMsg;
 if(pstrWPS->u8AuthType != 0)

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

3

5

35

 {
 printf("WPS SSID : %s\n",pstrWPS->au8SSID);
 printf("WPS PSK : %s\n",pstrWPS->au8PSK);
 printf("WPS SSID Auth Type : %s\n",
 pstrWPS->u8AuthType == M2M_WIFI_SEC_OPEN ? "OPEN" : "WPA/WPA2");
 printf("WPS Channel : %d\n",pstrWPS->u8Ch + 1);
 //set the control interface
 m2m_wifi_set_control_ifc(interfaceNo);
 // Establish Wi-Fi connection
 m2m_wifi_connect((char*)pstrWPS->au8SSID, (uint8)m2m_strlen(pstrWPS->au8SSID),
 pstrWPS->u8AuthType, pstrWPS->au8PSK, pstrWPS->u8Ch);
 }
 else
 {
 printf("(ERR) WPS Is not enabled OR Timedout\n");
 }
 }
 else if(u8WiFiEvent == M2M_WIFI_RESP_CON_STATE_CHANGED)
 {
 tstrM2mWifiStateChanged *pstrWifiState = (tstrM2mWifiStateChanged *)pvMsg;
 if (pstrWifiState->u8CurrState == M2M_WIFI_CONNECTED) {
 printf("Wi-Fi interface [%d] connected\r\n",interfaceNo);
 } else if (pstrWifiState->u8CurrState == M2M_WIFI_DISCONNECTED) {
 printf("Wi-Fi interface [%d] disconnected\r\n",interfaceNo);
 }
 if(interfaceNo == 1)
 {
 printf("Start WPS on interface 2\r\n");
 m2m_wifi_set_control_ifc(2);
 // Trigger WPS in Push button mode.
 m2m_wifi_wps(WPS_PBC_TRIGGER, NULL);
 interfaceNo = 2;
 }
 break;
 }
}

int main()
{
 tstrWifiInitParam param;

 // Platform specific initializations.

 // Driver initialization.
 param.pfAppWifiCb = wifi_event_cb;
 if(!m2m_wifi_init(¶m))
 {
 // Trigger WPS in Push button mode.
 m2m_wifi_wps(WPS_PBC_TRIGGER, NULL);

 while(1)
 {
 m2m_wifi_handle_events(NULL);
 }
 }
}

8.4 Station-AP Concurrency

In this mode of concurrency, driver would be able to connect to one AP using one interface and start an

AP on the second interface regardless which happens first, keeping in mind the following facts and

limitations:

1. AP should be started on the second interface regardless of the station interface would connect after

or before the AP start.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
3

6

36

2. If the AP started first then the station interface connect to an AP on a different channel, the AP will

send a de-authentication frame to all the associated stations and move immediately to the same

channel of the station interface so that the previously associated station would be able to connect

on the new channel.

3. If the station interface is connected to an AP then the AP mode, the AP would start on the same

channel of the station mode regardless of the channel number passed in the AP start request.

#define DEMO_WLAN_SSID "Demo_AP"
#define DEMO_WLAN_AUTH M2M_WIFI_SEC_WPA_PSK
#define DEMO_WLAN_PSK "1234567890"
static void wifi_cb(uint8_t u8MsgType, void *pvMsg)
{
 static int StartAP = 1;
 switch (u8MsgType)
 {
 case M2M_WIFI_RESP_CON_STATE_CHANGED:
 {
 tstrM2MAPConfig strM2MAPConfig;
 tstrM2mWifiStateChanged *pstrWifiState = (tstrM2mWifiStateChanged *)pvMsg;
 if (pstrWifiState->u8CurrState == M2M_WIFI_CONNECTED) {
 printf("Wi-Fi interface [%d] connected\r\n");
 } else if (pstrWifiState->u8CurrState == M2M_WIFI_DISCONNECTED) {
 printf("Wi-Fi interface [%d] disconnected\r\n");
 }
 if(StartAP == 1)
 {
 StartAP = 0;
 m2m_wifi_set_control_ifc(2);
 strcpy(strM2MAPConfig.au8WepKey,"1234567890");
 strM2MAPConfig.u8KeySz = WEP_40_KEY_STRING_SIZE;
 strM2MAPConfig.u8KeyIndx = 0;
 strcpy(strM2MAPConfig.au8SSID,"WILC1000_AP");
 strM2MAPConfig.u8ListenChannel = M2M_WIFI_CH_11;
 strM2MAPConfig.u8SecType = M2M_WIFI_SEC_WEP;
 strM2MAPConfig.u8SsidHide = 0;

 m2m_wifi_enable_ap(&strM2MAPConfig);
 }
 break;
 }
 default:
 {
 break;
 }
 }
}

int main(void)
{
 tstrWifiInitParam param;
 int8_t ret;

 // Initialize the BSP.
 nm_bsp_init();

 // Initialize Wi-Fi parameters structure.
 memset((uint8_t *)¶m, 0, sizeof(tstrWifiInitParam));

 // Initialize Wi-Fi driver with data and status callbacks.
 param.pfAppWifiCb = wifi_cb;
 ret = m2m_wifi_init(¶m);
 if (M2M_SUCCESS != ret) {
 printf("main: m2m_wifi_init call error!(%d)\r\n", ret);
 while (1) {
 }
 }
 printf("Trying to connect on interface 1\r\n");
 // connect to the first AP on interface 1
 ret = m2m_wifi_connect((char *)DEMO_WLAN_SSID, sizeof(DEMO_WLAN_SSID),

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

3

7

37

 DEMO_WLAN_AUTH, (char *)DEMO_WLAN_PSK, M2M_WIFI_CH_ALL)
 if (M2M_SUCCESS != ret) {
 printf("main: m2m_wifi_p2p call error!\r\n");
 while (1) {
 }
 }
 while (1) {
 /* Handle pending events from network controller. */
 while (m2m_wifi_handle_events(NULL) != M2M_SUCCESS) {
 }
 }
 return 0;
}

8.5 Station-P2P Client Concurrency

In this mode of concurrency, driver would be able to connect to an AP using one interface and start P2P

connection on the second interface regardless which happens first, keeping in mind the following facts

and limitations:

1. P2P connection should be started on the second interface regardless of the station interface

connect after or before the P2P connection.

2. If the station interface is connected to an AP then the P2P connection, WILC firmware will enforce

the GO the channel number of the station interface during the group negotiation frames.

3. If the P2P connection happened first, the station interface should connect on the same channel of

the P2P group otherwise the P2P connection will be dropped.

#define DEMO_WLAN_SSID "Demo_AP"
#define DEMO_WLAN_AUTH M2M_WIFI_SEC_WPA_PSK
#define DEMO_WLAN_PSK "1234567890"

static void wifi_cb(uint8_t u8MsgType, void *pvMsg)
{
 switch (u8MsgType)
 {
 case M2M_WIFI_RESP_CON_STATE_CHANGED:
 {
 static int interfaceNo = 1;
 tstrM2mWifiStateChanged *pstrWifiState = (tstrM2mWifiStateChanged *)pvMsg;
 if (pstrWifiState->u8CurrState == M2M_WIFI_CONNECTED) {
 printf("Wi-Fi interface [%d] connected\r\n",interfaceNo);
 } else if (pstrWifiState->u8CurrState == M2M_WIFI_DISCONNECTED) {
 printf("Wi-Fi interface [%d] disconnected\r\n",interfaceNo);
 }
 if(interfaceNo == 1)
 {
 printf("start P2P on interface 2\r\n");
 m2m_wifi_set_control_ifc(2);
 m2m_wifi_p2p(11);
 interfaceNo = 2;
 }
 break;
 }
 default:
 {
 break;
 }
 }
}

int main(void)
{
 tstrWifiInitParam param;
 int8_t ret;

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
3

8

38

 // Initialize the BSP.
 nm_bsp_init();

 // Initialize Wi-Fi parameters structure.
 memset((uint8_t *)¶m, 0, sizeof(tstrWifiInitParam));

 // Initialize Wi-Fi driver with data and status callbacks.
 param.pfAppWifiCb = wifi_cb;
 ret = m2m_wifi_init(¶m);
 if (M2M_SUCCESS != ret) {
 printf("main: m2m_wifi_init call error!(%d)\r\n", ret);
 while (1) {
 }
 }
 printf("Trying to connect on interface 1\r\n");
 // connect to the first AP on interface 1
 ret = m2m_wifi_connect((char *)DEMO_WLAN_SSID, sizeof(DEMO_WLAN_SSID),
 DEMO_WLAN_AUTH, (char *)DEMO_WLAN_PSK, M2M_WIFI_CH_ALL)
 if (M2M_SUCCESS != ret) {
 printf("main: m2m_wifi_p2p call error!\r\n");
 while (1) {
 }
 }
 while (1) {
 /* Handle pending events from network controller. */
 while (m2m_wifi_handle_events(NULL) != M2M_SUCCESS) {
 }
 }
 return 0;
}

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

3

9

39

9 Data Send/Receive

In ATWILC1000 the data interface between the host driver and the upper layer is Ethernet frames, In

order to use socket interface TCP/IP layer should be ported over the ATWILC1000 Ethernet interface.

9.1 Send Ethernet Frame

The API “m2m_wifi_send_ethernet_pkt” is used to transmit Ethernet frame over the AIR.

 If the Wi-Fi is not connected to an AP, the frame will be dropped by the

firmware and will not be transmitted over the AIR.

The function “m2m_wifi_send_ethernet_pkt” is a synchronous function when it returns with successful

code it means the frame has been transferred from the host driver to the firmware but it doesn’t mean that

the frame has transmitted over the AIR, also there is no way to make sure that the frame is delivered to its

final target successfully or it has been lost over the AIR, this should be handled by upper layer protocol

e.g. TCP layer.

If the function returns error code M2M_ERR_MEM_ALLOC this means the chip is temporally out of

buffers and the frame is not transferred to the chip memory, it is up to the application to wait and retry

sending till the function returns success code.

 Frame allocation and freeing is the a[application responsibility once the

function “m2m_wifi_send_ethernet_pkt” returns the application can

free the frame or reuse the buffer.

9.2 Receive Ethernet Frame

At the initialization an Ethernet callback function must be registered and a receive buffer must be

allocated to be used as a receive buffer to the HIF and the registered callback function must add a

handling to the “M2M_WIFI_RESP_ETHERNET_RX_PACKET” notification in order to receive Ethernet

frames, see the below code example.

void ethernet_demo_cb(uint8 u8MsgType,void * pvMsg,void * pvCtrlBf)
{
 if(u8MsgType == M2M_WIFI_RESP_ETHERNET_RX_PACKET)
 {
 int i=0;
 uint8 au8RemoteIpAddr[4];
 uint8 *au8packet = (uint8*)pvMsg;
 tstrM2mIpCtrlBuf *PstrM2mIpCtrlBuf =(tstrM2mIpCtrlBuf *)pvCtrlBf;
 printk("Ethernet Frame Received buffer[%u] , Size = %d , Ifc ID
= %d\n",pvMsg,PstrM2mIpCtrlBuf->u16DataSize,PstrM2mIpCtrlBuf->u8IfcId);
 }
}

int main()
{
 tstrWifiInitParam param;
 rx_buff = linux_wlan_malloc(15*1024);
 m2m_memset((uint8*)¶m, 0, sizeof(param));
 param.pfAppWifiCb = m2m_wifi_state;
 param.strEthInitParam.pfAppEthCb = ethernet_demo_cb;
 param.strEthInitParam.au8ethRcvBuf = rx_buff;
 param.strEthInitParam.u16ethRcvBufSize = 1600;

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
4

0

40

 ret = m2m_wifi_init(¶m);
 return ret;
}

After the return of the callback function the HIF will reuse the registered buffer and will overwrite the data

inside so the application should either to move the frame from the buffer or to update the buffer info using

the API “m2m_wifi_set_receive_buffer” before the return of the callback function.

If the received frame is larger than the provided buffer the HIF will receive part of the frame and sets the

“u16RemainigDataSize” of the structure tstrM2mIpCtrlBuf to the remaining size of the current frame then

after the return of the callback function the HIF will receive the other part(s) and give a callback function

on each part till the end of the frame.

9.3 Concurrency Send

If the concurrency is used Application can send frames on the second interface using the API

“m2m_wifi_send_ethernet_pkt_ifc1”, the API has the same characteristics as of

“m2m_wifi_send_ethernet_pkt” with an exception it sends the frame on interface 2.

9.4 Concurrency Receive

If the concurrency is used application can distinguish between the frames received on interface 1 and

frames received on interface 2 using the parameter “u8IfcId” included in the structure “tstrM2mIpCtrlBuf” ,

everything else can be used from Receive Ethernet Frame, see Section 9.2.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

4

1

41

10 Host Interface Protocol

Communication between the user application and the WILC device is facilitated by driver software. This

driver implements the Host Interface Protocol and exposes an API to the application with various services.

The services are broadly in two categories: Wi-Fi device control and Ethernet data. The Wi-Fi device

control services allow actions such as channel scanning, network identification, connection and

disconnection. The data services allow data transfer once a connection has been established.

The host driver implements services asynchronously. This means that when the application calls an API

to request a service action, the call is non-blocking and returns immediately, often before the action is

completed. Where appropriate, notification that an action has completed is provided in a subsequent

message from the WILC device to the Host which is delivered to the application via a callback function.

More generally, the WILC firmware uses asynchronous events to signal the host driver of certain status

changes. Asynchronous operation is essential where functions (such as Wi-Fi connection) make take

significant time.

When an API is called, a sequence of layers is activated formatting the request and arranging to transfer it

to the WILC device through the serial protocol.

 Dealing with HIF messages in host MCU application is an advanced
topic. For most applications, it is recommended to use Wi-Fi. This layer
hides the complexity of the HIF APIs.

After the application sends request, the Host Driver (Wi-Fi) formats the request and sends it to the HIF

layer which then interrupts the WILC device announcing that a new request will be posted. Upon receipt,

the WILC firmware parses the request and starts the required operation.

Figure 10-1. WILC Driver Layers

HOST MCU

Host Applicaton

Host Driver

Bus Wrapper

Wi-Fi Socket

BSP

HIF

Bus

The Host Interface Layer is responsible for handling communication between the host MCU and the WILC

device. This includes Interrupt handling, DMA control and management of communication logic between

firmware driver at host and WILC firmware.

The Request/Response sequence between the Host and the WILC chip is shown in Figure 10-2.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
4

2

42

Figure 10-2. The Request/Response Sequence Diagram

Application

WILC

DRIVER WILC

FIRMWAREHost

Interface

Wi-Fi/

Ethernet

Request

Format Request

Interrupt WILC

Write RQ to Memory

Tx Done Interrupt

Process

Request

Write

Response

to

Memory

Interrupt Host

Call appropriate handler

Send Response to

Application Callback

function Rx Done

Interrupt

Read Response Data

10.1 Chip Initialization Sequence

Table 10-1 shows the sequence and the registers needed to initialize the ATWILC1000 HW.

Table 10-1.

Step Description

Read chip ID to make sure the bus and the

chip are working fine
Read the register 0x1000 , the return value should be 0x1002xx

Download the firmware into the chip memory Refer to Chapter 12: ATWILC1000 Firmware Download for details

Disable the boot ROM Write in register 0xC0000 value 0x71

Reset the state register Write in register NMI_STATE_REG value 0

Set MUX to enable CPU reset from the

GLOBAL RESET register
Write in register 0x1118 value 1

Set NMI_VMM_CORE_CFG to SPI bus Write in register NMI_VMM_CORE_CFG value 1

Rest the chip CPU Toggle bit(10) from 0 to 1 in register NMI_GLB_RESET_0

Poll on state register to make sure firmware

is started successfully

Read register NMI_STATE_REG and compere the value to

M2M_FINISH_INIT_STATE

Set MUX to enable IRQN pin output Set Bit 8 in register NMI_PIN_MUX_0

Enable IRQ on IRQN pin Set bit 16 ion register NMI_INTR_ENABLE

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

4

3

43

10.2 Transfer Sequence Between HIF Layer and WILC Firmware

The following sections shows the individual steps taken during a HIF frame transmit (HIF message to the

WILC) and a HIF frame receive (HIF message from the WILC).

10.2.1 Frame Transmit

The following diagram shows the steps and states involved in sending a message from the host to the

WILC device:

Figure 10-3. HIF Frame Transmit to WILC

Wake up

WILC device

(state 1)

Interrupt

WILC device

(state 2)

Poll for DMA

Address

(state 3)

Write

Data

(state 4)

TX Done

Interrupt

(state 5)

Allow WILC

to sleep

(state 6)

Fail to allocate

memory

(error state)

Table 10-2.

Step Description

Step (1) Wake up the WILC device Wakeup the device to be able to receive Host requests

Step (2) Interrupt the WILC device Prepare and Set the HIF layer header to NMI_STATE_REG register (4

Bytes header describing the sent packet).

Set BIT [1] of WIFI_HOST_RCV_CTRL_2 register to raise an interrupt to

the WILC chip.

Step (3) Poll for DMA address Wait until the WILC chip clears BIT [1] of WIFI_HOST_RCV_CTRL_2 reg-

ister.

Get the DMA address (for the allocated memory) from register 0x150400.

Step (4) Write Data Write the Data Blocks in sequence, the HIF header then the Control buffer

(if any) then the Data buffer (if any)

Step (5) TX Done Interrupt Announce finishing writing the data by setting BIT [1] of

WIFI_HOST_RCV_CTRL_3 register

Step (6) Allow WILC device to

sleep

Allow the WILC device to enter sleep mode again (if it wishes)

10.2.2 Frame Receive

Figure 10-4 shows the steps and states involved in sending a message from the WILC device to the host:

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
4

4

44

Figure 10-4. HIF Frame Receive from WILC to Host

Wake up

WILC device

(state 1)

Check for

Interrupt

(state 2)

Clear

Interrupt

(state 3)

Read

Data

(state 4)

Process

Request

(state 5)

Host Rx

done

(state 6)

Allow WILC

to sleep

(state 7)

Table 10-3.

Step Description

Step (1) Wake up the WILC device Wakeup the device to be able to receive Host requests.

Step (2) Check for Interrupt Monitor BIT[0] of WIFI_HOST_RCV_CTRL_0 register.

Disable the host from receiving interrupts (until this one has been pro-

cessed).

Step (3) Clear interrupt Write zero to BIT[0] of WIFI_HOST_RCV_CTRL_0 register.

Step (4) Read Data Get the address of the data block from WIFI_HOST_RCV_CTRL_1 regis-

ter.

Read Data block with size obtained from WIFI_HOST_RCV_CTRL_0 reg-

ister BIT[13] <->BIT[2].

Step (5) Process Request Parse the HIF header at the start of the Data and forward the Data to the

appropriate registered Callback function.

Step (6) HOST RX Done Raise an interrupt for the chip to free the memory holding the data by set-

ting BIT[1] of WIFI_HOST_RCV_CTRL_0 register.

Enable Host interrupt reception again.

Step (7) Allow WILC device to

sleep

Allow the WILC device to enter sleep mode again (if it wishes).

10.3 HIF Message Header Structure

The HIF message is the data structure exchanged back and forth between the Host Interface and WILC

firmware. The HIF message header structure consists of three fields:

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Group ID Op Code

Payload Length

Payload

...

...

...

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

4

5

45

 The Group ID (8-bits): A group ID is the category of the message. Valid categories are

M2M_REQ_GRP_WIFI, M2M_REQ_GRP_HIF corresponding to Wi-Fi and HIF respectively. A group

ID can be assigned one of the values enumerated in tenuM2mReqGrp.

 Op Code (8-bit): Is a command number. Valid command number is a value enumerated in:

tenuM2mConfigCmd and tenuM2mStaCmd, tenuM2mApCmd and tenuM2mP2pCmd corresponding

to configuration, STA mode AP mode and P2P mode commands. See the full list of commands in

the header file m2m_types.h.

 Payload Length (16-bits): The payload length in bytes (does not include header).

10.4 HIF Layer APIs

The interface between the application and the driver will be done at the higher layer API interface (Wi-Fi)

as explained previously, the driver upper layer uses a lower layer API to access the services of the Host

Interface Protocol. This section describes the Host Interface APIs that the upper layers use.

