
Quantum Hair from Gravity

Xavier Calmet ,1,* Roberto Casadio ,2,3,† Stephen D. H. Hsu,4,‡ and Folkert Kuipers 1,§

1Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
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We explore the relationship between the quantum state of a compact matter source and of its asymptotic
graviton field. For a matter source in an energy eigenstate, the graviton state is determined at leading order
by the energy eigenvalue. Insofar as there are no accidental energy degeneracies there is a one to one map
between graviton states on the boundary of spacetime and the matter source states. Effective field theory
allows us to compute a purely quantum gravitational effect which causes the subleading asymptotic
behavior of the graviton state to depend on the internal structure of the source. This establishes the
existence of ubiquitous quantum hair due to gravitational effects.
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Introduction.—Classical no-hair theorems limit the
information that can be obtained about the internal state
of a black hole by outside observers [1]. External features
(“hair”) of black hole solutions in general relativity are
determined by specific conserved quantities such as mass,
angular momentum, and charge. In this Letter, we inves-
tigate how the situation changes when both the matter
source (black hole interior state) and the gravitational field
itself are quantized. The idea of quantum hair has been
discussed in various approaches to quantum gravity, see,
e.g., [2–5].
We begin by showing that the graviton state associated

with an energy eigenstate source is determined, at leading
order, by the energy eigenvalue of the source. These
graviton states can be expressed as coherent states of
nonpropagating graviton modes, with explicit dependence
on the source energy eigenvalue. Semiclassical matter
sources (e.g., a star or black hole) are superpositions of
energy eigenstates with support in some band of energies,
and produce graviton states that are superpositions of the
coherent states. Next, we use effective field theory to
compute r−3 and r−5 corrections to the r−1 Newtonian
potential. These corrections originate from nonlocal terms
in the quantum corrections to Einstein’s equations.
We show that the r−5 corrections are sensitive to the

internal structure of the matter source. That is, two matter
sources with the same semiclassical mass M can produce

different r−5 terms in the metric. These observations imply
that information about the interior state of a black hole
exists outside the classical horizon. This could, in principle,
affect the Hawking radiation states produced as the hole
evaporates. We discuss implications for black hole infor-
mation and holography in the conclusions.
Asymptotic quantum states of the graviton field.—

General relativity relates the spacetime metric to the
energy-momentum distribution of matter, but only applies
when both the metric (equivalently, the gravitational field)
and matter sources are semiclassical. A theory of quantum
gravity is necessary to relate the quantum state of the
gravitational field to the quantum state of the matter source.
A semiclassical matter configuration S is a superposition

of energy eigenstates with support concentrated in some
narrow band of energies

ψS ¼
X
n

cnψn; ð1Þ

where ψn are energy eigenstates with eigenvalues En. S
produces a gravitational field (metric) governed by the
Einstein equations Gμν ¼ 8πGNTμν, where the energy
momentum tensor is itself semiclassical. Here, we assume
that S is compact—localized in some spatial region of an
otherwise empty universe—and consider the gravitational
field asymptotically far away.
What can be said about the quantum state of the graviton

field given the exact quantum state of the matter source?
This question extends beyond the realm of classical general
relativity, but we show below that the properties of semi-
classical gravity constrain the result in an interesting way.
We find that the quantum state of the asymptotic

gravitational field of a matter source which is an energy
eigenstate is controlled by the energy eigenvalue En.
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In particular, energy eigenstate sources with different
eigenvalues produce distinct graviton states. This immedi-
ately implies that the asymptotic graviton field of a typical
semiclassical matter source is a superposition state of the
form

ψgðSÞ ¼
X
n

cnψgðEnÞ; ð2Þ

where ψgðEÞ ≠ ψgðE0Þ when E ≠ E0.
It is typically assumed in many body physics that there

are no accidental degeneracies—i.e., that the eigenvalues
En of a complex matter system are distinct (barring exact
symmetries of the Hamiltonian; note even these may be
violated by quantum gravity effects), although energy level
splittings might be exponentially small in the size of the
system. If this is the case, then the above results imply
that the state of the matter system can, in principle, be
reconstructed from the asymptotic graviton state. The
quantum information encoded in the matter system is also
stored, via entanglement, in the spacetime metric at infinity.
To obtain the desired result we use the following

gedanken construction. In brief, we want to show that
the matter source energy eigenstate ψn produces a different
asymptotic graviton state than another state ψn0 of the
system with En0 ≠ En. The problem is that the energy
splitting En0 − En could be exponentially small in the size
of S and as far as the classical Einstein equations are
concerned the corresponding sources T and T 0 are effec-
tively identical.
However, we can imagine configurations made of N