The following API functions are described:

 hif_chip_wake

 hif_chip_sleep

 hif_register_cb

 hif_isr

 hif_receive

 hif_send

For all functions the return value is either M2M_SUCCESS (zero) in case of success or a negative value in

case of failure.

sint8 hif_chip_wake(void):

This function wakes the WILC chip from sleep mode using clockless register access. It sets BIT[1] of

register 0x01 and sets the value of WAKE_REG register to WAKE_VALUE.

sint8 hif_chip_sleep(void):

This function enables sleep mode for the WILC chip by setting the WAKE_REG register to a value of

SLEEP_VALUE and clearing BIT[1] of register 0x01.

sint8 hif_register_cb(uint8 u8Grp,tpfHifCallBack fn):

This function set the callback function for different components (e.g. M2M_WIFI, M2M_HIF, M2M_OTA

…etc.). A callback is registered by upper layers to receive specific events of a specific message group.

sint8 hif_isr(void):

This is the Host interface interrupt service routine. It handles interrupts generated by the WILC chip and

parses the HIF header to call back the appropriate handler.

sint8 hif_receive(uint32 u32Addr, uint8 *pu8Buf, uint16 u16Sz, uint8 isDone):

This function causes the Host driver to read data from the WILC chip. The location and length of the data

must be known in advance and specified. This will typically have been extracted from an earlier part of a

transaction.

sint8 hif_send(uint8 u8Gid,uint8 u8Opcode,uint8 *pu8CtrlBuf,uint16

u16CtrlBufSize,uint8 *pu8DataBuf,uint16 u16DataSize, uint16 16DataOffset):

This function causes the Host driver to send data to the WILC chip. The WILC chip will have been

prepared for reception according to the flow described in the previous section.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
4

6

46

10.5 Scan Code Example

The following code example illustrates the Request/Response flow on a Wi-Fi Scan request: For more

details on the code examples, refer to [R02].

 The application requests a Wi-Fi scan

{
 m2m_wifi_request_scan(M2M_WIFI_CH_ALL);
}

 The Host driver Wi-Fi layer formats the request and forward it to HIF (Host Interface) layer

sint8 m2m_wifi_request_scan(uint8 ch)

{

 tstrM2MScan strtmp;
 sint8 s8Ret = M2M_ERR_SCAN_IN_PROGRESS;

 strtmp.u8ChNum = ch;

 s8Ret = hif_send(M2M_REQ_GRP_WIFI, M2M_WIFI_REQ_SCAN, (uint8*)&strtmp,
sizeof(tstrM2MScan),NULL, 0,0);
 return s8Ret;

}

 The HIF layer sends the request to the WILC chip

sint8 hif_send(uint8 u8Gid,uint8 u8Opcode,uint8 *pu8CtrlBuf,uint16 u16CtrlBufSize,

 uint8 *pu8DataBuf,uint16 u16DataSize, uint16 u16DataOffset)

{

 sint8 ret = M2M_ERR_SEND;

 volatile tstrHifHdr strHif;

 strHif.u8Opcode = u8Opcode&(~NBIT7);

 strHif.u8Gid = u8Gid;

 strHif.u16Length = M2M_HIF_HDR_OFFSET;

 if(pu8DataBuf != NULL)

 {

 strHif.u16Length += u16DataOffset + u16DataSize;

 }

 else

 {

 strHif.u16Length += u16CtrlBufSize;

 }

 /* TX STEP (1) */

 ret = hif_chip_wake();

 if(ret == M2M_SUCCESS)

 {

 volatile uint32 reg, dma_addr = 0;

 volatile uint16 cnt = 0;

 reg = 0UL;

 reg |= (uint32)u8Gid;

 reg |= ((uint32)u8Opcode<<8);

 reg |= ((uint32)strHif.u16Length<<16);

 ret = nm_write_reg(NMI_STATE_REG,reg);

 if(M2M_SUCCESS != ret) goto ERR1;

 reg = 0;

 /* TX STEP (2) */

 reg |= (1<<1);

 ret = nm_write_reg(WIFI_HOST_RCV_CTRL_2, reg);

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

4

7

47

 if(M2M_SUCCESS != ret) goto ERR1;

 dma_addr = 0;

 for(cnt = 0; cnt < 1000; cnt ++)

 {

 ret = nm_read_reg_with_ret(WIFI_HOST_RCV_CTRL_2,(uint32 *)®);

 if(ret != M2M_SUCCESS) break;

 if (!(reg & 0x2))

 {

 /* TX STEP (3) */

 ret = nm_read_reg_with_ret(0x150400,(uint32 *)&dma_addr);

 if(ret != M2M_SUCCESS) {

 /*in case of read error clear the dma address and return error*/

 dma_addr = 0;

 }
 /*in case of success break */
 break;

 }

 }

 if (dma_addr != 0)

 {

 volatile uint32 u32CurrAddr;

 u32CurrAddr = dma_addr;

 strHif.u16Length=NM_BSP_B_L_16(strHif.u16Length);

 /* TX STEP (4) */

 ret = nm_write_block(u32CurrAddr, (uint8*)&strHif, M2M_HIF_HDR_OFFSET);

 if(M2M_SUCCESS != ret) goto ERR1;

 u32CurrAddr += M2M_HIF_HDR_OFFSET;

 if(pu8CtrlBuf != NULL)

 {

 ret = nm_write_block(u32CurrAddr, pu8CtrlBuf, u16CtrlBufSize);

 if(M2M_SUCCESS != ret) goto ERR1;

 u32CurrAddr += u16CtrlBufSize;

 }

 if(pu8DataBuf != NULL)

 {

 u32CurrAddr += (u16DataOffset - u16CtrlBufSize);

 ret = nm_write_block(u32CurrAddr, pu8DataBuf, u16DataSize);

 if(M2M_SUCCESS != ret) goto ERR1;

 u32CurrAddr += u16DataSize;

 }

 reg = dma_addr << 2;

 reg |= (1 << 1);

 /* TX STEP (5) */

 ret = nm_write_reg(WIFI_HOST_RCV_CTRL_3, reg);

 if(M2M_SUCCESS != ret) goto ERR1;

 }

 else

 {

 /* ERROR STATE */

 M2M_DBG("Failed to alloc rx size\r");

 ret = M2M_ERR_MEM_ALLOC;

 goto ERR1;

 }

 }

 else

 {

 M2M_ERR("(HIF)Fail to wakup the chip\n");

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
4

8

48

 goto ERR1;

 }

 /* TX STEP (6) */

 ret = hif_chip_sleep();

ERR1:
 return ret;}

 The WILC chip processes the request and interrupts the host after finishing the operation

 The HIF layer then receives the response

static sint8 hif_isr(void)

{

 sint8 ret = M2M_ERR_BUS_FAIL;

 uint32 reg;

 volatile tstrHifHdr strHif;

 /* RX STEP (1) */

 ret = hif_chip_wake();

 if(ret == M2M_SUCCESS)

 {

 /* RX STEP (2) */

 ret = nm_read_reg_with_ret(WIFI_HOST_RCV_CTRL_0, ®);

 if(M2M_SUCCESS == ret)

 {
 /* New interrupt has been received */

 if(reg & 0x1)

 {

 uint16 size;

 nm_bsp_interrupt_ctrl(0);

 /*Clearing RX interrupt*/
 ret = nm_read_reg_with_ret(WIFI_HOST_RCV_CTRL_0,®);

 if(ret != M2M_SUCCESS)goto ERR1;

 reg &= ~(1<<0);

 /* RX STEP (3) */

 ret=nm_write_reg(WIFI_HOST_RCV_CTRL_0,reg);

 if(ret != M2M_SUCCESS)goto ERR1;

 /* read the rx size */

 ret = nm_read_reg_with_ret(WIFI_HOST_RCV_CTRL_0, ®);

 if(M2M_SUCCESS != ret)

 {

 M2M_ERR("(hif) WIFI_HOST_RCV_CTRL_0 bus fail\n");

 nm_bsp_interrupt_ctrl(1);

 goto ERR1;

 }

 gu8HifSizeDone = 0;

 size = (uint16)((reg >> 2) & 0xfff);

 if (size > 0) {

 uint32 address = 0;

 /**

 start bus transfer

 **/

 /* RX STEP (4) */

 ret = nm_read_reg_with_ret(WIFI_HOST_RCV_CTRL_1, &address);

 if(M2M_SUCCESS != ret)

 {

 M2M_ERR("(hif) WIFI_HOST_RCV_CTRL_1 bus fail\n");

 nm_bsp_interrupt_ctrl(1);

 goto ERR1;

 }

 ret = nm_read_block(address, (uint8*)&strHif, sizeof(tstrHifHdr));

 strHif.u16Length = NM_BSP_B_L_16(strHif.u16Length);

 if(M2M_SUCCESS != ret)

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

4

9

49

 {

 M2M_ERR("(hif) address bus fail\n");

 nm_bsp_interrupt_ctrl(1);

 goto ERR1;

 }

 if(strHif.u16Length != size)

 {

 if((size - strHif.u16Length) > 4)

 {

 M2M_ERR("(hif) Corrupted packet Size = %u <L = %u, G = %u, OP
= %02X>\n",

 size, strHif.u16Length, strHif.u8Gid, strHif.u8Opcode);

 nm_bsp_interrupt_ctrl(1);

 ret = M2M_ERR_BUS_FAIL;

 goto ERR1;

 }

 }

 /* RX STEP (5) */

 if(M2M_REQ_GRP_WIFI == strHif.u8Gid)

 {

 if(pfWifiCb)

 pfWifiCb(strHif.u8Opcode,strHif.u16Length - M2M_HIF_HDR_OFFSET,

 address + M2M_HIF_HDR_OFFSET);

 }

 else if(M2M_REQ_GRP_IP == strHif.u8Gid)

 {

 if(pfIpCb)

 pfIpCb(strHif.u8Opcode,strHif.u16Length - M2M_HIF_HDR_OFFSET,

 address + M2M_HIF_HDR_OFFSET);

 }

 else if(M2M_REQ_GRP_OTA == strHif.u8Gid)

 {

 if(pfOtaCb)

 pfOtaCb(strHif.u8Opcode,strHif.u16Length - M2M_HIF_HDR_OFFSET,

 address + M2M_HIF_HDR_OFFSET);

 }

 else

 {

 M2M_ERR("(hif) invalid group ID\n");

 ret = M2M_ERR_BUS_FAIL;

 goto ERR1;

 }

 /* RX STEP (6) */

 if(!gu8HifSizeDone)

 {

 M2M_ERR("(hif) host app didn't set RX Done\n");

 ret = hif_set_rx_done();

 }
 }

 else

 {
 ret = M2M_ERR_RCV;
 M2M_ERR("(hif) Wrong Size\n");
 goto ERR1;
 }
 }
 else
 {

#ifndef WIN32

 M2M_ERR("(hif) False interrupt %lx",reg);

#endif

 }

 }

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
5

0

50

 else

 {
 M2M_ERR("(hif) Fail to Read interrupt reg\n");
 goto ERR1;
 }
 }
 else
 {

 M2M_ERR("(hif) FAIL to wakeup the chip\n");
 goto ERR1;
 }

 /* RX STEP (7) */
 ret = hif_chip_sleep();
ERR1:
 return ret;
}

 The appropriate handler is layer Wi-Fi (called from HIF layer)

 static void m2m_wifi_cb(uint8 u8OpCode, uint16 u16DataSize, uint32 u32Addr)

{ // …code eliminated…

 else if (u8OpCode == M2M_WIFI_RESP_SCAN_DONE)

 {

 tstrM2mScanDone strState;

 gu8scanInProgress = 0;

 if(hif_receive(u32Addr, (uint8*)&strState, sizeof(tstrM2mScanDone), 0) == M2M_SUCCESS)

 {

 gu8ChNum = strState.u8NumofCh;

 if (gpfAppWifiCb)

 gpfAppWifiCb(M2M_WIFI_RESP_SCAN_DONE, &strState);

 }

 }

 // …code eliminated…
}

 The Wi-Fi layer sends the response to the application through its callback function

if (u8MsgType == M2M_WIFI_RESP_SCAN_DONE)

{

 tstrM2mScanDone *pstrInfo = (tstrM2mScanDone*) pvMsg;

 if((gu8IsWiFiConnected == M2M_WIFI_DISCONNECTED) &&

 (gu8WPS == WPS_DISABLED) && (gu8Prov == PROV_DISABLED))

 {

 gu8Index = 0;

 gu8Sleep = PS_WAKE;

 if (pstrInfo->u8NumofCh >= 1)

 {

 m2m_wifi_req_scan_result(gu8Index);

 gu8Index++;

 }

 else

 {

 m2m_wifi_request_scan(M2M_WIFI_CH_ALL);

 }

 }

}

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

5

1

51

11 WILC SPI Protocol

WILC main interface is SPI. The WILC device employs a protocol to allow exchange of formatted binary

messages between WILC firmware and host MCU application. The WILC protocol uses raw bytes

exchanged on SPI bus to form high level structures like requests and callbacks.

The WILC SPI protocol consists of three layers:

 Layer 1: WILC SPI slave protocol, which allows the host MCU application to perform

register/memory read and write operation in the ATWILC1000 device using raw SPI data exchange.

 Layer 2: Host MCU application uses the register and memory read and write capabilities to

exchange host interface frames with the WILC firmware. It also provides asynchronous callback

from the WILC firmware to the host MCU through interrupts and host interface RX frames. This

layer was discussed earlier in chapter 15.

 Layer 3: Allows the host MCU application to exchange high level messages (e.g. Wi-Fi scan or

Ethernet data received) with the WILC firmware to employ in the host MCU application logic.

Figure 11-1. WILC SPI Protocol Layers

11.1 Introduction

The WILC SPI Protocol is implemented as a command-response transaction and assumes one party is

the master and the other is the slave. The roles correspond to the master and slave devices on the SPI

bus. Each message has an identifier in the first byte indicating the type of message:

 Command

 Response

 Data

In the case of Command and Data messages, the last byte is used as data integrity check.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
5

2

52

The format of Command and Response and Data frames is described in the following sections. The

following points apply:

 There is a response for each command

 Transmitted/received data is divided into packets with fixed size

 For a write transaction (Slave is receiving data packets), the slave should reply by a response for

each data packet

 For a RD transaction (master is receiving data packets), the master doesn’t send response. If there

is an error, the master should request retransmission on the lost data packet.

 Protection of commands and data packets by CRC is optional

11.1.1 Command Format

The following frame formation is used for commands where the host supports a DMA address of three

bytes.

Figure 11-2.

CMD/DATA Start CMD type Payload CRC

1 Byte Payload Size 1 Byte

10 Byte (max)

4 Bits 4 Bits

The first byte contains two fields:

 The CMD/Data Start field indicates that this is a Command frame

 The CMD type field specifies the command to be executed

The CMD type may be one of 15 commands:

 DMA write

 DMA read

 Internal register write

 Internal register read

 Transaction termination

 Repeat data Packet

 DMA extended write

 DMA extended read

 DMA single-word write

 DMA single-word read

 Soft reset

The Payload field contains command specific data and its length depends on the CMD type.

The CRC field is optional and generally computed in software.

The Payload field can be one of four types each having a different length:

 A: 3 bytes

 B: 5 bytes

 C: 6 bytes

 D: 7 bytes

Type A commands include:

 DMA single-word RD

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

5

3

53

 internal register RD

 Transaction termination command

 Repeat Data PKT command

 Soft reset command

Type B commands include:

 DMA RD Transaction

 DMA WR Transaction

Type C commands include:

 DMA Extended RD transaction

 DMA Extended WR transaction

 Internal register WR

Type D commands include:

 DMA single-word WR

Full details of the frame format fields are provided in Table 11-1:

Table 11-1.

Field Size Description

CMD Start 4 bits Command Start : 4’b1100

CMD Type 4 bits Command type:

4’b0001: DMA write transaction

4’b0010: DMA read transaction

4’b0011: Internal register write

4’b0100: Internal register read

4’b0101: Transaction termination

4’b0110: Repeat data Packet command

4’b0111: DMA extended write transaction

4’b1000: DMA extended read transaction

4’b1001: DMA single-word write

4’b1010: DMA single-word read

4’b1111: soft reset command

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
5

4

54

Payload A: 3

B: 5

C: 6

D: 7

The Payload field may be of Type A,B,C or D

Type A (length 3)

1- DMA single-word RD

Param: Read Address:

Payload bytes:

 B0: ADDRESS[23:16]

 B1: ADDRESS[15:8]

 B2: ADDRESS[7:0]

2- internal register RD

Param: Offset address (2 bytes):

Payload bytes:

 B0: OFFSET-ADDR[15:8]

 B1: OFFSET-ADDR[7:0]

 B2: 0

3- Transaction termination command

Param: none

Payload bytes:

 B0: 0

 B1: 0

 B2: 0

4- Repeat Data PKT command

Param: none

Payload bytes:

 B0: 0

 B1: 0

 B2: 0

5- Soft reset command

Param: none

Payload bytes:

 B0: 0xFF

 B1: 0xFF

 B2: 0xFF

Type B (length 5)

1- DMA RD Transaction

Params:

 DMA Start Address : 3 bytes

 DMA count : 2 bytes

Payload bytes:

 B0: ADDRESS[23:16]

 B1: ADDRESS[15:8]

 B2: ADDRESS[7:0]

 B3: COUNT[15:8]

 B4: COUNT[7:0]

2- DMA WR Transaction

Params:

 DMA Start Address : 3 bytes

 DMA count : 2 bytes

Payload bytes:

 B0: ADDRESS[23:16]

 B1: ADDRESS[15:8]

 B2: ADDRESS[7:0]

 B3: COUNT[15:8]

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

5

5

55

Field Size Description

 B4: COUNT[7:0]

Type C (length 6)

1- DMA Extended RD transaction

Params:

 DMA Start Address : 3 bytes

 DMA extended count: 3 bytes

Payload bytes:

 B0: ADDRESS[23:16]

 B1: ADDRESS[15:8]

 B2: ADDRESS[7:0]

 B3: COUNT[23:16]

 B4: COUNT[15:8]

 B5: COUNT[7:0]

2- DMA Extended WR transaction

Params:

 DMA Start Address : 3 bytes

 DMA extended count: 3 bytes

Payload bytes:

 B0: ADDRESS[23:16]

 B1: ADDRESS[15:8]

 B2: ADDRESS[7:0]

 B3: COUNT[23:16]

 B4: COUNT[15:8]

 B5: COUNT[7:0]

3- Internal register WR*

Params:

 Offset address: 3 bytes

 Write Data: 3 bytes

* “clocked or clockless registers”

Payload bytes:

 B0: OFFSET-ADDR[15:8]

 B1: OFFSET-ADDR [7:0]

 B2: DATA[31:24]

 B3: DATA [23:16]

 B4: DATA [15:8]

 B5: DATA [7:0]

Type D (length 7)

1- DMA single-word WR

Params:

 Address: 3 bytes

 DMA Data: 4 bytes

Payload bytes:

 B0: ADDRESS[23:16]

 B1: ADDRESS[15:8]

 B2: ADDRESS[7:0]

 B3: DATA[31:24]

 B4: DATA [23:16]

 B5: DATA [15:8]

 B6:: DATA [7:0]

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
5

6

56

Field Size Description

CRC7 1 byte Optional data integrity field comprising two subfields:

bit 0: fixed value ‘1’

bits 1-7: 7 bit CRC value computed using polynomial G(x) = X^7 + X^3 + 1 with

seed value: 0x7F

Table 11-2 summarizes the different commands according to the payload type (DMA address = 3-bytes).

Table 11-2.

Payload Type Payload size Command packet size “with CRC” Commands

Type A 3-Bytes 5-Bytes 1- DMA Single-Word Read

2- Internal Register Read

3- Transaction Termination

4- Repeat Data Packet

5- Soft Reset

Type B 5-Bytes 7-Bytes 1- DMA Read

2- DMA Write

Type C 6-Bytes 8-Bytes 1- DMA Extended Read

2- DMA Extended Write

3- Internal Register Write

Type D 7-Bytes 9-Bytes 1- DMA Single-Word Write

11.1.2 Response Format

The following frame formation is used for responses sent by the WILC device as the result of receiving a

Command or certain Data frames. The Response message has a fixed length of two bytes.

RES/DATA Start RES Type STATE

1 Byte 1 Byte

2 Byte

4 Bits 4 Bits

The first byte contains two four bit fields which identify the response message and the response type.

The second byte indicates the status of the WILC after receiving and, where possible, executing the

command/data. This byte contains two sub fields:

 B0-B3: Error state

 B4-B7: DMA state

States that may be indicated are:

 DMA state:

– DMA ready for any transaction

– DMA engine is busy

 Error state:

– No error

– Unsupported command

– Receiving unexpected data packet

– Command CRC7 error

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

5

7

57

Table 11-3.

Field Size Description

Res Start 4 bits Response Start: 4’b1100

Response Type 4 bits If the response packet is for Command:

 Contains of copy of the Command Type field in the Command

If the response packet is for received Data Packet:

 4’b0001: First data packet is received

 4’b0010: Receiving data packets

 4’b0011: Last data packet is received

 4’b1111: Reserved value

State 1 byte This field is divided into two subfields:

State

DMA State Error State

4 Bits 4 bits

DMA State:

 4’b0000: DMA ready for any transaction

 4’b0001: DMA engine is busy

Error State:

 4’b0000: No error

 4’b0001: Unsupported command

 4’b0010: Receiving unexpected data packet

 4’b0011: Command CRC7 error

 4’b0100: Data CRC16 error

 4’b0101: Internal general error

11.1.3 Data Packet Format

The Data Packet Format is used in either direction (master to slave or slave to master) to transfer opaque

data. A Command frame is used either to inform the slave that a data packet is about to be sent or to

request the slave to send a data packet to the master. In the case of master to slave, the slave sends a

response after the command and each subsequent data frame. The format of a data packet is shown

below.

DATA Start Packet Order Data Bytes CRC

1 Byte DATA_PACKET_SIZE 2 Byte

4 Bits 4 Bits

To support DMA hardware a large data transfer may be fragmented into multiple smaller Data Packets.

This is controlled by the value of DATA_PACKET_SIZE which is agreed between the master and slave in

software and is a fixed value such as 256B, 512B, 1KB (default), 2KB, 4KB, or 8KB. If a transfer has a

length m which exceeds DATA_PACKET_SIZE the sender must split into n frames where frames 1..n-1

will be length DATA_PACKET_SIZE and frame n will be length:

 (m – (n-1)* DATA_PACKET_SIZE).This is shown diagrammatically below:

 If DMA count <= DATA_PACKET_SIZE

The data packet is “DATA_Header + DMA count +optional CRC16 “, i.e. No padding.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
5

8

58

DATA

Header
Remaining data CRC

 If DMA count > DATA_PACKET_SIZE

DMA Count

DATA

Header
DATA_PKT_SIZE CRC16

DATA

Header
DATA_PKT_SIZE CRC16

DATA

Header

Remaining

data
CRC16

If remaining data < DATA_PACKET_SIZE, the last data packet is:

“DATA_Header + remaining data + optional CRC16 “, i.e. No padding

The frame fields are describe in detail in Table 11-4.

Table 11-4.

Field Size Description

Data

Start

4 bits 4’b1111 (Default)

(Can be changed to any value by programming DATA_START_CTRL register)

Packet

Order

4 bits 4’b0001: First packet in this transaction

4’b0010: Neither the first or the last packet in this transaction

4’b0011: Last packet in this transaction

4’b1111: Reserved

Data

Bytes

DATA_PACKET_SIZE User data

CRC16 2 bytes Optional data integrity field comprising a 16 bit CRC value encoded in two bytes.

The most significant 8 bits are transmitted first in the frame.

The CRC16 value is computed on data bytes only based on the polynomial:

G(x) = X^16 + X^12 + X^5 + 1, seed value: 0xFFFF

11.1.4 Error Recovery Mechanism

Error Type Recovery Mechanism

Master:

CRC error in command
1. Error response received from slave.

2. Retransmit the command.

CRC error in received data

1. Issue a repeat command for the data packet that has a CRC error.

2. Slave sends a response to the previous command.

3. Slave keeps the start DMA address of the previous data packet, so it

can retransmit it.

4. Receive the data packet again.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

5

9

59

Error Type Recovery Mechanism

No response is received from slave

 Synchronization is lost between master and slave

 The worst case is when slave is in receiving data state

 Solution: master should wait for max DATA_PACKET_SIZE period then

generate a soft reset command

Unexpected response Retransmit the command

TX/RX Data count error Retransmit the command

No response to soft reset com-

mand

 Transmit all ones till master receives a response of all ones from the slave

 Then deactivate the output data line

Slave:

Unsupported command
 Send response with error

 Returns to command monitor state

Receive command CRC error
 Send response with error

 waits for command retransmission

Received data CRC error
 Send response with error

 wait for retransmission of the data packet

Internal general error The master should soft reset the slave

TX/RX Data count error

 Only the master can detect this error

 Slave operates with the data count received till the count finishes or the

master terminates the transaction

 In both cases the master should retry the command from the beginning

No response to soft reset com-

mand

1. First received 4’b1001, it decides data start.

2. Then received packet order 4’b1111 that is reserved value.

3. Then monitors for 7 bytes all ones to decide Soft Reset action.

4. The slave should activate the output data line.

5. Waits for deactivation for the received line.

6. The slave then deactivates the output data line and returns to the

CMD/DATA start monitor state.

General NOTE

 The slave should monitor the received line for command reception in any

time

 When a CMD start is detected, the slave will receive 8 bytes then return

again to the command reception state

 When the slave is transmitting data, it should also monitor for command

reception

 When the slave is receiving data, it will monitor for command reception

between the data packets

 Therefore issuing a soft reset command, should be detected in all cases

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
6

0

60

11.1.5 Clockless Registers Access

Clockless register access allows a host device to access registers on the WILC device while it is held in a

reset state. This type of access can only be done using the “internal register read” and “internal register

write” commands. For clockless access, bit 15 of the Offset_addr in the command should be ‘1’ to

differentiate between clockless and clocked access mode.

For clock-less register write: The protocol master should wait for the response as shown below.

8'hC3
Offset_addr[15]

=1'b1‘0’ ‘0’

‘0’ ‘0’

Offset_addr[14:0]

= clkless_addr
Four bytes of data { CRC7,1'b1 }

Response

‘0’

1 Byte 2 Byte 4 Byte 1 Byte

2 Byte

For clock-less register read: According to the interface, the protocol slave may not send CRC16. One or

two byte padding depends on three or four byte DMA addresses.

8'hC3
Offset_addr[15]

=1'b1‘0’ ‘0’

‘0’

Offset_addr[14:0]

= clkless_addr

One or two

byte padding
{ CRC7,1'b1 }

Response

1 Byte 2 Byte 1 or 2 Byte 1 Byte

2 Byte

Data Hdr
Clk-less

reg data

1 Byte

‘0’

11.2 Message Flow for Basic Transactions

This section shows the essential message exchanges and timings associated with the following

commands:

 Read Single Word

 Read Internal Register (clockless)

 Read Block

 Write Single Word

 Write Internal Register (clockless)

 Write Bock

11.2.1 Read Single Word

‘0’

‘0’

Cmd Hdr:

Read Single Word
Address / CRC

Rsp Hdr STATE

CMD_RES Period

‘0’

DATA Start DATA

4 bytes1 byte

‘0’

4 bytes1 byte

1 byte1 byte

11.2.2 Read Internal Register (for Clockless Registers)

‘0’

‘0’

Cmd Hdr:

Read Internal Register
Offset Addr

Rsp Hdr STATE

CMD_RES Period

‘0’
16‘d0

DATA Start DATA

4 bytes1 byte

‘0’

2 bytes1 byte 2 bytes

1 byte1 byte

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

6

1

61

11.2.3 Read Block

Normal Transaction

Master: Issues a DMA read transaction and waits for a response.

Slave: Sends a response after CMD_RES_PERIOD.

Master: Waits for a data packet start.

Slave: Sends the data packets, separated by DATA_DATA_PERIOD (see note below) where

DATA_DATA_PERIOD is controlled by software and has one of these values:

NO_DELAY (default), 4_BYTE_PERIOD, 8_BYTE_PERIOD and 16_BYTE_PERIOD

Slave: Continues sending till the count ends.

Master: Receive data packets. No response is sent for data packets but a termination/retransmit

command may be sent if there is an error.

Note: Actually the period between data packets is “DATA_DATA_PERIOD + DMA access time.” The

master should monitor for DATA_START directly after DATA_DATA_PERIOD

The message sequence for this case is shown below:

‘0’

‘0’ ‘0’DATA Hdr DATA

Fixed size1 byte

CRC16

2 byte

‘0’DAT Header DATA

Fixed size1 byte

CRC16

2 byte

Cmd Hdr:

Data Read
Address, Count, crc

Rsp Hdr STATE

DATA_DATA Period

‘0’

‘0’ ‘0’

CMD_RES Period

1 byte 6 bytes

1 byte 1 byte

Termination Command Is Issued

Master: Can issue a termination command at any time during the transaction.

Master: Should monitor for RES_START after CMD_RESP_PERIOD.

Slave: Should cut off the current running data packet “if any“.

Slave: Should respond to the termination command after CMD_RESP_PERIOD from the end of the

termination command packet.

‘0’

‘0’ ‘0’DAT Header DATA

Fixed size1 Byte

CRC16

2 Byte

‘0’DATA Hdr DATA

Fixed size1 Byte

CRC16

2 Byte

Cmd Hdr:

Data Read
Address, Count, crc

Rsp Hdr STATE

DATA_DATA Period

‘0’

‘0’ ‘0’

Cmd Hdr:

STOP command

Rsp Hdr STATE

‘0’

‘0’

CMD_RESP Period

Repeat Command Is Issued

Master: Can issue a repeat command at any time during the transaction.

Master: Should monitor for RES_START after CMD_RESP_PERIOD.

Slave: Should cut off the current running data packet, if any.

Slave: should respond to the repeat command after CMD_RESP_PERIOD from the end of the repeat

command packet.

Slave: Resends the data packet that has an error then continues the transaction as normal.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
6

2

62

‘0

’

‘0

’
DATA Packet 1

Read

Command

Response

‘0

’

‘0

’

Repeat

Command

DATA Packet 2

“error”
‘0

’

DATA Packet 3

“cut off”
Response DATA Packet 2 DATA Packet 3

CMD_RESP Period

11.2.4 Write Single Word

Master: Issues DMA single-word write command, including the data.

Slave: Takes the data and sends a command response.

‘0’

‘0’

Cmd Hdr:

Single Word Write
Address, Data, CRC

Response

Hdr
STATE

CMD_RES Period

‘0’

‘0’

8 bytes1 byte

11.2.5 Write Internal Register (for Clockless Registers)

Master: Issues an internal register write command, including the data.

Slave: Takes the data and sends a command response.

‘0’

‘0’

Cmd Hdr:

Internal Word Write
Offset Addr, Data, CRC

Rsp Hdr STATE

CMD_RES Period

‘0’

‘0’

1 byte 7 bytes

11.2.6 Write Block

Case 1: Master Waits for a Command Response

Master: Issues a DMA write command and waits for a response.

Slave: Sends response after CMD_RES_PERIOD.

Master: Sends the data packets after receiving response.

Slave: Sends a response packet for each data packet received after DATA_RES_PERIOD.

Master: Does not wait for the data response before sending the following data packet.

Note: CMD_RES_PERIOD is controlled by SW taking one of the values:

NO_DELAY (default), 1_BYTE_PERIOD, 2_BYTE_PERIOD and 3_BYTE_PERIOD.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

6

3

63

The master should monitor for RES_START after CMD_RES_PERIOD.

Note: DATA_RES_PERIOD is controlled by SW taking one of the values:

NO_DELAY (default), 1_BYTE_PERIOD, 2_BYTE_PERIOD and 3_BYTE_PERIOD.

Cmd Hdr:

Write Command
AddresS, Count, CRC‘0’

Rsp Hdr STATE

DATA Hdr DATA

Fixed size1 byte

Rsp Hdr STATE

CRC16

2 byte

‘0’ Rsp Hdr STATE

DATA Hdr DATA

Fixed size1 byte

CRC16

2 byte

DATA Hdr DATA

Fixed size1 byte

CRC16

2 byte

‘0’

‘0’ ‘0’

‘0’

‘0’

CMD_RES Period DATA_RES Period

Case 2: Master does not wait for a command response:

Master: Sends the data packets directly after the command but it still monitors for a command response

after CMD_RESP_PERIOD.

Master: Retransmits the data packets if there is an error in the command.

Cmd Hdr:

 Write Command
Address, count, CRC‘0’

Response

DATA Hdr DATA

Fixed size1 byte

Data Response

CRC16

2 byte

‘0’

DATA Hdr DATA

Fixed size1 byte

CRC16

2 byte

DATA Hdr DATA

Fixed size1 byte

CRC16

2 byte

‘0’

‘0’

‘0’

CMD_RES Period DATA_RES Period

‘0’ Data Response

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
6

4

64

11.3 SPI Level Protocol Example

In order to illustrate how WILC SPI protocol works, SPI Bytes from the scan request example were

dumped and the sequence is described below.

11.3.1 TX (Send Request)

First step in hif_send() API is to wake up the chip:

sint8 nm_clkless_wake(void)

{

 ret = nm_read_reg_with_ret(0x1, ®);

 /* Set bit 1 */

 ret = nm_write_reg(0x1, reg | (1 << 1));

 // Check the clock status

 ret = nm_read_reg_with_ret(clk_status_reg_adr, &clk_status_reg);

 // Tell Firmware that Host waked up the chip
 ret = nm_write_reg(WAKE_REG, WAKE_VALUE);

 return ret;

}

Command CMD_INTERNAL_READ: 0xC4 /* internal register read */
 BYTE [0] = CMD_INTERNAL_READ
 BYTE [1] = address >> 8; /* address = 0x01 */
 BYTE [1] |= (1 << 7); /* clockless register */
 BYTE [2] = address;
 BYTE [3] = 0x00;

WILC acknowledges the command by sending three bytes [C4] [0] [F3].

Then WILC chip sends the value of the register 0x01 which equals 0x01.

Command CMD_INTERNAL_WRITE: C3 /* internal register write */
BYTE [0] = CMD_INTERNAL_WRITE

 BYTE [1] = address >> 8; /* address = 0x01 */

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

6

5

65

 BYTE [1] |= (1 << 7); /* clockless register */
 BYTE [2] = address;
 BYTE [3] = u32data >> 24; /* Data = 0x03 */
 BYTE [4] = u32data >> 16;
 BYTE [5] = u32data >> 8;
 BYTE [6] = u32data;

WILC acknowledges the command by sending 2 bytes [C3] [0].

Command CMD_INTERNAL_READ: 0xC4 /* internal register read */
 BYTE [0] = CMD_INTERNAL_READ
 BYTE [1] = address >> 8; /* address = 0x0F */
 BYTE [1] |= (1 << 7); /* clockless register */
 BYTE [2] = address;
 BYTE [3] = 0x00;

WILC acknowledges the command by sending 3 bytes [C4] [0] [F3].

Command CMD_SINGLE_WRITE:0XC9 /* single word write */
 BYTE [0] = CMD_SINGLE_WRITE
 BYTE [1] = address >> 16; /* WAKE_REG address = 0x1074 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;
 BYTE [4] = u32data >> 24; /* WAKE_VALUE Data = 0x5678 */
 BYTE [5] = u32data >> 16;
 BYTE [6] = u32data >> 8;
 BYTE [7] = u32data;

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
6

6

66

The chip acknowledges the command by sending 2 bytes [C9] [0].

At this point, HIF finishes executing the clockless wakeup of the WILC chip.

The HIF layer Prepares and Sets the HIF layer header to NMI_STATE_REG register (4 | 8 Byte header

describing the packet to be sent).

Set BIT [1] of WIFI_HOST_RCV_CTRL_2 register to raise an interrupt to the chip.

sint8 hif_send(uint8 u8Gid,uint8 u8Opcode,uint8 *pu8CtrlBuf,uint16 u16CtrlBufSize,

 uint8 *pu8DataBuf,uint16 u16DataSize, uint16 u16DataOffset)

{

 volatile tstrHifHdr strHif;
 volatile uint32 reg;

 strHif.u8Opcode = u8Opcode&(~NBIT7);

 strHif.u8Gid = u8Gid;

 strHif.u16Length = M2M_HIF_HDR_OFFSET;

 strHif.u16Length += u16CtrlBufSize;

 ret = nm_clkless_wake();

 reg = 0UL;

 reg |= (uint32)u8Gid;

 reg |= ((uint32)u8Opcode<<8);

 reg |= ((uint32)strHif.u16Length<<16);

 ret = nm_write_reg(NMI_STATE_REG,reg);

 reg = 0;

 reg |= (1<<1);

 ret = nm_write_reg(WIFI_HOST_RCV_CTRL_2, reg);

Command CMD_SINGLE_WRITE:0XC9 /* single word write */
 BYTE [0] = CMD_SINGLE_WRITE
 BYTE [1] = address >> 16; /* NMI_STATE_REG address = 0x180c */
 BYTE [2] = address >> 8;
 BYTE [3] = address;
 BYTE [4] = u32data >> 24; /* Data = 0x000C3001 */
 BYTE [5] = u32data >> 16; /* 0x0C is the length and equals 12 */

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

6

7

67

 BYTE [6] = u32data >> 8; /* 0x30 is the Opcode=M2M_WIFI_REQ_SET_SCAN_REGION
*/
 BYTE [7] = u32data; /* 0x01 is the Group ID = M2M_REQ_GRP_WIFI */

WILC acknowledges the command by sending two bytes [C9] [0].

Command CMD_SINGLE_WRITE:0XC9 /* single word write */
 BYTE [0] = CMD_SINGLE_WRITE
 BYTE [1] = address >> 16; /* WIFI_HOST_RCV_CTRL_2address = 0x1087*/
 BYTE [2] = address >> 8;
 BYTE [3] = address;
 BYTE [4] = u32data >> 24; /* Data = 0x02 */
 BYTE [5] = u32data >> 16;
 BYTE [6] = u32data >> 8;
 BYTE [7] = u32data;

WILC acknowledges the command by sending two bytes [C9] [0].

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
6

8

68

Then HIF polls for DMA address.

for (cnt = 0; cnt < 1000; cnt ++)

{

 ret = nm_read_reg_with_ret(WIFI_HOST_RCV_CTRL_2,(uint32 *)®);

 if(ret != M2M_SUCCESS) break;

 if (!(reg & 0x2))

 {

 ret = nm_read_reg_with_ret(0x150400,(uint32 *)&dma_addr);

 /*in case of success break */

 break;

 }

}

Command CMD_SINGLE_READ: 0xCA /* single word (4 bytes) read */
 BYTE [0] = CMD_SINGLE_READ
 BYTE [1] = address >> 16; /* WIFI_HOST_RCV_CTRL_2 address = 0x1078 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;

WILC acknowledges the command by sending three bytes [CA] [0] [F3].

Then WILC chip send the value of the register 0x1078 which equals 0x00.

Command CMD_SINGLE_READ: 0xCA /* single word (4 bytes) read */
 BYTE [0] = CMD_SINGLE_READ
 BYTE [1] = address >> 16; /* address = 0x1504 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

6

9

69

WILC acknowledges the command by sending three bytes [CA] [0] [F3].

Then WILC chip send the value of the register 0x1504 which equals 0x037AA0.

WILC writes the HIF header to the DMA memory address.

u32CurrAddr = dma_addr;

strHif.u16Length=NM_BSP_B_L_16(strHif.u16Length);

ret = nm_write_block(u32CurrAddr, (uint8*)&strHif, M2M_HIF_HDR_OFFSET);

Command CMD_DMA_EXT_WRITE: 0xC7 /* DMA extended write */
 BYTE [0] = CMD_DMA_EXT_WRITE
 BYTE [1] = address >> 16; /* address = 0x037AA0 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;
 BYTE [4] = size >> 16; /* size = 0x08 */
 BYTE [5] = size >> 8;
 BYTE [6] = size;

WILC acknowledges the command by sending three bytes [C7] [0] [F3].

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
7

0

70

The HIF layer writes the Data.

HIF writes the Control Buffer data (part of the framing of the request).

if (pu8CtrlBuf != NULL)

{

 ret = nm_write_block(u32CurrAddr, pu8CtrlBuf, u16CtrlBufSize);

 if(M2M_SUCCESS != ret) goto ERR1;

 u32CurrAddr += u16CtrlBufSize;

}

Command CMD_DMA_EXT_WRITE: 0xC7 /* DMA extended write */
 BYTE [0] = CMD_DMA_EXT_WRITE
 BYTE [1] = address >> 16; /* address = 0x037AA8 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;
 BYTE [4] = size >> 16; /* size = 0x04 */
 BYTE [5] = size >> 8;
 BYTE [6] = size;

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

7

1

71

WILC acknowledges the command by sending three bytes [C7] [0] [F3].