identical copies of the original system S, which we take to
be an energy eigenstate (ψS ¼ ψn), and the same number N
of identical copies of the system S0 with the source in the
eigenstate ψS0 ¼ ψn0 . For sufficiently large N the difference
in source terms T and T 0 becomes macroscopic, and the
difference between the corresponding metrics is governed
by the classical Einstein equations. The asymptotic behav-
iors of these metrics are equivalent to the additive
Newtonian gravitational potentials resulting from each of
the N copies of S and S0, respectively. Hence, the
asymptotic graviton state ψgðNEnÞ of the system S cannot
be identical to ψgðNEn0 Þ of the system S0, otherwise the
resulting sums would also be identical. See [6] for addi-
tional details of this construction.
This analysis does not determine the graviton states

ψgðEÞ, but does establish that different energies E corre-
spond to different (albeit possibly very similar) states ψg.
We can obtain the same result via quantum field theory

using the property that the spin-two graviton hμν couples to
the operator Tμν. The gravitational potential is generated by
graviton exchange between the source “particle” S and a
test mass. At long wavelengths, we can treat the composite
state S as a single particle, analogous to a nucleon which is
composite and has its own complex substructure. The

Feynman amplitude for graviton emission from an incom-
ing source particle S has a vertex factor which is simply its
energy eigenvalue E. States S with different energies E
have different graviton emission amplitudes, and hence
produce different asymptotic states of the hμν field.
The graviton quantum state ψgðEÞ is exactly analogous

to the quantum state of the Uð1Þ vector field (Coulomb
potential) created by a charge Q [7–9]. This can be
constructed explicitly as a coherent state

j0iQ ¼ exp

�
Q
Z

d3kqðkÞb†ðkÞ
�
j0iQ¼0; ð3Þ

where b†ðkÞ is a linear combination of creation operators of
the nonpropagating (temporal and longitudinal, depending
on choice of gauge) modes of the photon. The factor ofQ in
the exponent shows how the photon state depends on the
source charge. In the gravitational caseQ is replaced by the
energy eigenvalue of the source state and the coherent state
modes are temporal and longitudinal graviton modes. In
both gauge theory and gravity the manner in which the
charge or energy control the asymptotic quantum state is
determined by the Gauss law via constrained quantization.
Note (3) is a formal expression which avoids some infrared
issues: the qðkÞ are not normalizable with respect to the
Lorentz-invariant one-particle norm.
The direct connection between the gravitational field

(Schwarzschild metric) and the Coulomb potential can also
be seen as a consequence of the double copy relationship
[10]. For our purposes the most important point is that
ψgðEÞ depends explicitly on E and for each distinct energy
eigenstate of the compact source there is a different
graviton quantum state.
The evaporation of a black hole takes place over a

timescale ∼M3 so its evolution from a matter configuration
to outgoing radiation is confined to a finite region of
spacetime. Hence, the asymptotic gravitational field at r ≫
M3 remains unchanged, in the form (2), throughout the
entire process. However, near the horizon the gravitational
quantum state presumably reflects the changing internal
state of the hole. The internal state is itself dependent on the
previously emitted Hawking radiation—e.g., due to con-
servation of energy, angular momentum, etc. This provides
a mechanism connecting the region just outside the
horizon, where the next quantum of Hawking radiation
originates, to the internal state of the black hole and the
radiation quanta emitted in the past. Once we go beyond the
semiclassical approximation the amplitude for radiation
emission is a function of ψgðEÞ which itself depends on the
internal state of the hole. We discuss this further in the
conclusions.
Leading corrections from quantum gravity.—In general

relativity, Birkhoff’s theorem states that any spherically
symmetric solution of the vacuum field equations must be
static and asymptotically flat. In other words, the exterior
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solution must be given by the Schwarzschild metric. It has
been shown that this is not the case in quantum gravity
[11,12]: the asymptotic gravitational potential of a compact
object received quantum gravitational corrections [12,13]
which are not present for an eternal black hole [12,14].
Quantum gravitational corrections depend on the compo-
sition of the compact object. This quantum memory effect
has also been observed in Friedmann-Lemaître-Robertson-
Walker (FLRW) cosmology [15]. In this section, we
show that compact objects are hairy in quantum gravity.
We work within the framework of the effective quan-
tum gravitational action at second order in curvature
[14,16–22]: Γ½g� ¼ ΓL½g� þ ΓNL½g�, where the local part
of the action is given by