HIF layer writes the Data.

Finally, HIF finished writing the request data to memory and is going to interrupt the chip announcing that

host TX is done.

reg = dma_addr << 2;
reg |= (1 << 1);
ret = nm_write_reg(WIFI_HOST_RCV_CTRL_3, reg);

Command CMD_SINGLE_WRITE:0XC9 /* single word write */
 BYTE [0] = CMD_SINGLE_WRITE
 BYTE [1] = address >> 16; /* WIFI_HOST_RCV_CTRL_3 address = 0x106C */
 BYTE [2] = address >> 8;
 BYTE [3] = address;
 BYTE [4] = u32data >> 24; /* Data = 0x000DEA82 */
 BYTE [5] = u32data >> 16;
 BYTE [6] = u32data >> 8;
 BYTE [7] = u32data;

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
7

2

72

WILC acknowledges the command by sending two bytes [C9] [0].

HIF layer allows the chip to enter sleep mode again.

sint8 hif_chip_sleep(void)

{

 sint8 ret = M2M_SUCCESS;
 uint32 reg = 0;

 ret = nm_write_reg(WAKE_REG, SLEEP_VALUE);

 /* Clear bit 1 */

 ret = nm_read_reg_with_ret(0x1, ®);

 if(reg&0x2)

 {

 reg &=~(1 << 1);

 ret = nm_write_reg(0x1, reg);

 }

}

Command CMD_SINGLE_WRITE:0XC9 /* single word write */
 BYTE [0] = CMD_SINGLE_WRITE
 BYTE [1] = address >> 16; /* WAKE_REG address = 0x1074 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;
 BYTE [4] = u32data >> 24; /* SLEEP_VALUE Data = 0x4321 */
 BYTE [5] = u32data >> 16;
 BYTE [6] = u32data >> 8;
 BYTE [7] = u32data;

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

7

3

73

WILC acknowledges the command by sending two bytes [C9] [0].

Command CMD_INTERNAL_READ: 0xC4 /* internal register read */
 BYTE [0] = CMD_INTERNAL_READ
 BYTE [1] = address >> 8; /* address = 0x01 */
 BYTE [1] |= (1 << 7); /* clockless register */
 BYTE [2] = address;
 BYTE [3] = 0x00;

WILC acknowledges the command by sending three bytes [C4] [0] [F3].

Then WILC chip sends the value of the register 0x01 which equals 0x03.

Command CMD_INTERNAL_WRITE: C3 /* internal register write */
BYTE [0] = CMD_INTERNAL_WRITE

 BYTE [1] = address >> 8; /* address = 0x01 */
 BYTE [1] |= (1 << 7); /* clockless register */
 BYTE [2] = address;
 BYTE [3] = u32data >> 24; /* Data = 0x01 */
 BYTE [4] = u32data >> 16;
 BYTE [5] = u32data >> 8;
 BYTE [6] = u32data;

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
7

4

74

The WILC chip acknowledges the command by sending two bytes [C3] [0].

At this point, the HIF layer has finished posting the scan Wi-Fi request to the WILC chip and the request is

being processed by the chip.

11.3.2 RX (Receive Response)

After finishing the required operation (scan Wi-Fi) the WILC will interrupt the Host announcing that the

request has been processed.

Host will handle this interrupt to receive the response.

First step in hif_isr () is to wake up the WILC chip.

sint8 nm_clkless_wake(void)

{

 ret = nm_read_reg_with_ret(0x1, ®);

 /* Set bit 1 */

 ret = nm_write_reg(0x1, reg | (1 << 1));

 // Check the clock status

 ret = nm_read_reg_with_ret(clk_status_reg_adr, &clk_status_reg);

 // Tell Firmware that Host waked up the chip
 ret = nm_write_reg(WAKE_REG, WAKE_VALUE);

 return ret;
}

Command CMD_INTERNAL_READ: 0xC4 /* internal register read */
 BYTE [0] = CMD_INTERNAL_READ
 BYTE [1] = address >> 8; /* address = 0x01 */
 BYTE [1] |= (1 << 7); /* clockless register */
 BYTE [2] = address;

 BYTE [3] = 0x00;

WILC acknowledges the command by sending three bytes [C4] [0] [F3].

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

7

5

75

Then WILC chip sends the value of the register 0x01 which equals 0x01.

Command CMD_INTERNAL_WRITE: C3 /* internal register write */
 BYTE [0] = CMD_INTERNAL_WRITE

 BYTE [1] = address >> 8; /* address = 0x01 */
 BYTE [1] |= (1 << 7); /* clockless register */
 BYTE [2] = address;
 BYTE [3] = u32data >> 24; /* Data = 0x03 */
 BYTE [4] = u32data >> 16;
 BYTE [5] = u32data >> 8;
 BYTE [6] = u32data;

WILC acknowledges the command by sending two bytes [C3] [0].

Command CMD_INTERNAL_READ: 0xC4 /* internal register read */
 BYTE [0] = CMD_INTERNAL_READ
 BYTE [1] = address >> 8; /* address = 0x0F */
 BYTE [1] |= (1 << 7); /* clockless register */
 BYTE [2] = address;

 BYTE [3] = 0x00;

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
7

6

76

WILC acknowledges the command by sending three bytes [C4] [0] [F3].

Then WILC chip sends the value of the register 0x01 which equals 0x07.

Command CMD_SINGLE_WRITE:0XC9 /* single word write */
 BYTE [0] = CMD_SINGLE_WRITE
 BYTE [1] = address >> 16; /* WAKE_REG address = 0x1074 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;
 BYTE [4] = u32data >> 24; /* WAKE_VALUE Data = 0x5678 */
 BYTE [5] = u32data >> 16;
 BYTE [6] = u32data >> 8;
 BYTE [7] = u32data;

The chip acknowledges the command by sending two bytes [C9] [0].

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

7

7

77

Read register WIFI_HOST_RCV_CTRL_0 to check if there is new interrupt, and if so, clear it (as it will be

handled now).

static sint8 hif_isr(void)

{

 sint8 ret ;

 uint32 reg;

 volatile tstrHifHdr strHif;

 ret = hif_chip_wake();

 ret = nm_read_reg_with_ret(WIFI_HOST_RCV_CTRL_0, ®);

 if(reg & 0x1) /* New interrupt has been received */

 {

 uint16 size;

 /*Clearing RX interrupt*/

 ret = nm_read_reg_with_ret(WIFI_HOST_RCV_CTRL_0,®);
 reg &= ~(1<<0);

 ret = nm_write_reg(WIFI_HOST_RCV_CTRL_0,reg);

Command CMD_SINGLE_READ: 0xCA /* single word (4 bytes) read */
 BYTE [0] = CMD_SINGLE_READ
 BYTE [1] = address >> 16; /* WIFI_HOST_RCV_CTRL_0 address = 0x1070 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;

WILC acknowledges the command by sending three bytes [CA] [0] [F3].

Then WILC chip sends the value of the register 0x1070 which equals 0x31.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
7

8

78

Command CMD_SINGLE_READ: 0xCA /* single word (4 bytes) read */
 BYTE [0] = CMD_SINGLE_READ
 BYTE [1] = address >> 16; /* WIFI_HOST_RCV_CTRL_0 address = 0x1070 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;

WILC acknowledges the command by sending three bytes [CA] [0] [F3].

Then WILC chip sends the value of the register 0x1070 which equals 0x31.

Clear the WILC Interrupt.

Command CMD_SINGLE_WRITE:0XC9 /* single word write */
 BYTE [0] = CMD_SINGLE_WRITE
 BYTE [1] = address >> 16; /* WIFI_HOST_RCV_CTRL_0 address = 0x1070 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;
 BYTE [4] = u32data >> 24; /* Data = 0x30 */
 BYTE [5] = u32data >> 16;
 BYTE [6] = u32data >> 8;
 BYTE [7] = u32data;

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

7

9

79

The chip acknowledges the command by sending two bytes [C9] [0].

Then HIF reads the data size.

/* read the rx size */

ret = nm_read_reg_with_ret(WIFI_HOST_RCV_CTRL_0, ®);

Command CMD_SINGLE_READ: 0xCA /* single word (4 bytes) read */
 BYTE [0] = CMD_SINGLE_READ
 BYTE [1] = address >> 16; /* WIFI_HOST_RCV_CTRL_0 address = 0x1070 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;

WILC acknowledges the command by sending three bytes [CA] [0] [F3].

Then WILC chip sends the value of the register 0x1070 which equals 0x30.

HIF reads hif header address.

/** start bus transfer**/

ret = nm_read_reg_with_ret(WIFI_HOST_RCV_CTRL_1, &address);

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
8

0

80

Command CMD_SINGLE_READ: 0xCA /* single word (4 bytes) read */
 BYTE [0] = CMD_SINGLE_READ
 BYTE [1] = address >> 16; /* WIFI_HOST_RCV_CTRL_1 address = 0x1084 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;

WILC acknowledges the command by sending three bytes [CA] [0] [F3].

Then WILC chip sends the value of the register 0x1078 which equals 0x037AB0.

HIF reads the hif header data (as a block).

ret = nm_read_block(address, (uint8*)&strHif, sizeof(tstrHifHdr));

Command CMD_DMA_EXT_READ: C8 /* dma extended read */
 BYTE [0] = CMD_DMA_EXT_READ
 BYTE [1] = address >> 16; /* address = 0x037AB0*/
 BYTE [2] = address >> 8;
 BYTE [3] = address;
 BYTE [4] = size >> 16;
 BYTE [5] = size >>;
 BYTE [6] = size;

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

8

1

81

WILC acknowledges the command by sending three bytes [C8] [0] [F3].

WILC sends the data block (4 Bytes).

HIF then calls the appropriate handler according to the hif header received which tries to receive the

Response data payload. (Note that hif_receive () obtains some data again for checks).

sint8 hif_receive(uint32 u32Addr, uint8 *pu8Buf, uint16 u16Sz, uint8 isDone)

{

 uint32 address, reg;

 uint16 size;

 sint8 ret = M2M_SUCCESS;

 ret = nm_read_reg_with_ret(WIFI_HOST_RCV_CTRL_0,®);

 size = (uint16)((reg >> 2) & 0xfff);

 ret = nm_read_reg_with_ret(WIFI_HOST_RCV_CTRL_1,&address);

 /* Receive the payload */

 ret = nm_read_block(u32Addr, pu8Buf, u16Sz);

}

Command CMD_SINGLE_READ: 0xCA /* single word (4 bytes) read */
 BYTE [0] = CMD_SINGLE_READ
 BYTE [1] = address >> 16; /* WIFI_HOST_RCV_CTRL_0 address = 0x1070 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;

WILC acknowledges the command by sending three bytes [CA] [0] [F3].

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
8

2

82

Then WILC chip sends the value of the register 0x1070 which equals 0x30.

Command CMD_SINGLE_READ: 0xCA /* single word (4 bytes) read */
 BYTE [0] = CMD_SINGLE_READ
 BYTE [1] = address >> 16; /* WIFI_HOST_RCV_CTRL_1 address = 0x1084 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;

WILC acknowledges the command by sending three bytes [CA] [0] [F3].

Then WILC chip sends the value of the register 0x1078 which equals 0x037AB0.

Command CMD_DMA_EXT_READ: C8 /* dma extended read */
 BYTE [0] = CMD_DMA_EXT_READ
 BYTE [1] = address >> 16; /* address = 0x037AB8*/
 BYTE [2] = address >> 8;
 BYTE [3] = address;
 BYTE [4] = size >> 16;
 BYTE [5] = size >>;
 BYTE [6] = size;

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

8

3

83

WILC acknowledges the command by sending three bytes [C8] [0] [F3].

WILC sends the data block (4 Bytes).

Now, after HIF layer received the response, it interrupts the chip to announce host RX is done.

static sint8 hif_set_rx_done(void)

{

 uint32 reg;

 sint8 ret = M2M_SUCCESS;

 ret = nm_read_reg_with_ret(WIFI_HOST_RCV_CTRL_0,®);

 /* Set RX Done */

 reg |= (1<<1);

 ret = nm_write_reg(WIFI_HOST_RCV_CTRL_0,reg);

}

Command CMD_SINGLE_READ: 0xCA /* single word (4 bytes) read */
 BYTE [0] = CMD_SINGLE_READ
 BYTE [1] = address >> 16; /* WIFI_HOST_RCV_CTRL_0 address = 0x1070 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
8

4

84

WILC acknowledges the command by sending three bytes [CA] [0] [F3].

Then WILC chip sends the value of the register 0x1070 which equals 0x30.

Command CMD_SINGLE_WRITE:0XC9 /* single word write */
 BYTE [0] = CMD_SINGLE_WRITE
 BYTE [1] = address >> 16; /* WIFI_HOST_RCV_CTRL_0 address= 0x1070 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;
 BYTE [4] = u32data >> 24; /* Data = 0x32*/
 BYTE [5] = u32data >> 16;
 BYTE [6] = u32data >> 8;
 BYTE [7] = u32data;

The chip acknowledges the command by sending two bytes [C9] [0].

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

8

5

85

The HIF layer allows the chip to enter sleep mode again.

sint8 hif_chip_sleep(void)

{

 sint8 ret = M2M_SUCCESS;
 uint32 reg = 0;

 ret = nm_write_reg(WAKE_REG, SLEEP_VALUE);

 /* Clear bit 1 */

 ret = nm_read_reg_with_ret(0x1, ®);

 if(reg&0x2)

 {

 reg &=~(1 << 1);

 ret = nm_write_reg(0x1, reg);

 }

}

Command CMD_SINGLE_WRITE:0XC9 /* single word write */
 BYTE [0] = CMD_SINGLE_WRITE
 BYTE [1] = address >> 16; /* WAKE_REG address = 0x1074 */
 BYTE [2] = address >> 8;
 BYTE [3] = address;
 BYTE [4] = u32data >> 24; /* SLEEP_VALUE Data = 0x4321 */
 BYTE [5] = u32data >> 16;
 BYTE [6] = u32data >> 8;
 BYTE [7] = u32data;

WILC acknowledges the command by sending two bytes [C9] [0].

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
8

6

86

Command CMD_INTERNAL_READ: 0xC4 /* internal register read */
 BYTE [0] = CMD_INTERNAL_READ
 BYTE [1] = address >> 8; /* address = 0x01 */
 BYTE [1] |= (1 << 7); /* clockless register */
 BYTE [2] = address;
 BYTE [3] = 0x00;

WILC acknowledges the command by sending three bytes [C4] [0] [F3].

Then WILC chip sends the value of the register 0x01 which equals 0x03.

Command CMD_INTERNAL_WRITE: C3 /* internal register write */
 BYTE [0] = CMD_INTERNAL_WRITE
 BYTE [1] = address >> 8; /* address = 0x01 */
 BYTE [1] |= (1 << 7); /* clockless register */
 BYTE [2] = address;
 BYTE [3] = u32data >> 24; /* Data = 0x01 */
 BYTE [4] = u32data >> 16;
 BYTE [5] = u32data >> 8;
 BYTE [6] = u32data;

The WILC chip acknowledges the command by sending two bytes [C3] [0].

Scan Wi-Fi request has been sent to the WILC chip and the response is sent to the host successfully.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

8

7

87

12 ATWILC1000 Firmware Download

ATWILC1000 HW doesn’t have an internal Flash to store the firmware, so the firmware has to be stored

on the host Flash and to be downloaded to the ATWILC1000 ram once at the driver initialization

The firmware binary is delivered as a part of the ATWILC1000 SW release at the file firmware.h where the

firmware binary array is defined as “const char firmware[]”

The firmware binary is composed of a number of sections; each section is composed as follows:

1. The first 4-bytes is the write address of the current section in the ATWILC1000 chip memory.

2. 4-Bytes the current section data size.

3. Section data with length equals to the section size.

First Section write

address
First Section Data Size First Section Data

4
-

B
y
te

s

4
-

B
y
te

s

First

Section

Data

Size-

Bytes

Second

Section

Data

Size-

Bytes

First Section Data

First Section write

address
First Section Data Size First Section Data

4
-

B
y
te

s

4
-

B
y
te

s

First Section Data

 The Driver should repeat the pervious pattern till the end of the array
and shouldn’t assume a predefined number of sections, as the number
of sections could be changed from release to release.

 On some platforms Flash memory is not directly connected to the DMA
engine, In that case the driver should copy the firmware in chunks to
the host ram then write those chunks to the SPI interface.

Writing the firmware on the SPI bus should follow the same sequence at Data Packet Format.

Below is a code sample of downloading the firmware with ram chunks of 32 bytes, this could be changed

to any chunk size.

sint8 firmware_download(void)
{
 sint8 ret = M2M_SUCCESS;
 uint32 u32SecSize,u32SecAddress;
 uint8_t* pu8FirmwareBuffer;
 sint32 BuffIndex =0,CurrentSecSize = 0;
 uint8_t u8TransferChunk[32],ChunkSize = 32;

 pu8FirmwareBuffer = (uint8_t*)firmware;
 M2M_DBG("firmware size = %d\n",sizeof(firmware));

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
8

8

88

 while((uint32_t)pu8FirmwareBuffer < (uint32_t)(firmware+sizeof(firmware)))
 {
 /*get text section address and size*/
 u32SecAddress = (((uint32_t)(pu8FirmwareBuffer[3]))<<24)|(((uint32_t)(pu8FirmwareBuffer[2]))<<16)|
 (((uint32_t)(pu8FirmwareBuffer[1]))<<8)|(((uint32_t)(pu8FirmwareBuffer[0]))<<0);
 u32SecSize = (((uint32_t)(pu8FirmwareBuffer[7]))<<24)|(((uint32_t)(pu8FirmwareBuffer[6]))<<16)|
 (((uint32_t)(pu8FirmwareBuffer[5]))<<8)|(((uint32_t)(pu8FirmwareBuffer[4]))<<0);
 M2M_DBG("write sec %x size %d\n",u32SecAddress,u32SecSize);
 CurrentSecSize = u32SecSize;
 ChunkSize = 32;
 BuffIndex = 8;
 while(CurrentSecSize>0)
 {
 if(CurrentSecSize < ChunkSize)
 ChunkSize = CurrentSecSize;

 m2m_memcpy(u8TransferChunk,pu8FirmwareBuffer+BuffIndex,ChunkSize);
 nm_write_block(u32SecAddress,u8TransferChunk,ChunkSize);
 u32SecAddress += ChunkSize;
 BuffIndex += ChunkSize;
 CurrentSecSize -= ChunkSize;
 }
 pu8FirmwareBuffer += BuffIndex;

 }
 return ret;
}

 There is only one firmware for all mode of operations of ATWILC1000

(Station, AP, and P2P).

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

8

9

89

Appendix A API Reference

A.1 WLAN Module

A.1.1 Defines

Define Definition Value

#defineM2M_FIRMWARE_VERSION_MAJOR_NO Firmware Major release version number 18

#define M2M_FIRMWARE_VERSION_MINOR_NO Firmware Minor release version number 0

#define M2M_FIRMWARE_VERSION_PATCH_NO Firmware patch release version number 2

#define M2M_DRIVER_VERSION_PATCH_NO Driver patch release version number 0

#define M2M_BUFFER_MAX_SIZE (1600UL) Maximum size for the shared packet buffer -4

#define M2M_MAC_ADDRES_LEN The size for 802.11 MAC address 6

#define M2M_ETHERNET_HDR_OFFSET The offset of the Ethernet header within the

WLAN TX Buffer

34

#define M2M_ETHERNET_HDR_LEN Length of the Ethernet header in bytes 14

#define M2M_MAX_SSID_LEN Maximum size for the Wi-Fi SSID including

the NULL termination

33

#define M2M_MAX_PSK_LEN Maximum size for the WPA PSK including

the NULL termination

65

#define M2M_DEVICE_NAME_MAX Maximum Size for the device name including

the NULL termination

48

#define M2M_LISTEN_INTERVAL The STA uses the Listen Interval parameter

to indicate to the AP how many beacon inter-

vals it shall sleep before it retrieves the

queued frames

1

#define M2M_1X_PWD_MAX The maximum size of the password including

the NULL termination. It is used for RADIUS

authentication in case of connecting the de-

vice to an AP secured with WPA-Enterprise.

41

#define M2M_CUST_IE_LEN_MAX The maximum size of IE (Information Ele-

ment).

252

#define M2M_CONFIG_CMD_BASE The base value of all the host configuration

commands opcodes

1

#define M2M_SERVER_CMD_BASE The base value of all the power save mode

host commands codes

20

#define M2M_STA_CMD_BASE The base value of all the station mode host

commands opcodes

40

#define M2M_AP_CMD_BASE The base value of all the Access Point mode

host commands opcodes

70

#define M2M_P2P_CMD_BASE The base value of all the P2P mode host

commands opcodes

90

#define M2M_OTA_CMD_BASE The base value of all the Over the Air (OTA)

mode host commands opcodes

100

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
9

0

90

Define Definition Value

#define WEP_40_KEY_SIZE Indicate the wep key size in bytes for 40 bit

hex passphrase

((uint8)5)

#define WEP_104_KEY_SIZE Indicate the wep key size in bytes for 104 bit

hex passphrase

((uint8)13)

#define WEP_40_KEY_STRING_SIZE Indicate the wep key size in bytes for 40 bit

string passphrase

(uint8)10)

#define WEP_104_KEY_STRING_SIZE Indicate the wep key size in bytes for 104 bit

string passphrase

((uint8)26

#define WEP_KEY_MAX_INDEX Indicate the max key index value for WEP

authentication

(uint8)4

#define M2M_SCAN_MIN_NUM_SLOTS The min. number of scan slots performed by

the WILC firmware

2

#define M2M_SCAN_MIN_SLOT_TIME The min. duration in milliseconds of a scan

slots performed by the WILC firmware

(20)

#define M2M_SCAN_FAIL Indicate that the WILC firmware has failed to

perform the scan operation

((uint8)1)

#define M2M_JOIN_FAIL Indicate that the WILC firmware has failed to

join the BSS

((uint8)2)

#define M2M_AUTH_FAIL Indicate that the WILC firmware has failed to

authenticate with the AP

((uint8)3)

#define M2M_ASSOC_FAIL Indicate that the WILC firmware has failed to

associate with the AP

((uint8)4)

#define M2M_SCAN_ERR_WIFI Currently not used ((sint8)-2)

#define M2M_SCAN_ERR_IP Currently not used ((sint8)-3)

#define M2M_SCAN_ERR_AP Currently not used ((sint8)-4)

#define M2M_SCAN_ERR_P2P Currently not used ((sint8)-5)

#define M2M_SCAN_ERR_WPS Currently not used ((sint8)-6)

#define M2M_DEFAULT_CONN_EMPTY_LIST A failure response that indicates an empty

network list as a result to the function call

m2m_default_connect

((sint8)-20)

#define M2M_DEFAULT_CONN_SCAN_MIS-

MATCH

A failure response that indicates that no one

of the cached networks was found in the

scan results, as a result to the function call

m2m_default_connect

((sint8)-21)

#define M2M_WIFI_FRAME_TYPE_ANY Set monitor mode to receive any of the

frames types

0xFF

#define M2M_WIFI_FRAME_SUB_TYPE_ANY Set monitor mode to receive frames with any

sub type

0xFF

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

9

1

91

A.1.2 Enumeration/Typedef

enum tenuM2mConfigCmd

This enum contains all the host commands used to configure the WILC firmware

Enumerator Values

M2M_WIFI_REQ_RESTART Reserved for Firmware use not allowed from host driver

M2M_WIFI_REQ_SET_MAC_ADDRESS Set the WILC mac address (will overwrite production eFused boards)

M2M_WIFI_REQ_CURRENT_RSSI Request the current connected AP RSSI

M2M_WIFI_RESP_CURRENT_RSSI Response to M2M_WIFI_REQ_CURRENT_RSSI with the RSSI value

M2M_WIFI_REQ_SET_DEVICE_NAME Set the WILC device name property

M2M_WIFI_REQ_CUST_INFO_ELEMENT Add Custom Element to Beacon Management Frame

enum tenuM2mStaCmd

This enum contains all the WILC commands while in Station mode.

Enumerator Values

M2M_WIFI_REQ_CONNECT Connect with AP command

M2M_WIFI_REQ_GET_CONN_INFO Request connection information command

M2M_WIFI_RESP_CONN_INFO Request connection information response

M2M_WIFI_REQ_DISCONNECT Request to disconnect from AP command

M2M_WIFI_RESP_CON_STATE_CHANGE

D
Connection state changed response

M2M_WIFI_REQ_SLEEP Set PS mode command

M2M_WIFI_REQ_SCAN Request scan command

M2M_WIFI_REQ_WPS_SCAN Request WPS scan command

M2M_WIFI_RESP_SCAN_DONE Scan complete notification response

M2M_WIFI_REQ_SCAN_RESULT Request Scan results command

M2M_WIFI_RESP_SCAN_RESULT Request Scan results response

M2M_WIFI_REQ_WPS Request WPS start command

M2M_WIFI_REQ_START_WPS
This command is for internal use by the WILC and should not be used

by the host driver

M2M_WIFI_REQ_DISABLE_WPS Request to disable WPS command

M2M_WIFI_REQ_LSN_INT Set Wi-Fi listen interval

M2M_WIFI_REQ_SEND_ETHER-

NET_PACKET
Send Ethernet packet in bypass mode

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
9

2

92

Enumerator Values

M2M_WIFI_RESP_ETHER-

NET_RX_PACKET
Receive Ethernet packet in bypass mode

M2M_WIFI_REQ_SET_SCAN_OPTION Set Scan options “slot time, slot number, etc.”

M2M_WIFI_REQ_SET_SCAN_REGION Set scan region

M2M_WIFI_REQ_DOZE Used to force the WILC to sleep in manual PS mode

M2M_WIFI_REQ_SET_MAC_MCAST Set the WILC multicast filters

enum tenuM2mP2pCmd

This enum contains all the WILC commands while in P2P mode.

Enumerator Values

M2M_WIFI_REQ_P2P_INT_CONNECT This command is for internal use by the WILC and should not be used

by the host driver

M2M_WIFI_REQ_ENABLE_P2P Enable P2P mode command

M2M_WIFI_REQ_DISABLE_P2P Disable P2P mode command

M2M_WIFI_REQ_P2P_REPOST This command is for internal use by the WILC and should not be used

by the host driver

enum tenuM2mApCmd

This enum contains all the WILC commands while in AP mode.

Enumerator Values

M2M_WIFI_REQ_ENABLE_AP Enable AP mode command

M2M_WIFI_REQ_DISABLE_AP Disable AP mode command

M2M_WIFI_REQ_AP_ASSOC_INFO Command to get Info about the associated stations

M2M_WIFI_RESP_AP_ASSOC_INFO Response to get Info about the associated stations

enum tenuM2mConnState

Wi-Fi Connection State.

Enumerator Values

M2M_WIFI_DISCONNECTED Wi-Fi state is disconnected

M2M_WIFI_CONNECTED Wi-Fi state is connected

M2M_WIFI_UNDEF Undefined Wi-Fi State

enum tenuM2mSecType

Wi-Fi Supported Security types.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

9

3

93

Enumerator Values

M2M_WIFI_SEC_INVALID Invalid security type

M2M_WIFI_SEC_OPEN Wi-Fi network is not secured

M2M_WIFI_SEC_WPA_PSK Wi-Fi network is secured with WPA/WPA2 personal (PSK)

M2M_WIFI_SEC_WEP Security type WEP (40 or 104) OPEN OR SHARED

M2M_WIFI_SEC_802_1X Wi-Fi network is secured with WPA/WPA2 Enterprise.IEEE802.1x

user-name/password authentication

enum tenuM2mSsidMode

Wi-Fi Supported SSID types.

Enumerator Values

SSID_MODE_VISIBLE SSID is visible to others

SSID_MODE_HIDDEN SSID is hidden

enum tenuM2mScanCh

Wi-Fi RF Channels.

Enumerator values

M2M_WIFI_CH_1

M2M_WIFI_CH_2

M2M_WIFI_CH_3

M2M_WIFI_CH_4

M2M_WIFI_CH_5

M2M_WIFI_CH_6

M2M_WIFI_CH_7

M2M_WIFI_CH_8

M2M_WIFI_CH_9

M2M_WIFI_CH_10

M2M_WIFI_CH_11

M2M_WIFI_CH_12

M2M_WIFI_CH_13

M2M_WIFI_CH_14

M2M_WIFI_CH_ALL

enum tenuM2mScanRegion

Wi-Fi RF Channels.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
9

4

94

Enumerator values

NORTH_AMERICA

ASIA

enum tenuPowerSaveModes

Power save Modes.

Enumerator Values

M2M_NO_PS Power save is disabled

M2M_PS_AUTOMATIC Power save is done automatically by the WILC. This mode doesn't disable all

of the WILC modules and use higher amount of power than the H_AUTO-

MATIC and the DEEP_AUTOMATIC modes.

M2M_PS_H_AUTOMATIC Power save is done automatically by the WILC. Achieve higher power save

than the AUTOMATIC mode by shutting down more parts of the WILC firm-

ware.

M2M_PS_DEEP_AUTOMATIC Power save is done automatically by the WILC. Achieve the highest possible

power save.

M2M_PS_MANUAL Power save is done manually by the user

enum tenuWPSTrigger

WPS triggering methods.

Enumerator Values

WPS_PIN_TRIGGER WPS is triggered in PIN method

WPS_PBC_TRIGGER WPS is triggered via push button

enum tenuControlInterface

Values used to set the interface currently under control, Used in case of concurrency.

Enumerator Values

INTERFACE_1 Interface 1

INTERFACE_2 Interface 2

enum tenuWifiFrameType

Enumeration for Wi-Fi MAC frame type codes (2-bit), the following types are used to identify the type of

frame sent or received. Each frame type constitutes a number of frame subtypes as defined in

tenuSubTypes to specify the exact type of frame. Values are defined as per the IEEE 802.11 standard.

Remarks:

The following frame types are useful for advanced user usage when CONF_MGMT is defined and the

user application requires monitoring the frame transmission and reception.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

9

5

95

See also:

 tenuSubTypes

Enumerator Values

MANAGEMENT Wi-Fi Management frame (Probe Req/Resp, Beacon, Association

Req/Resp, etc.)

CONTROL Wi-Fi Control frame (eg. ACK frame)

DATA_BASICTYPE Wi-Fi Data frame

RESERVED

enum tenuSubTypes

Enumeration for Wi-Fi MAC Frame subtype code (6-bit). The frame subtypes fall into one of the three

frame type groups as defined in tenuWifiFrameType (MANAGEMENT, CONTROL, and DATA). Values

are defined as per the IEEE 802.11 standard.

Remarks:

The following sub-frame types are useful for advanced user usage when CONF_MGMT is defined and the

application developer requires monitoring the frame transmission and reception.

See also:

 tenuWifiFrameType

Enumerator Values

Sub-Types related to Management Sub-Types

ASSOC_REQ

ASSOC_RSP

REASSOC_REQ

REASSOC_RSP

PROBE_REQ

PROBE_RSP

BEACON

ATIM

DISASOC

AUTH

DEAUTH

ACTION

Sub-Types related to Control

PS_POLL

RTS

CTS

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
9

6

96

Enumerator Values

ACK

CFEND

CFEND_ACK

BLOCKACK_REQ

BLOCKACK

Sub-Types related to Data

DATA

DATA_ACK

DATA_POLL

DATA_POLL_ACK

NULL_FRAME

CFACK

CFPOLL

CFPOLL_ACK

QOS_DATA

QOS_DATA_ACK

QOS_DATA_POLL

QOS_DATA_POLL_ACK

QOS_NULL_FRAME

QOS_CFPOLL

QOS_CFPOLL_ACK

enum tenuInfoElementId

Enumeration for the Wi-Fi Information Element (IE) IDs, which indicates the specific type of IEs. IEs are

management frame information included in management frames. Values are defined as per the IEEE

802.11 standard.

Enumerator Values

ISSID Service Set Identifier (SSID)

ISUPRATES Supported Rates

IFHPARMS FH parameter set

IDSPARMS DS parameter set

ICFPARMS CF parameter set

ITIM Traffic Information Map

IIBPARMS IBSS parameter set

ICOUNTRY Country element

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

9

7

97

Enumerator Values

IEDCAPARAMS EDCA parameter set

ITSPEC Traffic Specification

ITCLAS Traffic Classification

ISCHED Schedule

ICTEXT Challenge Text

IPOWERCONSTRAINT Power Constraint

IPOWERCAPABILITY Power Capability

ITPCREQUEST TPC Request

ITPCREPORT TPC Report

ISUPCHANNEL

ICHSWANNOUNC Channel Switch Announcement

IMEASUREMENTREQUEST Measurement request

IMEASUREMENTREPORT Measurement report

IQUIET Quiet element Info

IIBSSDFS IBSS DFS

IERPINFO ERP Information

ITSDELAY TS Delay

ITCLASPROCESS TCLAS Processing

IHTCAP HT Capabilities

IQOSCAP QoS Capability

IRSNELEMENT RSN Information Element

IEXSUPRATES Extended Supported Rates

IEXCHSWANNOUNC Extended Ch Switch Announcement

IHTOPERATION HT Information

ISECCHOFF Secondary Channel Offset

I2040COEX 20/40 Coexistence IE

I2040INTOLCHREPORT 20/40 Intolerant channel report

IOBSSSCAN OBSS Scan parameters

IEXTCAP Extended capability

IWMM WMM® parameters

IWPAELEMENT WPA Information Element

typedef struct tstr1xAuthCredentials

Credentials for the user to authenticate with the AAA server (WPA-Enterprise Mode IEEE802.1x).

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
9

8

98

Data Field Description

uint8

au8UserName[M2M_1X_USR_NAME_MAX]

User Name. It must be Null terminated string.

uint8 au8Passwd[M2M_1X_PWD_MAX] Password corresponding to the user name. It must be Null termi-

nated string.

typedef struct tstrEthInitParam

Structure to hold Ethernet interface parameters. Structure should be defined, based on the application's

functionality. Before a call is made to the initialize the Wi-Fi operations, set the structure's attributes and

pass it as a parameter (part of the Wi-Fi configuration structure tstrWifiInitParam) to the m2m_wifi_init

function.

Applications shouldn't need to define this structure, if the bypass mode is not defined.

Data Field Definition

tpfAppWifiCb pfAppWifiCb Not used

tpfAppEthCb pfAppEthCb Callback for Ethernet interface

uint8* au8ethRcvBuf Pointer to Receive Buffer of Ethernet Packet

uint16 u16ethRcvBufSize Size of Receive Buffer for Ethernet Packet

See also:

 tpfAppEthCb tpfAppWifiCb

 m2m_wifi_init

Warning:

Make sure that bypass mode is defined before using tstrEthInitParam.

typedef struct tstrM2MAPConfig

AP Configuration structure. This structure holds the configuration parameters for the M2M AP mode. It

should be set by the application when it requests to enable the M2M AP operation mode. The M2M AP

mode currently supports only OPEN and WEP security.

Data Field Definition

uint8 au8SSID[M2M_MAX_SSID_LEN] Configuration parameters for the Wi-Fi AP.AP SSID

uint8 u8ListenChanel Wi-Fi RF Channel which the AP will operate on

uint8 u8KeyIndx Wep key Index start from 0 to 3

uint8 u8KeySz Wep key Size

WEP_40_KEY_STRING_SIZE or WEP_104_KEY_STRING_SIZE

uint8 au8Wep-

Key[WEP_104_KEY_STRING_SIZE+1]

Wep key null terminated

uint8 u8SecType Security type: Open or WEP only in the current implementation

uint8 u8SsidHide SSID Status "Hidden(1)/Visible(0)"

uint8 u8IsPMKUsed For internal use by the driver, shouldn’t be set by the application

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

9

9

99

Data Field Definition

uint8 au8PSK[M2M_MAX_PSK_LEN] Pre-Shared key of the AP, used if the “u8SecType” is set to

M2M_WIFI_SEC_WPA_PSK

typedef struct tstrM2mClientState

PS Client State.

Data Field Definition

uint8 u8State PS Client State

uint8 __PAD24__[3] Padding bytes for forcing 4-byte alignment

typedef struct tstrM2MConnInfo

M2M Provisioning Information obtained from the HTTP Provisioning server.

Data Field Definition

char acSSID[M2M_MAX_SSID_LEN] AP connection SSID name

uint8 u8SecType Security type

uint8 au8IPAddr[4] Connection IP address

sint8 s8RSSI Connection RSSI signal

uint8 __PAD8__ Padding bytes for forcing 4-byte alignment

typedef struct tstrM2MDeviceNameConfig

Device name.

It is assigned by the application. It is used mainly for Wi-Fi Direct device discovery and WPS device

information.

Data Field Definition

uint8 au8DeviceName[M2M_DE-

VICE_NAME_MAX]

NULL terminated device name

typedef struct tstrM2MAssocEntryInfo

Holds the assoc info of an entry in AP mode.

Data Field Definition

uint8 BSSID[6]; MAC address of the associated station

sint8 s8RSSI; RSSI of this station

typedef struct tstrM2MAPAssocInfo

Holds the assoc info of all entries associated in AP mode.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

0

0

100

Data Field Definition

uint8 u8NoConnSta; No. Of currently associated stations in AP mode

tstrM2MAssocEntryInfo astrM2MAssocEntryInfo[8]; Structure holds info per station

typedef struct tstrM2mIpCtrlBuf

Structure holding the incoming buffer's data size information, indicating the data size of the buffer and the

remaining buffer's data size. The data of the buffer which holds the packet sent to the host when in the

bypass mode, is placed in the tstrEthInitParam structure in the au8ethRcvBuf attribute. This following

information is retrieved in the host when an event M2M_WIFI_RESP_ETHERNET_RX_PACKET is

received in the Wi-Fi callback function tpfAppWifiCb.

The application is expected to use this structure’s information to determine if there is still incoming data to

be received from the firmware.

See also:

 tpfAppEthCb

 tstrEthInitParam

Warning:

Make sure that bypass mode is defined before using tstrM2mIpCtrlBuf.

Data Field Definition

uint16 u16DataSize Size of the received data in bytes

uint16 u16RemainigDataSize Size of the remaining data bytes to be delivered to host

typedef struct tstrM2MMulticastMac

M2M add/remove multicast mac address.

Data Field Definition

uint8 au8macaddress[M2M_MAC_ADDRES_LEN] Mac address needed to be added or removed from filter

uint8 u8AddRemove Set by 1 to add or 0 to remove from filter

uint8 __PAD8__ Padding bytes for forcing 4-byte alignment

typedef struct tstrM2MP2PConnect

Set the device to operate in the Wi-Fi Direct (P2P) mode.

Data Field Definition

uint8 u8ListenChannel P2P Listen Channel (1, 6, or 11)

uint8 __PAD24__[3] Padding bytes for forcing 4-byte alignment

typedef struct tstrM2MProvisionInfo

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

0

1

101

M2M Provisioning Information obtained from the HTTP Provisioning server.

Data Field Definition

uint8 au8SSID[M2M_MAX_SSID_LEN] Provisioned SSID

uint8 au8Password[M2M_MAX_PSK_LEN] Provisioned Password

uint8 u8SecType Wi-Fi Security type OPEN/WPA

uint8 u8Status Provisioning status. It must be checked before reading the

provisioning information. It may be:

M2M_SUCCESS (Provision successful)

M2M_FAIL (Provision Failed)

typedef struct tstrM2MProvisionModeConfig

M2M Provisioning Mode Configuration.

Data Field Definition

tstrM2MAPConfig strApConfig Configuration parameters for the Wi-Fi AP

char acHttpServerDomainName[64] The device domain name for HTTP provisioning

uint8 u8EnableRedirect A flag to enable/disable HTTP redirect.

Feature for the HTTP Provisioning server. If the Redirect is

enabled, all HTTP traffic (http://URL) from the device associ-

ated with WILC AP will be redirected to the HTTP Provision-

ing Web page.

0: Disable HTTP Redirect

1: Enable HTTP Redirect

uint8 __PAD24__[3] Padding bytes for forcing 4-byte alignment

typedef struct tstrM2mPs

Power Save Configuration.