ΓL ¼
Z

d4x
ffiffiffi
g

p �
R

16πGN
þ c1ðμÞR2 þ c2ðμÞRμνRμν

þ c3ðμÞRμναβRμναβ

�
ð4Þ

and the nonlocal part of the action by

ΓNL ¼ −
Z

d4x
ffiffiffi
g

p �
αR ln

�
□

μ2

�
Rþ βRμν ln

�
□

μ2

�
Rμν

þ γRμναβ ln

�
□

μ2

�
Rμναβ

�
: ð5Þ

This effective action is obtained by integrating out the
fluctuations of the graviton and potentially other massless
matter fields. The Wilson coefficients of the local part of
the action are not calculable from first principles, as we do
not specify the ultraviolet theory of quantum gravity.
However, those of the nonlocal part are calculable and
model independent quantum gravitational predictions.
These nonlocal coefficients can be found in, e.g., [12].
The equations of motion obtained from varying the
effective action with respect to the metric are given by

Rμν −
1

2
Rgμν þ 16πGNðHL

μν þHNL
μν Þ ¼ 8πGNTμν: ð6Þ

The local part of the equation of motion is given by

HL
μν ¼ c̄1

�
2RRμν −

1

2
gμνR2 þ 2gμν□R − 2∇μ∇νR

�

þ c̄2

�
2Rα

μRνα −
1

2
gμνRαβRαβ þ□Rμν

þ 1

2
gμν□R −∇α∇μRα

ν −∇α∇νRα
μ

�
; ð7Þ

with c̄1 ¼ c1 − c3 and c̄2 ¼ c2 þ 4c3. Finally, the nonlocal
part reads

HNL
μν ¼ −2α

�
Rμν −

1

4
gμνRþ gμν□ −∇μ∇ν

�
ln

�
□

μ2

�
R

− β

�
2δαðμRνÞβ −

1

2
gμνRα

β þ δαμgνβ□þ gμν∇α∇β

− δαμ∇β∇ν − δαν∇β∇μ

�
ln

�
□

μ2

�
Rβ

α

− 2γ

�
δαðμR

β
νÞστ −

1

4
gμνR

αβ
στ þ ðδαμgνσ þ δανgμσÞ∇β∇τ

�

× ln

�
□

μ2

�
Rστ

αβ: ð8Þ

Note that the variation of the ln□ term yields terms of
higher order in curvature and can thus safely be ignored at
second order in curvature. The nonlocal parts of the field
equations are responsible for the memory effect. We can
easily illustrate this by considering the corrections to the
metric of a stationary homogeneous and isotropic star with
radius Rs and density

ρðrÞ ¼ ρ0ΘðRs − rÞ ¼
�
ρ0 if r < Rs

0 if r > Rs;
ð9Þ

where ρ0 > 0 is a constant and ΘðxÞ is Heaviside’s step
function. The solution to theEinstein equation inside this star
(for r ≤ Rs) is thewell-known interior Schwarzschild metric

ds2 ¼
 
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2GNM
Rs

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2GNMr2

R3
s

s !2
dt2

4

−
�
1 −

2GNMr2

R3
s

�−1
dr2 − r2dΩ2

≡ gintμνdxμdxν; ð10Þ
where

M ¼ 4π

Z
Rs

0

ρr2dr ¼ 4π

3
R3
sρ0 ð11Þ

is the total Misner-Sharp mass of the source. The corre-
sponding pressure is of order GN [12] in agreement with the
fact that the pressure does not gravitate in Newtonian
physics. Of course, the metric outside the star (for r > Rs)
is the usual vacuum Schwarzschild metric

ds2 ¼
�
1 −

2GNM
r

�
dt2 −

�
1 −

2GNM
r

�
−1
dr2 − r2dΩ2

≡ gextμν dxμdxν; ð12Þ

from which one can see that M is also the Arnowitt-Deser-
Misner (ADM) mass of the system.
We now perturb the above metrics: g̃μν ¼ gμν þ gqμν, and

take the perturbation gqμν to be OðGNÞ. We solve this
equation, imposing the solution to be spherically symmetric
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and time independent. In addition we fix the gauge freedom
by setting gqθθ ¼ 0. Doing so, we obtain the quantum
corrections gqμν ¼ δgextμν to the Schwarzschild metric (12)
outside the star. The corrections are given in [12]:

δgexttt ¼ ðαþ β þ 3γÞ 192πG
2
NM

R3
s

�
2
Rs

r
þ ln

�
r − Rs

rþ Rs

��

þ C1

r
þ C2 þOðG3

NÞ

δgextrr ¼ ðα − γÞ 384πG
2
NM

rðr2 − R2
sÞ

þ C1

r
þOðG3

NÞ; ð13Þ

where Ci are integration constants which can be set to
zero. This ensures asymptotic flatness and that the ADM
mass is M.
We work with the metric with signature ðþ − −−Þ, in the

signature ð−þþþÞ case, the corrections obtain an extra
minus sign. Note the two terms in large brackets, when
combined, give rise to the r−3 and r−5 corrections men-
tioned in the introduction. The coefficient of this term is
proportional to G2

NMR−3
s : i.e., it is a quantum gravitational

effect proportional to the density of the source object. Two
source objects with the same massM but different densities
give rise to different metric perturbations.
Now compare the result to that generated by two nested

(one inside the other) dust balls with densities

ρiðrÞ ¼ ρ0;iΘðRi − rÞ ¼
�
ρ0;i if r < Ri

0 if r > Ri;
ð14Þ

and masses M1 and M2

Mi ¼ 4π

Z
Ri

0

ρ0;ir2dr ¼
4π

3
R3
i ρ0;i; ð15Þ

with i ∈ f1; 2g, such that, e.g., R1 < Rs, R2 ¼ Rs, and
M ¼ M1 þM2. In other words, the star built from two
nested dust balls has totalmass equal toM and the same outer
radius Rs as the star composed of only one component.
It is straightforward to show that a solution in general

relativity exists. In the region r ∈ ½R2;∞Þ, the metric is the
exterior Schwarzschild solution with massM. In the region
r ∈ ½0; R1Þ (the most inner one), the metric is the interior
Schwarzschild solution with radius R1 and mass M1þ
M2ðR1=R2Þ3. In the region r ∈ ½R1; R2Þ, the metric is the
interior Schwarzschild solution with radius R2 and
mass M2.
In general relativity, an external observer cannot differ-

entiate a star with radius Rs and mass M from the star with
two different components but same external radius and same
total mass M. However, we will show that the quantum
gravitational corrections are different for the two matter
distributions and there is thus amemory effect. Repeating the
same calculation as in [12], using the fact that at this order in
GN the equations are linearized, we find a correction

δgexttt ¼ ðαþ βþ 3γÞ192πG
2
NM1

R3
1

�
2
R1

r
þ ln

�
r−R1

rþR1

��

þðαþ βþ 3γÞ192πG
2
NM2

R3
2

�
2
R2

r
þ ln

�
r−R2

rþR2

��
þOðG3

NÞ

δgextrr ¼ ðα− γÞ384πG
2
NM1

rðr2−R2
s;1Þ

þ ðα− γÞ384πG
2
NM2

rðr2−R2
s;2Þ

þOðG3
NÞ:

ð16Þ

While the classical part of the metric cannot distinguish
between the one ball of dust withmassM and two concentric
dust balls with masses M1, M2, and M1 þM2 ¼ M, the
quantum gravitational corrections depend on the matter
distribution of the nested balls.
For the one-layer star we obtain

gtt ¼ 1 −
2GNM

r
− 128π2ðαþ β þ 3γÞ l

2
p

r2

×

�
GNM
r

�
1þ 3R2

s

5r2
þOðRs=rÞ4

�
þOðGNM=rÞ2

�
þOðlp=rÞ4; ð17Þ

where lp ¼ ffiffiffiffiffiffiffi
ℏG

p
is the Planck length, and for two layers

we obtain

gtt ¼ 1 −
2GNM

r
− 128π2ðαþ β þ 3γÞ l

2
p

r2

×

�
GNM
r

�
1þ 3ðM1R2

1 þM2R2
sÞ

5Mr2
þOðRs=rÞ4

�

þOðGNM=rÞ2
�
þOðlp=rÞ4: ð18Þ

Clearly, the quantum gravitational corrections are different
for the two stars. Here, we made explicit the different
expansion parameters. The series in lp=r reflects the trunca-
tion of the effective action at second order in curvature. The
series in GNM=r is due to the linearization of the field
equations and the expansion in Rs=r corresponds to the
asymptotic limit. In this limit we see that potentials generated
by the two stars are composition dependent at order r−5.
In this case we have considered a two-layered star and

shown that the result can differ from a single-layered star.
However, the above argument can easily be extended to
show that any n- and m-layered stars with n ≠ m can be
distinguished by an outside observer due to quantum
gravitational effects, although their classical external gravity
fields are identical. The quantum memory effect leads to
hairy stars.
To extend the above discussion, consider two homo-