See also:

 tenuPowerSaveModes

Data Field Definition

uint8 u8PsType Power save operating mode

tenuPowerSaveModes

uint8 u8BcastEn 1 Enabled -> Listen to the broadcast data

0 Disabled -> Ignore the broadcast data

uint8 __PAD16__[2] Padding bytes for forcing 4-byte alignment

typedef struct tstrM2mReqScanResult

Scan Result Request. The Wi-Fi Scan results list is stored in Firmware.

The application can request a certain scan result by its index.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

0

2

102

Data Field Definition

uint8 u8Index Index of the desired scan result

uint8 __PAD24__[3] Padding bytes for forcing 4-byte alignment

typedef struct tstrM2MScan

Wi-Fi Scan Request.

See also:

 tenuM2mScanCh

Data Field Definition

uint8 u8ChNum The Wi-Fi RF Channel number

uint8 __PAD24__[3] Padding bytes for forcing 4-byte alignment

typedef struct tstrM2mScanDone

Wi-Fi Scan Result.

Data Field Definition

uint8 u8NumofCh Number of found APs

sint8 s8ScanState Scan status

uint8 __PAD16__[2] Padding bytes for forcing 4-byte alignment

typedef struct tstrM2MScanOption

Wi-Fi Scan Request.

Data Field Definition

uint8 u8NumOfSlot The min number of slots is 2 for every channel, every slot

the SoC will send Probe Req on air, and wait/listen for

PROBE RESP/BEACONS for the u16slotTime

uint8 u8SlotTime

the time that the SoC will wait on every channel listening to

the frames on air when that time increased number of AP

will increased in the scan results min time is 10ms and the

max is 250ms

uint8 __PAD16__[2] Padding bytes for forcing 4-byte alignment

typedef struct tstrM2mSetMacAddress

Sets the MAC address from application. The WILC load the mac address from the effuse by default to the

WILC configuration memory, but that function is used to let the application overwrite the configuration

memory with the mac address from the host.

Note: It is recommended to call this only once before calling connect request and after the

m2m_wifi_init.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

0

3

103

Data Field Definition

uint8 au8Mac[6] MAC address array

uint8 __PAD16__[2] Padding bytes for forcing 4-byte alignment

typedef struct tstrM2mSlpReqTime

Manual power save request sleep time.

Data Field Definition

uint32 u32SleepTime Sleep time in ms

typedef struct tstrM2mWifiConnect

Wi-Fi Connect Request.

typedef struct tstrM2mWifiscanResult

Wi-Fi Scan Result.

Information corresponding to an AP in the Scan Result list identified by its order (index) in the list.

Data Field Definition

uint8 u8index AP index in the scan result list

sint8 s8rssi AP signal strength

uint8 u8AuthType AP authentication type

uint8 u8ch AP RF channel

uint8 au8BSSID[6] BSSID of the AP

uint8 au8SSID[M2M_MAX_SSID_LEN]

AP SSID

uint8 _PAD8_ Padding bytes for forcing 4-byte alignment

typedef struct tstrM2MWifiSecInfo

Authentication credentials to connect to a Wi-Fi network.

Data Field Definition

tuniM2MWifiAuth uniAuth Union holding all possible authentication parameters corre-

sponding the current security types

Data Field Definition

tstrM2MWifiSecInfo strSec Security parameters for authenticating with the AP

uint16 u16Ch RF Channel for the target SSID from 0 to 13

uint8 au8SSID[M2M_MAX_SSID_LEN] SSID of the desired AP. It must be NULL terminated string

uint8 __PAD__[__CONN_PAD_SIZE__] Padding bytes for forcing 4-byte alignment

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

0

4

104

Data Field Definition

uint8 u8SecType Wi-Fi network security type. See tenuM2mSecType for sup-

ported security types.

uint8 __PAD__[__PADDING__] Padding bytes for forcing 4-byte alignment

typedef struct tstrM2mWifiStateChanged

Wi-Fi Connection State.

See also:

 M2M_WIFI_DISCONNECTED

 M2M_WIFI_CONNECTED

 M2M_WIFI_REQ_CON_STATE_CHANGED

Data Field Definition

uint8 u8CurrState Current Wi-Fi connection state WLAN frame length

uint8 u8ErrCode Error type

uint8 __PAD16__[2] Padding bytes for forcing 4-byte alignment

typedef struct tstrM2mWifiWepParams

WEP security key parameters.

Data Field Definition

uint8 u8KeyIndx Wep key Index

uint8 u8KeySz Wep key Size

uint8 au8WepKey[WEP_104_KEY_STRING_SIZE+1] WEP Key represented as a NULL terminated ASCII string

uint8 __PAD24__[3] Padding bytes to keep the structure word aligned

typedef struct tstrM2MWPSConnect

WPS configuration parameters.

See also:

 tenuWPSTrigger

Data Field Definition

uint8 u8TriggerType WPS triggering method (Push button or PIN)

char acPinNumber[8] WPS PIN No (for PIN method)

uint8 __PAD24__[3] Padding bytes for forcing 4-byte alignment

typedef struct tstrM2MWPSInfo

WPS Result.

This structure is passed to the application in response to a WPS request.

If the WPS session is completed successfully, the structure will have Non-ZERO authentication type.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

0

5

105

If the WPS Session fails (due to error or timeout) the authentication type is set to ZERO.

See also:

 tenuM2mSecType

Data Field Definition

uint8 u8Ch RF Channel for the AP

uint8 au8SSID[M2M_MAX_SSID_LEN] SSID obtained from WPS

uint8 au8PSK[M2M_MAX_PSK_LEN] PSK for the network obtained from WPS

A.1.3 Function

 m2m_wifi_init

– NMI_API sint8 m2m_wifi_init (tstrWifiInitParam *pWifiInitParam)

Synchronous initialization function for the WILC driver. This function initializes the driver by, registering

the call back function for M2M_WIFI layer (also the call back function for bypass mode/monitoring mode if

defined), initializing the host interface layer and the bus interfaces.

Wi-Fi callback registering is essential to allow the handling of the events received, in response to the

asynchronous Wi-Fi operations.

Following are the possible Wi-Fi events that are expected to be received through the call back function

(provided by the application) to the M2M_WIFI layer are:

 M2M_WIFI_RESP_CON_STATE_CHANGED

 M2M_WIFI_RESP_CONN_INFO

 M2M_WIFI_REQ_WPS

 M2M_WIFI_RESP_SCAN_DONE

 M2M_WIFI_RESP_SCAN_RESULT

 M2M_WIFI_RESP_CURRENT_RSSI

 M2M_WIFI_RESP_CLIENT_INFO

Example:

In case bypass mode is defined:

 M2M_WIFI_RESP_ETHERNET_RX_PACKET

In case Monitoring mode is used:

 M2M_WIFI_RESP_WIFI_RX_PACKET

Any application using the WILC driver must call this function at the start of its main function.

Parameters:

In pWifiInitParam This is a pointer to the tstrWifiInitParam structure which holds the pointer

to the application WIFI layer call back function, monitoring mode call back

and tstrEthInitParam structure containing bypass mode parameters

Precondition:

Prior to this function call, application developers must provide a call back function responsible for

receiving all the Wi-Fi events that are received on the M2M_WIFI layer.

Warning:

Failure to successfully complete function indicates that the driver couldn't be initialized and a fatal error

will prevent the application from proceeding.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

0

6

106

See also:

 m2m_wifi_deinit

 tenuM2mStaCmd

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 m2m_wifi_deinit

– NMI_API sint8 m2m_wifi_deinit (void *arg)

Synchronous de-initialization function to the ATWILC1000 driver. Deinitializes the host interface and frees

any resources used by the M2M_WIFI layer. This function must be called in the application closing phase,

to ensure that all resources have been correctly released. No arguments are expected to be passed in.

Parameters:

In arg Generic argument. Not used in current implementation

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 m2m_wifi_handle_events

– NMI_API sint8 m2m_wifi_handle_events (void * arg)

Synchronous M2M event handler function, responsible for handling interrupts received from the WILC

firmware. Application developers should call this function periodically in-order to receive the events that

are to be handled by the callback functions implemented by the application.

Precondition:

Prior to receiving Wi-Fi interrupts, the WILC driver should have been successfully initialized by calling the

m2m_wifi_init function.

Warning:

Failure to successfully complete this function indicates bus errors and hence a fatal error that will prevent

the application from proceeding.

Returns:

The function returns M2M_SUCCESS for successful interrupt handling and a negative value otherwise.

 m2m_wifi_connect

– NMI_API sint8 m2m_wifi_connect (char *pcSsid, uint8 u8SsidLen, uint8 u8SecType, void

*pvAuthInfo, uint16 u16Ch)

Asynchronous Wi-Fi connection function to a specific AP. Prior to a successful connection, the application

developers must know the SSID of the AP, the security type, the authentication information parameters

and the channel number to which the connection will be established. The connection status is known

when a response of M2M_WIFI_RESP_CON_STATE_CHANGED is received based on the states

defined in tenuM2mConnState, successful connection is defined by M2M_WIFI_CONNECTED.

The only difference between this function and m2m_wifi_default_connect, is the connection parameters.

Connection using this function is expected to be made to a specific AP and to a specified channel.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

0

7

107

Parameters:

In pcSsid A buffer holding the SSID corresponding to the requested AP

In u8SsidLen Length of the given SSID (not including the NULL termination). A length less than

ZERO or greater than the maximum defined SSID M2M_MAX_SSID_LEN will result in

a negative error M2M_ERR_FAIL.

In u8SecType Wi-Fi security type security for the network. It can be one of the following types: -

M2M_WIFI_SEC_OPEN -M2M_WIFI_SEC_WEP -M2M_WIFI_SEC_WPA_PSK -

M2M_WIFI_SEC_802_1X A value outside these possible values will result in a nega-

tive return error M2M_ERR_FAIL.

In pvAuthInfo Authentication parameters required for completing the connection. It is type is based

on the Security type. If the authentication parameters are NULL or are greater than the

maximum length of the authentication parameters length as defined by

M2M_MAX_PSK_LEN a negative error will return M2M_ERR_FAIL(-12) indicating

connection failure.

In u16Ch Wi-Fi channel number as defined in tenuM2mScanCh enumeration. Channel number

greater than M2M_WIFI_CH_14 returns a negative error M2M_ERR_FAIL(-12). Except

if the value is M2M_WIFI_CH_ALL(255), since this indicates that the firmware should

scan all channels to find the SSID requested to connect to. Failure to find the connec-

tion match will return a negative error M2M_DEFAULT_CONN_SCAN_MISMATCH.

Precondition:

Prior to a successful connection request, the Wi-Fi driver must have been successfully initialized through

the call of the function.

Warning:

This function must be called in station mode only. Successful completion of this function does not

guarantee success of the WIFI connection, and a negative return value indicates only locally detected

errors.

See also:

 tuniM2MWifiAuth

 tstr1xAuthCredentials

 tstrM2mWifiWepParams

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 m2m_wifi_disconnect

– NMI_API sint8 m2m_wifi_disconnect (void)

Precondition:

Disconnection must be made to a successfully connected AP. If the WILC is not in the connected state, a

call to this function will hold insignificant.

Warning:

This function must be called in station mode only.

See also:

 m2m_wifi_connect

 m2m_wifi_default_connect

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

0

8

108

 m2m_wifi_get_connection_info

– NMI_API sint8 m2m_wifi_get_connection_info (void)

Asynchronous connection status retrieval function, retrieves the status information of the currently

connected AP. The result is passed to the Wi-Fi notification callback through the event

M2M_WIFI_RESP_CONN_INFO. Connection information is retrieved from the structure

tstrM2MConnInfo. Request the status information of the currently connected Wi-Fi AP. The result is

passed to the Wi-Fi notification callback with the event M2M_WIFI_RESP_CONN_INFO.

Precondition:

 A Wi-Fi notification callback of type tpfAppWifiCb MUST be implemented and registered at startup.

Registering the callback is done through passing it to the initialization m2m_wifi_init function.

 The event M2M_WIFI_RESP_CONN_INFO must be handled in the callback to receive the

requested connection info

Warning:

Calling this function is valid ONLY in the STA CONNECTED state. Otherwise, the WILC SW shall ignore

the request silently.

See also:

 tpfAppWifiCb

 m2m_wifi_init

 M2M_WIFI_RESP_CONN_INFO

 tstrM2MConnInfo

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

Example:

The code snippet shows an example of how Wi-Fi connection information is retrieved.

 1 #include "m2m_wifi.h"
 2 #include "m2m_types.h"
 3
 4
 5 void wifi_event_cb(uint8 u8WiFiEvent, void * pvMsg)
 6 {
 7 switch(u8WiFiEvent)
 8 {
 9 case M2M_WIFI_RESP_CONN_INFO:
 10 {
 11 tstrM2MConnInfo *pstrConnInfo = (tstrM2MConnInfo*)pvMsg;
 12
 13 printf("CONNECTED AP INFO\n");
 14 printf("SSID : %s\n",pstrConnInfo->acSSID);
 15 printf("SEC TYPE : %d\n",pstrConnInfo->u8SecType);
 16 printf("Signal Strength : %d\n", pstrConnInfo->s8RSSI);
 17 printf("Local IP Address : %d.%d.%d.%d\n",
 18 pstrConnInfo->au8IPAddr[0] , pstrConnInfo->au8IPAddr[1],
pstrConnInfo->au8IPAddr[2], pstrConnInfo->au8IPAddr[3]);
 19 }
 20 break;
 21
 22

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

0

9

109

 28 default:
 29 break;
 30 }
 31 }
 32
 33 int main()
 34 {
 35 tstrWifiInitParam param;
 36
 37 param.pfAppWifiCb = wifi_event_cb;
 38 if(!m2m_wifi_init(¶m))
 39 {
 40 // connect to the default AP
 41 m2m_wifi_default_connect();
 42
 43 while(1)
 44 {
 45 m2m_wifi_handle_events(NULL);
 46 }
 47 }
 48 }

 m2m_wifi_set_mac_address

– NMI_API sint8 m2m_wifi_set_mac_address (uint8 au8MacAddress[6])

Synchronous MAC address assigning to the NMC1000. It is used for non-production SW. Assign MAC

address to the WILC device.

Parameters:

in au8MacAddress MAC Address to be provisioned to the WILC

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 m2m_wifi_wps

– NMI_API sint8 m2m_wifi_wps (uint8 u8TriggerType, const char * pcPinNumber)

Asynchronous WPS triggering function. This function is called for the WILC to enter the WPS (Wi-Fi

Protected Setup) mode. The result is passed to the Wi-Fi notification callback with the event

M2M_WIFI_REQ_WPS.

Parameters:

In u8TriggerType WPS Trigger method. Could be:

 WPS_PIN_TRIGGER Push button method

 WPS_PBC_TRIGGER Pin method

In pcPinNumber PIN number for WPS PIN method. It is not used if the trigger type is

WPS_PBC_TRIGGER. It must follow the rules stated by the WPS Standard.

Precondition:

 A Wi-Fi notification callback of type (tpfAppWifiCb MUST be implemented and registered at startup.

Registering the callback is done through passing it to the m2m_wifi_init.

 The event M2M_WIFI_REQ_WPS must be handled in the callback to receive the WPS status

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

1

0

110

 The WILC device MUST be in IDLE or STA mode. If AP or P2P mode is active, the WPS will not be

performed

 The m2m_wifi_handle_events MUST be called to receive the responses in the callback

Warning:

This function is not allowed in AP or P2P modes.

See also:

 tpfAppWifiCb

 m2m_wifi_init

 M2M_WIFI_REQ_WPS

 tenuWPSTrigger

 tstrM2MWPSInfo

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

Example:

The code snippet shows an example of how Wi-Fi WPS is triggered.

 1 #include "m2m_wifi.h"
 2 #include "m2m_types.h"
 3
 4 void wifi_event_cb(uint8 u8WiFiEvent, void * pvMsg)
 5 {
 6 switch(u8WiFiEvent)
 7 {
 8 case M2M_WIFI_REQ_WPS:
 9 {
 10 tstrM2MWPSInfo *pstrWPS = (tstrM2MWPSInfo*)pvMsg;
 11 if(pstrWPS->u8AuthType != 0)
 12 {
 13 printf("WPS SSID : %s\n",pstrWPS->au8SSID);
 14 printf("WPS PSK : %s\n",pstrWPS->au8PSK);
 15 printf("WPS SSID Auth Type : %s\n",pstrWPS->u8AuthType ==
M2M_WIFI_SEC_OPEN ? "OPEN" : "WPA/WPA2");
 16 printf("WPS Channel : %d\n",pstrWPS->u8Ch + 1);
 17
 18 // establish Wi-Fi connection
 19 m2m_wifi_connect((char*)pstrWPS->au8SSID,
(uint8)m2m_strlen(pstrWPS->au8SSID),
 20 pstrWPS->u8AuthType, pstrWPS->au8PSK, pstrWPS->u8Ch);
 21 }
 22 else
 23 {
 24 printf("(ERR) WPS Is not enabled OR Timedout\n");
 25 }
 26 }
 27 break;
 28
 29 default:
 30 break;
 31 }
 32 }
 33
 34 int main()

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

1

1

111

 35 {
 36 tstrWifiInitParam param;
 37
 38 param.pfAppWifiCb = wifi_event_cb;
 39 if(!m2m_wifi_init(¶m))
 40 {
 41 // Trigger WPS in Push button mode.
 42 m2m_wifi_wps(WPS_PBC_TRIGGER, NULL);
 43
 44 while(1)
 45 {
 46 m2m_wifi_handle_events(NULL);
 47 }
 48 }
 49 }

 m2m_wifi_wps_disable

– NMI_API sint8 m2m_wifi_wps_disable (void)

Disable the NMC1000 WPS operation.

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 m2m_wifi_p2p

– NMI_API sint8 m2m_wifi_p2p (uint8 u8Channel)

Asynchronous Wi-Fi direct (P2P) enabling mode function. The WILC supports P2P in device listening

mode ONLY (intent is ZERO). The WILC P2P implementation does not support P2P GO (Group Owner)

mode. Active P2P devices (e.g. phones) could find the WILC in the search list. When a device is

connected to WILC, a Wi-Fi notification event M2M_WIFI_RESP_CON_STATE_CHANGED is triggered.

Parameters:

in u8Channel P2P Listen RF channel. According to the P2P standard It must hold only one

of the following values 1, 6, or 11.

Precondition:

 A Wi-Fi notification callback of type tpfAppWifiCb MUST be implemented and registered at

initialization. Registering the callback is done through passing it to the m2m_wifi_init.

 The events M2M_WIFI_RESP_CON_STATE_CHANGED must be handled in the callback

 The m2m_wifi_handle_events MUST be called to receive the responses in the callback

Warning:

This function is not allowed in AP or STA modes.

See also:

 tpfAppWifiCb

 m2m_wifi_init

 M2M_WIFI_RESP_CON_STATE_CHANGED

 tstrM2mWifiStateChanged

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

1

2

112

Example:

The code snippet shown an example of how the P2P mode operates.

 1 #include "m2m_wifi.h"
 2 #include "m2m_types.h"
 3
 4 void wifi_event_cb(uint8 u8WiFiEvent, void * pvMsg)
 5 {
 6 switch(u8WiFiEvent)
 7 {
 8 case M2M_WIFI_RESP_CON_STATE_CHANGED:
 9 {
 10 tstrM2mWifiStateChanged *pstrWifiState =
(tstrM2mWifiStateChanged*)pvMsg;
 11 M2M_INFO("Wi-Fi State :: %s :: ErrCode %d\n", pstrWifiState-
>u8CurrState? "CONNECTED":"DISCONNECTED",pstrWifiState->u8ErrCode);
 12
 13 // Do something
 14 }
 15 break;
 16
 24
 25 default:
 26 break;
 27 }
 28 }
 29
 30 int main()
 31 {
 32 tstrWifiInitParam param;
 33
 34 param.pfAppWifiCb = wifi_event_cb;
 35 if(!m2m_wifi_init(¶m))
 36 {
 37 // Trigger P2P
 38 m2m_wifi_p2p(1);
 39
 40 while(1)
 41 {
 42 m2m_wifi_handle_events(NULL);
 43 }
 44 }

 m2m_wifi_p2p_disconnect

– NMI_API sint8 m2m_wifi_p2p_disconnect (void)

Disable the NMC1000 device Wi-Fi direct mode (P2P).

Precondition:

The P2P mode must have be enabled and active before a disconnect can be called.

See also:

 m2m_wifi_p2p

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

1

3

113

 m2m_wifi_enable_ap

– NMI_API sint8 m2m_wifi_enable_ap (CONST tstrM2MAPConfig *pstrM2MAPConfig)

Asynchronous Wi-Fi hotspot enabling function. The WILC supports AP mode operation with the following

facts:

 Up to eight STA could be associated at a time in single mode of operation or seven in case of

concurrency

 Open and WEP and WPA2 security types are supported

Parameters:

in pstrM2MAPConfig A structure holding the AP configurations

Warning:

This function is not allowed in P2P or STA modes.

Precondition:

 A Wi-Fi notification callback of type tpfAppWifiCb MUST be implemented and registered at

initialization. Registering the callback is done through passing it to the m2m_wifi_init.

 The m2m_wifi_handle_events MUST be called to receive the responses in the callback

See also:

 tpfAppWifiCb

 tenuM2mSecType

 m2m_wifi_init

 tstrM2mWifiStateChanged

 tstrM2MAPConfig

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

Example:

The code snippet demonstrates how the AP mode is enabled after the driver is initialized in the

application's main function.

 1 #include "m2m_wifi.h"
 2 #include "m2m_types.h"
 3
 4 void wifi_event_cb(uint8 u8WiFiEvent, void * pvMsg)
 5 {
 6 switch(u8WiFiEvent)
 7 {
 8..........case M2M_WIFI_RESP_CON_STATE_CHANGED:
 9 {
 12 printf("One STA has Associated\n”);
 13 }
 14 break;
 15
 16 default:
 17 break;
 18 }
 19 }
 20
 21 int main()
 22 {

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

1

4

114

 23 tstrWifiInitParam param;
 24
 25 param.pfAppWifiCb = wifi_event_cb;
 26 if(!m2m_wifi_init(¶m))
 27 {
 28 tstrM2MAPConfig apConfig;
 29
 30 strcpy(apConfig.au8SSID, "WILC_SSID");
 31 apConfig.u8ListenChannel = 1;
 32 apConfig.u8SecType = M2M_WIFI_SEC_OPEN;
 33 apConfig.u8SsidHide = 0;
 34
 41 // Trigger AP
 42 m2m_wifi_enable_ap(&apConfig);
 43
 44 while(1)
 45 {
 46 m2m_wifi_handle_events(NULL);
 47 }
 48 }

 m2m_wifi_disable_ap

– NMI_API sint8 m2m_wifi_disable_ap (void)

Synchronous Wi-Fi hotspot disabling function. Must be called only when the AP is enabled through the

m2m_wifi_enable_ap function. Otherwise the call to this function will not be useful.

See also:

 m2m_wifi_enable_ap

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 m2m_wifi_ap_get_assoc_info

– NMI_API sint8 m2m_wifi_ap_get_assoc_info(void)

Asynchronous connection status retrieval function in AP mode, retrieves the status information of the

currently associated stations in AP mode. The result is passed to the Wi-Fi notification callback through

the event M2M_WIFI_RESP_AP_ASSOC_INFO. Association information is retrieved from the structure

tstrM2MAPAssocInfo. Request the status information of the currently associated stations in AP mode.

The result is passed to the Wi-Fi notification callback with the event

M2M_WIFI_RESP_AP_ASSOC_INFO.

Precondition:

 A Wi-Fi notification callback of type tpfAppWifiCb MUST be implemented and registered at startup.

Registering the callback is done through passing it to the initialization m2m_wifi_init function.

 The event M2M_WIFI_RESP_AP_ASSOC_INFO must be handled in the callback to receive the

requested connection info

Warning:

Calling this function is valid ONLY in the AP mode. Otherwise, the WILC SW shall ignore the request

silently.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

1

5

115

See also:

 tpfAppWifiCb

 m2m_wifi_init

 M2M_WIFI_RESP_AP_ASSOC_INFO

 tstrM2MAPAssocInfo

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

Example:

The code snippet shows an example of how association information is retrieved.

#include "m2m_wifi.h"
#include "m2m_types.h"

void wifi_event_cb(uint8 u8WiFiEvent, void * pvMsg)
{
 switch(u8WiFiEvent)
 {
 case M2M_WIFI_RESP_AP_ASSOC_INFO:
 {
 tstrM2MAPAssocInfo* pstrAssocInfo =(tstrM2MAPAssocInfo*)pvMsg;
 printk("AP Assoc list received[%d]\n",pstrAssocInfo->u8No-
ConnSta);
 for(i=0;i<pstrAssocInfo->u8NoConnSta;i++)
 {
 printk("STA %x:%x:%x:%x:%x:%x connected RSSI
%d\n",pstrAssocInfo->astrM2MAssocEntryInfo[i].BSSID[0],
 pstrAssocInfo->astrM2MAssocEntryInfo[i].BSSID[1],pstrAs-
socInfo->astrM2MAssocEntryInfo[i].BSSID[2],
 pstrAssocInfo->astrM2MAssocEntryInfo[i].BSSID[3],pstrAs-
socInfo->astrM2MAssocEntryInfo[i].BSSID[4],
 pstrAssocInfo->astrM2MAssocEntryInfo[i].BSSID[5],pstrAs-
socInfo->astrM2MAssocEntryInfo[i].s8RSSI);
 }

 }
 break;
 default:
 break;
 }
 }

 int main()
 {
 tstrWifiInitParam param;

 param.pfAppWifiCb = wifi_event_cb;
 if(!m2m_wifi_init(¶m))
 {
 strcpy(strM2MAPConfig.au8WepKey,"1234567890");
 strM2MAPConfig.u8KeySz = WEP_40_KEY_STRING_SIZE;
 strM2MAPConfig.u8KeyIndx = 0;
 strcpy(strM2MAPConfig.au8SSID,"WILC1000_AP");
 strM2MAPConfig.u8ListenChannel = M2M_WIFI_CH_11;
 strM2MAPConfig.u8SecType = M2M_WIFI_SEC_WEP;

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

1

6

116

 strM2MAPConfig.u8SsidHide = 0;
 //start AP mode
 m2m_wifi_enable_ap(&strM2MAPConfig);

 while(1)
 {
 m2m_wifi_handle_events(NULL);
 }
 }
 }

 m2m_wifi_set_scan_options

– NMI_API sint8 m2m_wifi_set_scan_options (uint8 u8NumOfSlot, uint8 u8SlotTime)

Synchronous Wi-Fi scan settings function. This function sets the time configuration parameters for the

scan operation.

Parameters:

in u8NumOfSlot; The minimum number of slots is 2 for every channel. For every slot the SoC will

send Probe Req on air, and wait/listen for PROBE RESP/BEACONS for the u8slot-

Time in ms.

in u8SlotTime; The time in ms that the SoC will wait on every channel listening for the frames on air

when that time increases the number of APs will increase in the scan results Mini-

mum time is 10ms and the maximum is 250ms

See also:

 tenuM2mScanCh

 m2m_wifi_request_scan

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 m2m_wifi_set_scan_region

– NMI_API sint8 m2m_wifi_set_scan_region (uint8 ScanRegion)

Synchronous Wi-Fi scan region setting function. This function sets the scan region, which will affect the

range of possible scan channels. For 2.4GHz supported in the current release, the requested scan region

can't exceed the maximum number of channels (14).

Parameters:

in ScanRegion; ASIA = 14 NORTH_AMERICA = 11

See also:

 tenuM2mScanCh

 m2m_wifi_request_scan

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 • m2m_wifi_request_scan

– • NMI_API sint8 m2m_wifi_request_scan (uint8 ch)

Asynchronous Wi-Fi scan request on the given channel. The scan status is delivered in the Wi-Fi event

callback and then the application is to read the scan results sequentially. The number of APs found (N) is

returned in event M2M_WIFI_RESP_SCAN_DONE with the number of found APs. The application could

read the list of APs by calling the function m2m_wifi_req_scan_result N times.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

1

7

117

Parameters:

in ch RF Channel ID for SCAN operation. It should be set according to tenuM2mScanCh.

With a value of M2M_WIFI_CH_ALL(255)), means to scan all channels.

Warning:

This function is not allowed in P2P or AP modes. It works only for STA mode (connected or

disconnected).

Precondition:

 A Wi-Fi notification callback of type tpfAppWifiCb MUST be implemented and registered at

initialization. Registering the callback is done through passing it to the m2m_wifi_init.

 The events M2M_WIFI_RESP_SCAN_DONE and M2M_WIFI_RESP_SCAN_RESULT must be

handled in the callback

 The m2m_wifi_handle_events function MUST be called to receive the responses in the callback

See also:

 M2M_WIFI_RESP_SCAN_DONE

 M2M_WIFI_RESP_SCAN_RESULT

 tpfAppWifiCb

 tstrM2mWifiscanResult

 tenuM2mScanCh

 m2m_wifi_init

 m2m_wifi_handle_events

 m2m_wifi_req_scan_result

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

Example:

The code snippet demonstrates an example of how the scan request is called from the application's main

function and the handling of the events received in response.

 1 #include "m2m_wifi.h"
 2 #include "m2m_types.h"
 3
 4 void wifi_event_cb(uint8 u8WiFiEvent, void * pvMsg)
 5 {
 6 static uint8 u8ScanResultIdx = 0;
 7
 8 switch(u8WiFiEvent)
 9 {
 10 case M2M_WIFI_RESP_SCAN_DONE:
 11 {
 12 tstrM2mScanDone *pstrInfo = (tstrM2mScanDone*)pvMsg;
 13
 14 printf("Num of AP found %d\n",pstrInfo->u8NumofCh);
 15 if(pstrInfo->s8ScanState == M2M_SUCCESS)
 16 {
 17 u8ScanResultIdx = 0;
 18 if(pstrInfo->u8NumofCh >= 1)
 19 {
 20 m2m_wifi_req_scan_result(u8ScanResultIdx);
 21 u8ScanResultIdx ++;

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

1

8

118

 22 }
 23 else
 24 {
 25 printf("No AP Found Rescan\n");
 26 m2m_wifi_request_scan(M2M_WIFI_CH_ALL);
 27 }
 28 }
 29 else
 30 {
 31 printf("(ERR) Scan fail with error <%d>\n",pstrInfo-
>s8ScanState);
 32 }
 33 }
 34 break;
 35
 36 case M2M_WIFI_RESP_SCAN_RESULT:
 37 {
 38 tstrM2mWifiscanResult *pstrScanResult
=(tstrM2mWifiscanResult*)pvMsg;
 39 uint8 u8NumFoundAPs =
m2m_wifi_get_num_ap_found();
 40
 41 printf(">>%02d RI %d SEC %s CH %02d BSSID
%02X:%02X:%02X:%02X:%02X:%02X SSID %s\n",
 42 pstrScanResult->u8index,pstrScanResult->s8rssi,
 43 pstrScanResult->u8AuthType,
 44 pstrScanResult->u8ch,
 45 pstrScanResult->au8BSSID[0], pstrScanResult->au8BSSID[1],
pstrScanResult->au8BSSID[2],
 46 pstrScanResult->au8BSSID[3], pstrScanResult->au8BSSID[4],
pstrScanResult->au8BSSID[5],
 47 pstrScanResult->au8SSID);
 48
 49 if(u8ScanResultIdx < u8NumFoundAPs)
 50 {
 51 // Read the next scan result
 52 m2m_wifi_req_scan_result(index);
 53 u8ScanResultIdx ++;
 54 }
 55 }
 56 break;
 57 default:
 58 break;
 59 }
 60 }
 61
 62 int main()
 63 {
 64 tstrWifiInitParam param;
 65
 66 param.pfAppWifiCb = wifi_event_cb;
 67 if(!m2m_wifi_init(¶m))
 68 {
 69 // Scan all channels
 70 m2m_wifi_request_scan(M2M_WIFI_CH_ALL);
 71

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

1

9

119

 72 while(1)
 73 {
 74 m2m_wifi_handle_events(NULL);
 75 }
 76 }

 m2m_wifi_get_num_ap_found

– NMI_API uint8 m2m_wifi_get_num_ap_found (void)

Synchronous function to retrieve the number of AP's found in the last scan request. The function read the

number of AP's from global variable which updated in the Wi-Fi callback function through the

M2M_WIFI_RESP_SCAN_DONE event. Function used only in STA mode only.

Precondition:

 m2m_wifi_request_scan need to be called first

 A Wi-Fi notification callback of type tpfAppWifiCb MUST be implemented and registered at

initialization. Registering the callback is done through passing it to the m2m_wifi_init.

 The event M2M_WIFI_RESP_SCAN_DONE must be handled in the callback to receive the

requested connection information

Warning:

 This function must be called only in the Wi-Fi callback function when the events

M2M_WIFI_RESP_SCAN_DONE or M2M_WIFI_RESP_SCAN_RESULT are received. Calling this

function in any other place will result in undefined/outdated numbers.

See also:

 m2m_wifi_request_scan

 M2M_WIFI_RESP_SCAN_DONE

 M2M_WIFI_RESP_SCAN_RESULT

Returns:

Return the number of AP's found in the last Scan Request.

Example:

The code snippet demonstrates an example of how the scan request is called from the application's main

function and the handling of the events received in response.

 1 #include "m2m_wifi.h"
 2 #include "m2m_types.h"
 3
 4 void wifi_event_cb(uint8 u8WiFiEvent, void * pvMsg)
 5 {
 6 static uint8 u8ScanResultIdx = 0;
 7
 8 switch(u8WiFiEvent)
 9 {
 10 case M2M_WIFI_RESP_SCAN_DONE:
 11 {
 12 tstrM2mScanDone *pstrInfo = (tstrM2mScanDone*)pvMsg;
 13
 14 printf("Num of AP found %d\n",pstrInfo->u8NumofCh);
 15 if(pstrInfo->s8ScanState == M2M_SUCCESS)
 16 {
 17 u8ScanResultIdx = 0;
 18 if(pstrInfo->u8NumofCh >= 1)

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

2

0

120

 19 {
 20 m2m_wifi_req_scan_result(u8ScanResultIdx);
 21 u8ScanResultIdx ++;
 22 }
 23 else
 24 {
 25 printf("No AP Found Rescan\n");
 26 m2m_wifi_request_scan(M2M_WIFI_CH_ALL);
 27 }
 28 }
 29 else
 30 {
 31 printf("(ERR) Scan fail with error <%d>\n",pstrInfo-
>s8ScanState);
 32 }
 33 }
 34 break;
 35
 36 case M2M_WIFI_RESP_SCAN_RESULT:
 37 {
 38 tstrM2mWifiscanResult *pstrScanResult
=(tstrM2mWifiscanResult*)pvMsg;
 39 uint8 u8NumFoundAPs =
m2m_wifi_get_num_ap_found();
 40
 41 printf(">>%02d RI %d SEC %s CH %02d BSSID
%02X:%02X:%02X:%02X:%02X:%02X SSID %s\n",
 42 pstrScanResult->u8index,pstrScanResult->s8rssi,
 43 pstrScanResult->u8AuthType,
 44 pstrScanResult->u8ch,
 45 pstrScanResult->au8BSSID[0], pstrScanResult->au8BSSID[1],
pstrScanResult->au8BSSID[2],
 46 pstrScanResult->au8BSSID[3], pstrScanResult->au8BSSID[4],
pstrScanResult->au8BSSID[5],
 47 pstrScanResult->au8SSID);
 48
 49 if(u8ScanResultIdx < u8NumFoundAPs)
 50 {
 51 // Read the next scan result
 52 m2m_wifi_req_scan_result(index);
 53 u8ScanResultIdx ++;
 54 }
 55 }
 56 break;
 57 default:
 58 break;
 59 }
 60 }
 61
 62 int main()
 63 {
 64 tstrWifiInitParam param;
 65
 66 param.pfAppWifiCb = wifi_event_cb;
 67 if(!m2m_wifi_init(¶m))
 68 {

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

2

1

121

 69 // Scan all channels
 70 m2m_wifi_request_scan(M2M_WIFI_CH_ALL);
 71
 72 while(1)
 73 {
 74 m2m_wifi_handle_events(NULL);
 75 }
 76 }

 m2m_wifi_req_scan_result

– NMI_API sint8 m2m_wifi_req_scan_result (uint8 index)

Synchronous call to read the AP information from the SCAN Result list with the given index. This function

is expected to be called when the response events M2M_WIFI_RESP_SCAN_RESULT or

M2M_WIFI_RESP_SCAN_DONE are received in the Wi-Fi callback function. The response information

received can be obtained through the casting to the tstrM2mWifiscanResult structure.

Parameters:

in index Index for the requested result, the index range start from 0 till number of AP's found

See also:

 tstrM2mWifiscanResult

 m2m_wifi_get_num_ap_found

 m2m_wifi_request_scan

Precondition:

 m2m_wifi_request_scan needs to be called first, then m2m_wifi_get_num_ap_found to get the

number of AP's found

 A Wi-Fi notification callback of type tpfAppWifiCb MUST be implemented and registered at startup.

Registering the callback is done through passing it to the m2m_wifi_init function.

 The event M2M_WIFI_RESP_SCAN_RESULT must be handled in the callback to receive the

requested connection information

Warning:

Function used in STA mode only. The scan results are updated only if the scan request is called. Calling

this function only without a scan request will lead to firmware errors. Refrain from introducing a large delay

between the scan request and the scan result request, to prevent an errors occurring.

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

Example:

The code snippet demonstrates an example of how the scan request is called from the application's main

function and the handling of the events received in response.

 1 #include "m2m_wifi.h"
 2 #include "m2m_types.h"
 3
 4 void wifi_event_cb(uint8 u8WiFiEvent, void * pvMsg)
 5 {
 6 static uint8 u8ScanResultIdx = 0;
 7
 8 switch(u8WiFiEvent)
 9 {

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

2

2

122

 10 case M2M_WIFI_RESP_SCAN_DONE:
 11 {
 12 tstrM2mScanDone *pstrInfo = (tstrM2mScanDone*)pvMsg;
 13
 14 printf("Num of AP found %d\n",pstrInfo->u8NumofCh);
 15 if(pstrInfo->s8ScanState == M2M_SUCCESS)
 16 {
 17 u8ScanResultIdx = 0;
 18 if(pstrInfo->u8NumofCh >= 1)
 19 {
 20 m2m_wifi_req_scan_result(u8ScanResultIdx);
 21 u8ScanResultIdx ++;
 22 }
 23 else
 24 {
 25 printf("No AP Found Rescan\n");
 26 m2m_wifi_request_scan(M2M_WIFI_CH_ALL);
 27 }
 28 }
 29 else
 30 {
 31 printf("(ERR) Scan fail with error <%d>\n",pstrInfo-
>s8ScanState);
 32 }
 33 }
 34 break;
 35
 36 case M2M_WIFI_RESP_SCAN_RESULT:
 37 {
 38 tstrM2mWifiscanResult *pstrScanResult
=(tstrM2mWifiscanResult*)pvMsg;
 39 uint8 u8NumFoundAPs =
m2m_wifi_get_num_ap_found();
 40
 41 printf(">>%02d RI %d SEC %s CH %02d BSSID
%02X:%02X:%02X:%02X:%02X:%02X SSID %s\n",
 42 pstrScanResult->u8index,pstrScanResult->s8rssi,
 43 pstrScanResult->u8AuthType,
 44 pstrScanResult->u8ch,
 45 pstrScanResult->au8BSSID[0], pstrScanResult->au8BSSID[1],
pstrScanResult->au8BSSID[2],
 46 pstrScanResult->au8BSSID[3], pstrScanResult->au8BSSID[4],
pstrScanResult->au8BSSID[5],
 47 pstrScanResult->au8SSID);
 48
 49 if(u8ScanResultIdx < u8NumFoundAPs)
 50 {
 51 // Read the next scan result
 52 m2m_wifi_req_scan_result(index);
 53 u8ScanResultIdx ++;
 54 }
 55 }
 56 break;
 57 default:
 58 break;
 59 }

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

2

3

123

 60 }
 61
 62 int main()
 63 {
 64 tstrWifiInitParam param;
 65
 66 param.pfAppWifiCb = wifi_event_cb;
 67 if(!m2m_wifi_init(¶m))
 68 {
 69 // Scan all channels
 70 m2m_wifi_request_scan(M2M_WIFI_CH_ALL);
 71
 72 while(1)
 73 {
 74 m2m_wifi_handle_events(NULL);
 75 }
 76 }

 m2m_wifi_req_curr_rssi

– NMI_API sint8 m2m_wifi_req_curr_rssi (void)

Asynchronous request for the current RSSI of the connected AP. The response received in through the

M2M_WIFI_RESP_CURRENT_RSSI event.