geneous stars both with initial mass Mi and radius Ri. We
assume that at a certain time both stars run out of fuel and
collapse toward a new equilibrium state with mass Mf and
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radius Rf. Let us furthermore assume that the first star
remains homogeneous, while the second collapses to a two-
layered state as described above. The initial configurations
are gravitationally indistinguishable in terms of classical
effects. Moreover, due to Birkhoff’s theorem the two final
states are classically indistinguishable. However, due the
quantum gravitational memory effect the two final states
are distinguishable at the quantum level.
While earlier we assumed a time-independent static star,

we could consider a collapsing dust ball which can form a
black hole. We introduce time-dependence via the radius of
the star RsðtÞ. For a distant observer, r ≫ RsðtÞ at all times,
we can expand the correction to the metric in Eq. (13), and
it seems likely that the r−5 dependence remains during the
totality of the collapse.
Eventually, RsðtÞ will reach 2GNM and a closed trapped

surface will form indicating the formation of a black hole.
An observer could in principle measure the coefficient of
the r−5 correction to the metric. This correction contains
information about the matter distribution that collapsed and
could thus enable the observer to differentiate between
black holes formed by different matter distributions.
The r−5 correction shifts the location of the horizon

slightly and modifies the metric near the horizon. This
presumably has an effect on Hawking radiation. A fully
quantummechanical treatment of the metric g, as opposed to
the semiclassical perturbation analysis above, would yield
the detailed quantum state of the graviton field [analogous to
(3)] in place of the r−5 correction we obtained [23].
We find that quantum gravity produces a new kind of

hair on black holes. While the corrections described in this
section may be very small, with limited experimental
consequences, they can have dramatic consequences for
black holes information [24].
Conclusions: Holography and black hole information.—

The existence of a one to one map between the quantum
states of compact matter sources and of their asymptotic
gravitational fields is clearly suggestive of holography and
area bounds on entropy. We emphasize that the appearance
of the charge or energy in results like (3) originates in
Gauss law constraints which play an important role in the
quantization of gauge theories and gravity. The recovery of
bulk information from asymptotic gravitational fields at the
boundary is also discussed in [25–28].
In a fully quantum mechanical treatment the evolution of

the matter source cannot be considered independently from
that of its gravitational field. This contrasts sharply with the
usual approximation of a fixed spacetime background in
whichmatter fields evolve. For example, Hawking radiation
from a black hole is computed in this approximation,
whereas our analysis shows that a precise treatment (e.g.,
one which hopes to examine the unitarity of black hole
evaporation) must consider that the metric outside the
horizon depends on the state of the interior. The evaporation
process takes the form

jB0; g0i → jB1; g1; γ1i → jB2; g2; γ2; γ1i
→ jB3; g3; γ3; γ2; γ1i � � � ; ð19Þ

where B is the black hole internal state, g the quantum state
of the (external) graviton field or metric, and γ the emitted
radiation which originates at the horizon. The radiation state
γnþ1 depends on themetric state gn, and each gn depends on,
and is entangled with, Bn. From this perspective it is clear
that the Hawking radiation state is connected to the internal
state of the black hole.
We can give some idea of the complexity of this process

through the following schematic description. Consider the
semiclassical superposition state in (2),

ψgðSÞ ¼
X
n

cnψgðEnÞ; ð20Þ

and suppose that each graviton state ψgðEnÞ (describing the
exterior metric) has amplitude αðEn;ΔÞ to produce a
Hawking radiation quantum γ with energy Δ [represented
by γðΔÞ in the wave function below]. Then the exterior state
evolves to

ψ ≈
X
n

cn½ψgðEnÞþαðEn;ΔÞψgðEn −ΔÞγðΔÞþ � � ��: ð21Þ

The state after radiation emission (from second term in the
sum, above) is a different semiclassical state constructed
from ψg corresponding to energies shifted by Δ. Through
αðEn;ΔÞ and ψgðEn − ΔÞ the detailed form of this quantum
state depends on the emitted radiation, including on
quantum numbers we have suppressed such as momentum,
spin, charge, etc. Even if the deviation of αðEn;ΔÞ from the
semiclassical amplitude is exponentially small, the aggre-
gate effect on the process of evaporation could be signifi-
cant. It is plausible that each initial black hole state,
specified by coefficients cn, evolves into a different final
quantum state—i.e., the evolution is unitary.
For each history of radiation quanta fγ1; γ2;…; γng there

is a corresponding quantum spacetime fg1; g2;…; gng. A
black hole with entropy A can produce ∼ expA distinct
evaporation states and corresponding quantum spacetimes.
Schrödinger evolution of the initial state will produce a
superposition of these radiation states and spacetimes [29–
31]. It has been conjectured that black hole evaporation is
unitary when all of these branches of the wave function are
taken into account [32–35].
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