Precondition:

 A Wi-Fi notification callback of type tpfAppWifiCb MUST be implemented and registered before

initialization. Registering the callback is done through passing it to the m2m_wifi_init through the

tstrWifiInitParam initialization structure.

 The event M2M_WIFI_RESP_CURRENT_RSSI must be handled in the callback to receive the

requested connection information

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

Example:

The code snippet demonstrates how the RSSI request is called in the application's main function and the

handling of event received in the callback.

 1 #include "m2m_wifi.h"
 2 #include "m2m_types.h"
 3
 4 void wifi_event_cb(uint8 u8WiFiEvent, void * pvMsg)
 5 {
 6 static uint8 u8ScanResultIdx = 0;
 7
 8 switch(u8WiFiEvent)
 9 {
 10 case M2M_WIFI_RESP_CURRENT_RSSI:
 11 {
 12 sint8 *rssi = (sint8*)pvMsg;
 13 M2M_INFO("ch rssi %d\n",*rssi);
 14 }
 15 break;
 16 default:
 17 break;
 18 }

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

2

4

124

 19 }
 20
 21 int main()
 22 {
 23 tstrWifiInitParam param;
 24
 25 param.pfAppWifiCb = wifi_event_cb;
 26 if(!m2m_wifi_init(¶m))
 27 {
 28 // Scan all channels
 29 m2m_wifi_req_curr_rssi();
 30
 31 while(1)
 32 {
 33 m2m_wifi_handle_events(NULL);
 34 }
 35 }

 m2m_wifi_get_otp_mac_address

– NMI_API sint8 m2m_wifi_get_otp_mac_address (uint8 *pu8MacAddr, uint8 *pu8IsValid)

Request the MAC address stored on the OTP (one time programmable) memory of the device. The

function is blocking until the response is received.

Parameters:

out pu8MacAddr Output MAC address buffer of 6 bytes size. Valid only if *pu8Valid=1.

out pu8IsValid An output boolean value to indicate the validity of pu8MacAddr in OTP. Output

zero if the OTP memory is not programmed, non-zero otherwise.

Precondition:

m2m_wifi_init required to call any WIFI function

See also:

 m2m_wifi_get_mac_address

Returns:

The function returns M2M_SUCCESS for success and a negative value otherwise.

 m2m_wifi_get_mac_address

– NMI_API sint8 m2m_wifi_get_mac_address (uint8 *pu8MacAddr)

Function to retrieve the current MAC address. The function is blocking until the response is received.

Parameters:

out pu8MacAddr Output MAC address buffer of 6 bytes size

Precondition:

m2m_wifi_init required to be called before any WIFI function.

See also:

 m2m_wifi_get_otp_mac_address

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

2

5

125

 m2m_wifi_set_sleep_mode

– NMI_API sint8 m2m_wifi_set_sleep_mode (uint8 PsTyp, uint8 BcastEn)

Synchronous power-save mode setting function for the NMC1000.

Parameters:

in PsTyp Desired power saving mode. Supported types are defined in tenuPowerSaveModes.

in BcastEn Broadcast reception enable flag. If it is 1, the ATWILC1000 must be awake each DTIM

beacon for receiving broadcast traffic. If it is 0, the ATWILC1000 will not wakeup at the

DTIM beacon, but its wakeup depends only on the configured Listen Interval.

Warning:

The function called once after initialization.

See also:

 tenuPowerSaveModes

 m2m_wifi_get_sleep_mode

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 m2m_wifi_request_sleep

– NMI_API sint8 m2m_wifi_request_sleep (uint32 u32SlpReqTime)

Synchronous power save request function, which requests from the NMC1000 device to sleep in the

mode previously set for a specific time. This function should be used in the M2M_PS_MANUAL Power

save mode (only).

Parameters:

in u32SlpReqTime Request Sleep in ms

Warning:

The function should be called in M2M_PS_MANUAL power save only.

See also:

 tenuPowerSaveModes

 m2m_wifi_set_sleep_mode

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 m2m_wifi_get_sleep_mode

– NMI_API uint8 m2m_wifi_get_sleep_mode (void)

Synchronous power save mode retrieval function.

See also:

 tenuPowerSaveModes

 m2m_wifi_set_sleep_mode

Returns:

The current operating power saving mode.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

2

6

126

 m2m_wifi_set_device_name

– NMI_API sint8 m2m_wifi_set_device_name (uint8 *pu8DeviceName, uint8

u8DeviceNameLength)

Set the ATWILC1000 device name which is to be used as a P2P device name.

Parameters:

In pu8DeviceName Buffer holding the device name

In u8DeviceNameLength Length of the device name. Should not exceed the maximum device name's

length M2M_DEVICE_NAME_MAX.

Warning:

The function should be called once after initialization.

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 m2m_wifi_set_lsn_int

– NMI_API sint8 m2m_wifi_set_lsn_int (tstrM2mLsnInt *pstrM2mLsnInt)

Synchronous function for setting the Wi-Fi listen interval for power save operation. It is represented in

units of AP Beacon periods. Function

Parameters:

In pstrM2mLsnInt Structure holding the listen interval configurations

Precondition:

Function m2m_wifi_set_sleep_mode shall be called first.

Warning:

The function should be called once after initialization.

See also:

 tstrM2mLsnInt

 m2m_wifi_set_sleep_mode

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 m2m_wifi_send_ethernet_pkt

– NMI_API sint8 m2m_wifi_send_ethernet_pkt (uint8 *pu8Packet, uint16 u16PacketSize)

Synchronous function to transmit an Ethernet packet. Transmit a packet directly in bypass mode where

the TCP/IP stack is disabled and the implementation of this packet is left to the application developer. The

Ethernet packet composition is left to the application developer.

Parameters:

In pu8Packet Pointer to a buffer holding the whole Ethernet frame

In u16PacketSize The size of the whole bytes in packet

Note:

Packets are the user's responsibility.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

2

7

127

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 m2m_wifi_set_cust_InfoElement

– NMI_API sint8 m2m_wifi_set_cust_InfoElement (uint8 *pau8M2mCustInfoElement)

Synchronous function to Add/Remove user-defined Information Element to the Wi-Fi beacon and Probe

Response frames while chip mode is Access Point Mode.

According to the information element layout shown below, if it is required to set new data for the

information elements, pass in the buffer with the information according to the sizes and ordering defined

bellow. However, if it's required to delete these IEs, fill the buffer with zeros.

Parameters:

In pau8M2mCustInfoElement Pointer to Buffer containing the IE to be sent. It is the application devel-

oper's responsibility to ensure on the correctness of the information ele-

ment's ordering passed in.

Note:

IEs Format will be follow the following layout:

--------------- ---------- ---------- ------------------- -------- -------- ----------- ----------------------
Byte[0]	Byte[1]	Byte[2]	Byte[3:length1+2]	Byte[n]	Byte[n+1]	Byte[n+2:lengthx+2]
---------------	----------	----------	-------------------	-------- --------	-----------	----------------------	
#of all Bytes	IE1 ID	Length1	Data1(Hex Coded)	IEx ID	Lengthx	Datax(Hex Coded)
--------------- ---------- ---------- ------------------- -------- -------- ----------- ----------------------

Warning:

Size of All elements combined must not exceed 255 byte.

 Used in Access Point Mode

See also:

 m2m_wifi_enable_sntp

 tstrSystemTime

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

Example:

The example demonstrates how the information elements are set using this function.

 1 char elementData[21];
 2 static char state = 0; // To Add, Append, and Delete
 3 if(0 == state) { //Add 3 IEs
 4 state = 1;
 5 //Total Number of Bytes
 6 elementData[0]=12;
 7 //First IE
 8 elementData[1]=200; elementData[2]=1; elementData[3]='A';
 9 //Second IE
 10 elementData[4]=201; elementData[5]=2; elementData[6]='B';
elementData[7]='C';
 11 //Third IE
 12 elementData[8]=202; elementData[9]=3; elementData[10]='D';
elementData[11]=0; elementData[12]='F';
 13 } else if(1 == state) {

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

2

8

128

 14 //Append 2 IEs to others, Notice that we keep old data in array starting
with\n
 15 //element 13 and total number of bytes increased to 20
 16 state = 2;
 17 //Total Number of Bytes
 18 elementData[0]=20;
 19 //Fourth IE
 20 elementData[13]=203; elementData[14]=1; elementData[15]='G';
 21 //Fifth IE
 22 elementData[16]=204; elementData[17]=3; elementData[18]='X';
elementData[19]=5; elementData[20]='Z';
 23 } else if(2 == state) { //Delete All IEs
 24 state = 0;
 25 //Total Number of Bytes
 26 elementData[0]=0;
 27 }
 28 m2m_wifi_set_cust_InfoElement(elementData);

 m2m_wifi_enable_mac_mcast

– NMI_API sint8 m2m_wifi_enable_mac_mcast (uint8 *pu8MulticastMacAddress, uint8

u8AddRemove)

Synchronous function to Add/Remove MAC addresses in the multicast filter to receive multicast packets in

bypass mode.

Parameters:

in pu8MulticastMacAddress Pointer to MAC address

in u8AddRemove A flag to add or remove the MAC ADDRESS, based on the following values:

0: remove MAC address

1: add MAC address

Note:

Maximum number of MAC addresses that could be added is 8.

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 m2m_wifi_set_receive_buffer

– NMI_API sint8 m2m_wifi_set_receive_buffer (void *pvBuffer, uint16 u16BufferLen)

Synchronous function for setting or changing the receiver buffer's length. Changes are made according to

the developer option in bypass mode and this function should be called in the receive callback handling.

Parameters:

In pvBuffer Pointer to Buffer to receive data. NULL pointer causes a negative error M2M_ERR_FAIL.

In u16BufferLen Length of data to be received

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 m2m_wifi_set_control_ifc

– NMI_API sint8 m2m_wifi_set_control_ifc(uint8 u8IfcId)

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

2

9

129

Synchronous function for setting the interface that will be under control, i.e. all the coming control

functions will apply on that interface, this API is used in case of using the concurrency.

Parameters:

In u8IfcId Interface ID either 1 or 2

Warning:

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

3

0

130

A.2 BSP

This module contains NMC1000 BSP APIs declarations.

A.2.1 Defines

Defines Definition Value

#define NMI_API Attribute used to define memory section to

map Functions in host memory

#define CONST Used for code portability const

#define NULL Void Pointer to '0' in case of NULL is not

defined

((void*)0)

#define BSP_MIN Computes the minimum of x and y (x, y) ((x)>(y)?(y):(x))

n typedef void(* tpfNmBspIsr) (void)

Pointer to function. Used as a data type of ISR function registered by nm_bsp_register_isr.

A.2.2 Data Types

Define Definition

unsigned char uint8 Range of values between 0 to 255

unsigned short uint16 Range of values between 0 to 65535

unsigned long uint32 Range of values between 0 to 4294967295

signed char sint Range of values between -128 to 127

signed short sint16 Range of values between -32768 to 32767

signed long sint32 Range of values between -2147483648 to 2147483647

A.2.3 Function

 nm_bsp_init

– sint8 nm_bsp_init (void)

Initialization for BSP such as Reset and Chip Enable Pins for WILC, delays, register ISR, enable/disable

IRQ for WILC, etc. You must use this function in the head of your application to enable WILC and Host

Driver communicate each other.

Note:

Implementation of this function is host dependent.

Warning:

Missing use will lead to failure in driver initialization.

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 nm_bsp_deinit

– sint8 nm_bsp_deinit (void)

De-initialization for BSP (Board Support Package).

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

3

1

131

Precondition:

Initialize nm_bsp_init first.

Note:

Implementation of this function is host dependent.

Warning:

Missing use may lead to unknown behavior in case of soft reset.

See also:

 nm_bsp_init

Returns:

The function returns M2M_SUCCESS for successful operations and a negative value otherwise.

 nm_bsp_reset

– void nm_bsp_reset (void)

Resetting NMC1000 SoC by setting CHIP_EN and RESET_N signals low, then after specific delay the

function will put CHIP_EN high then RESET_N high, for the timing between signals, review the WILC

datasheet.

Precondition:

Initialize nm_bsp_init first.

Note:

Implementation of this function is host dependent and called by HIF layer.

See also:

 nm_bsp_init

Returns:

None

 nm_bsp_sleep

– void nm_bsp_sleep (uint32 u32TimeMsec)

Sleep in units of milliseconds. This function used by HIF Layer according to different situations.

Parameters:

in u32TimeMsec Time unit in milliseconds

Precondition:

Initialize nm_bsp_init first.

Note:

Implementation of this function is host dependent.

Warning:

Maximum value must not exceed 4294967295 milliseconds which is equal to 4294967.295 seconds.

See also:

 nm_bsp_init

Returns:

None

 • nm_bsp_register_isr

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

3

2

132

– void nm_bsp_register_isr (tpfNmBspIsr pfIsr)

Register ISR (Interrupt Service Routine) in the initialization of HIF (Host Interface) Layer.

When the interrupt trigger the BSP layer should call the pfisr function once inside the interrupt.

in pfIsr Pointer to ISR handler in HIF

Warning:

Make sure that ISR for IRQ pin for WILC is enabled by default in your implementation.

Note:

Implementation of this function is host dependent and called by HIF layer.

See also:

 tpfNmBspIsr

Returns:

None

 void nm_bsp_interrupt_ctrl (uint8 u8Enable)

– void nm_bsp_interrupt_ctrl (uint8 u8Enable)

Synchronous enable/disable the MCU interrupts.

Parameters:

in u8Enable '0' disable interrupts. '1' enable interrupts

Note:

Implementation of this function is host dependent and called by HIF layer.

See also:

 tpfNmBspIsr

Returns:

None

A.2.4 Enumeration/Typedef

A.2.4.1 Asynchronous Events

Specific enumeration used for asynchronous operations

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

3

3

133

ATMEL EVALUATION BOARD/KIT IMPORTANT NOTICE AND DISCLAIMER

This evaluation board/kit is intended for user's internal development and evaluation purposes only. It is

not a finished product and may not comply with technical or legal requirements that are applicable to

finished products, including, without limitation, directives or regulations relating to electromagnetic

compatibility, recycling (WEEE), FCC, CE or UL. Atmel is providing this evaluation board/kit “AS IS”

without any warranties or indemnities. The user assumes all responsibility and liability for handling and

use of the evaluation board/kit including, without limitation, the responsibility to take any and all

appropriate precautions with regard to electrostatic discharge and other technical issues. User indemnifies

Atmel from any claim arising from user's handling or use of this evaluation board/kit. Except for the limited

purpose of internal development and evaluation as specified above, no license, express or implied, by

estoppel or otherwise, to any Atmel intellectual property right is granted hereunder. ATMEL SHALL NOT

BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMGES RELATING

TO USE OF THIS EVALUATION BOARD/KIT.

ATMEL CORPORATION

1600 Technology Drive

San Jose, CA 95110

USA

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015
1

3

4

134

13 Document Revision History

Doc Rev. Date Comments

42504A 10/2015 Initial document release.

ATWILC1000 SPI Wi-Fi Link Controller [USER GUIDE]
Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015

1

3

5

135

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 │ www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42504A-ATWILC1000-SPI-Wi-Fi-Link-Controller_UserGuide_102015.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be
trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by e stoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LI MITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATM EL

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accurac y or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,

authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation o f nuclear facilities and weapons systems. Atmel

products are not designed nor intended for use in military or aerospace applications or environments unless specifically desi gnated by Atmel as military-grade. Atmel products are not

designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

http://www.atmel.com/
http://community.arm.com/community/arm-partner-directory/partner-atmel
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

	Introduction
	Features
	Table of Contents
	1 Overview
	1.1 Host Driver Architecture
	1.1.1 WLAN API
	1.1.2 Host Interface
	1.1.3 Board Support Package
	1.1.4 Serial Bus Interface

	1.2 WILC System Architecture
	1.2.2 Bus Interface
	1.2.3 CPU
	1.2.4 IEEE 802.11 MAC Hardware
	1.2.5 Program Memory
	1.2.6 Data Memory
	1.2.7 Shared Packet Memory
	1.2.8 IEEE 802.11 MAC Firmware
	1.2.9 Memory Manager
	1.2.10 Power Management

	2 WILC Initialization and Simple Application
	2.1 BSP Initialization
	2.2 WILC Host Driver Initialization
	2.3 WILC Event Handling
	2.3.2 Asynchronous Events
	2.3.3 Interrupt Handling

	2.4 Code Example

	3 WILC Configuration
	3.1 Device Parameters
	3.1.1 Firmware and Driver Version

	3.2 WILC Modes of Operation
	3.2.1 Idle Mode
	3.2.2 Wi-Fi Station Mode
	3.2.3 Wi-Fi Direct (P2P) Mode
	3.2.4 Wi-Fi Hotspot (AP) Mode

	3.3 Network Parameters
	3.3.1 Device Name
	3.3.2 Wi-Fi MAC Address

	3.4 Power Saving Parameters
	3.4.1 Power Saving Modes
	3.4.1.1 M2M_PS_MANUAL
	3.4.1.2 M2M_PS_AUTOMATIC
	3.4.1.3 M2M_PS_H_AUTOMATIC
	3.4.1.4 M2M_PS_DEEP_AUTOMATIC

	3.4.2 Configuring Listen Interval and DTIM Monitoring

	4 Wi-Fi Station Mode
	4.1 Scan Configuration Parameters
	4.1.1 Scan Region
	4.1.2 Scan Options

	4.2 Wi-Fi Scan
	4.3 On Demand Wi-Fi Connection
	4.4 Wi-Fi Security
	4.5 Example Code

	5 Wi-Fi AP Mode
	5.1 Overview
	5.2 Setting WILC AP Mode
	5.3 Capabilities
	5.4 Sequence Diagram
	5.5 AP Mode Code Example

	6 Wi-Fi Direct P2P Mode
	6.1 Overview
	6.2 WILC P2P Capabilities
	6.3 WILC P2P Limitations
	6.4 WILC P2P States
	6.5 WILC P2P Listen State
	6.6 WILC P2P Connection State
	6.7 WILC P2P Disconnection State
	6.8 P2P Mode Code Example

	7 Wi-Fi Protected Setup
	7.1.1 WPS Configuration Methods
	7.1.2 WPS Limitations
	7.1.3 WPS Control Flow
	7.1.4 WPS Code Example

	8 Concurrency
	8.1 Limitations
	8.2 Controlling Second Interface
	8.3 Station-Station Concurrency
	8.3.1 Concurrent WPS

	8.4 Station-AP Concurrency
	8.5 Station-P2P Client Concurrency

	9 Data Send/Receive
	9.1 Send Ethernet Frame
	9.2 Receive Ethernet Frame
	9.3 Concurrency Send
	9.4 Concurrency Receive

	10 Host Interface Protocol
	10.1 Chip Initialization Sequence
	10.2 Transfer Sequence Between HIF Layer and WILC Firmware
	10.2.1 Frame Transmit
	10.2.2 Frame Receive

	10.3 HIF Message Header Structure
	10.4 HIF Layer APIs
	10.5 Scan Code Example

	11 WILC SPI Protocol
	11.1 Introduction
	11.1.1 Command Format
	11.1.2 Response Format
	11.1.3 Data Packet Format
	11.1.4 Error Recovery Mechanism
	11.1.5 Clockless Registers Access

	11.2 Message Flow for Basic Transactions
	11.2.1 Read Single Word
	11.2.2 Read Internal Register (for Clockless Registers)
	11.2.3 Read Block
	11.2.4 Write Single Word
	11.2.5 Write Internal Register (for Clockless Registers)
	11.2.6 Write Block

	11.3 SPI Level Protocol Example
	11.3.1 TX (Send Request)
	11.3.2 RX (Receive Response)

	12 ATWILC1000 Firmware Download
	Appendix A API Reference
	A.1 WLAN Module
	A.1.1 Defines
	A.1.2 Enumeration/Typedef
	A.1.3 Function

	A.2 BSP
	A.2.1 Defines
	A.2.2 Data Types
	A.2.3 Function
	A.2.4 Enumeration/Typedef
	A.2.4.1 Asynchronous Events

	12.1

	13 Document Revision History

