# 802.11 b/g/n Wi-Fi + BLE 4.2 Kit

Version: V1.0

The BW15-Kit development board is a core development board designed by Essence for the BW15 module. The development board continues the classic design of the NodeMCU development board. Need to connect peripherals. When using the breadboard for development and debugging, the standard headers on both sides can make the operation easier and more convenient.

The BW15 module is developed by Boantong. BW15 is a highly integrated Wi-Fi and Bluetooth SOC module. The main chip RTL8720CF is a 2.4GHz wireless LAN (WLAN) and Bluetooth low energy (v4.2) Highly integrated low-power chip; It combines Real-M300 MCU, WLAN MAC, WLAN baseband with 1T1R function in a single chip. It also provides configurable GPIOs, which are configured as digital peripherals for different applications and control purposes.

BW15 also integrates internal memory, which can achieve complete WIFI and BLE4.2 protocol functions. Embedded memory configuration also supports simple application development.

#### Characteristic:

- Support 802.11 b/g/n 1x1, 2.4GHz
- Support MCS7 up to 20MHz / 40MHz
- Low power architecture
- Support low-power transmission/reception, suitable for short-distance applications
- ➤ Low-power beacon monitoring mode, low-power receiving mode, low-power suspend mode
- Built-in AES/SHA hardware engine
- Built-in 2MB Flash
- ➤ Support BLE4.2 BQB
- Support central and peripheral modes
- > The internal coexistence mechanism between WIFI and BT shares the same antenna
- Support STA/AP/STA+AP working mode
- > Support Smart Config (APP)/AirKiss (WeChat) for Android and IOS One-click network configuration
- Support serial port local upgrade and remote firmware upgrade (OTA)
- General AT commands can be used quickly

| Module model          | BW15                               |  |
|-----------------------|------------------------------------|--|
| Encapsulation         | SMD-16                             |  |
| size                  | $24*16*3(\pm 0.2)$ MM              |  |
| Antenna form          | Onboard PCB antenna/IPEX antenna   |  |
| Spectrum range        | 2400 ~ 2483.5MHz                   |  |
| Bluetooth             | Bluetooth4.2 BLE                   |  |
| Bluetooth frequency   | 2. 402GHz -2. 480GHz               |  |
| Operating temperature | -40 °C ~ 85 °C                     |  |
| Storage environment   | -40 °C <sup>~</sup> 125 °C, <90%RH |  |

| Power supply range | Supply voltage 3.0V $^{\sim}$ 3.6V, supply current $>$ 500mA |
|--------------------|--------------------------------------------------------------|
| Support interface  | UART/GPIO/ADC/PWM/IIC/SPI                                    |

Note: BW15 series modules are electrostatic sensitive devices, and special precautions need to be taken when handling



### Absolute maximum rating

# Anything exceeding the following absolute maximum ratings may cause damage to the chip

| Name                           | Minimum value | Typical value | Maximum value | Unit       |
|--------------------------------|---------------|---------------|---------------|------------|
| Micro USB power supply voltage | 4. 75         | 5             | 5. 25         | V          |
| Supply voltage                 | 2.6           | 3. 3          | 3. 6          | V          |
| Operating temperature          | -40           | _             | 85            | $^{\circ}$ |
| Storage temperature            | -40           | _             | 125           | $^{\circ}$ |

### WIFI RF performance

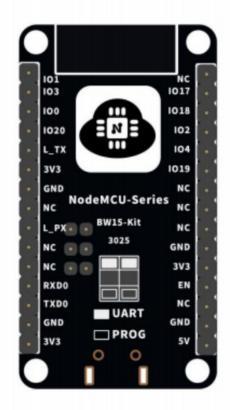
| Describe                            | Typical value | Unit |  |  |
|-------------------------------------|---------------|------|--|--|
| Working frequency                   | 2400 ~ 2483.5 | MHz  |  |  |
| Output Power                        |               |      |  |  |
| In 11n mode, the PA output power is | 15±2          | dBm  |  |  |
| In 11g mode, the PA output power is | 16±2          | dBm  |  |  |
| In 11b mode, PA output power        | 18±2          | dBm  |  |  |

|                      | Receiving sensitivity |     |
|----------------------|-----------------------|-----|
| CCK, 1 Mbps          | <=-98                 | dBm |
| CCK, 11 Mbps         | <=-90                 | dBm |
| 6 Mbps (1/2 BPSK)    | <=-94                 | dBm |
| 54 Mbps (3/4 64-QAM) | <=-77                 | dBm |
| HT20 (MCS7)          | <=-74                 | dBm |

### Bluetooth RF performance

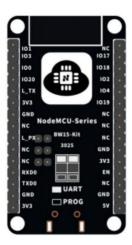
| Describe              | Typical value  | Unit |  |
|-----------------------|----------------|------|--|
| working frequency     | 2400 ~ 2483. 5 | MHz  |  |
| Output Power          |                |      |  |
| PA output power is    | 7±2            | dBm  |  |
| Receiving sensitivity |                |      |  |
| Receiving sensitivity | <=-92          | dBm  |  |


# Power consumption


The following power consumption data is based on a 3.3V power supply, an ambient temperature of  $25^{\circ}$  C, and measured using an internal voltage regulator.

All measurements are done at the antenna interface without SAW filter.

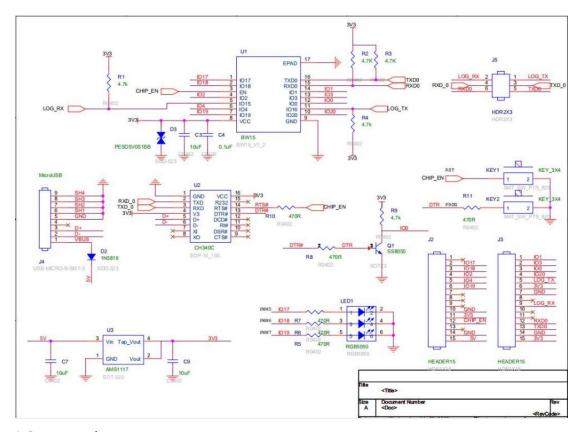
All emission data is based on 90% duty cycle, measured in continuous emission mode.


| Name                                                 | Minimum value | Typical value | Maximum value | Unit |
|------------------------------------------------------|---------------|---------------|---------------|------|
| Transmit 802 11b, CCK<br>11Mbps,POUT=+17dBm          | -             | 250           | -             | mA   |
| Transmission 802 11g,<br>OFDM 54Mbps, POUT = +15dBm  | -             | 210           | -             | mA   |
| Transmit 802 11n, MCS7,<br>POUT = +13dBm             | -             | 195           | -             | mA   |
| Receive 802 11b, packet<br>length 1024 bytes, -80dBm | -             | 50            | -             | mA   |
| Receive 802 11g, packet<br>length 1024 bytes, -70dBm | -             | 56            |               | mA   |
| Receive 802 11n, packet<br>length 1024 bytes, -65dBm | -             | 56            | _             | mA   |
| Modem-Sleep①                                         | -             | 20            | -             | mA   |
| Light-Sleep②                                         | -             | 2             | -             | mA   |
| Deep-Sleep③                                          | -             | 28            | -             | uA   |
| Power Off                                            | -             | 0.5           | _             | uA   |



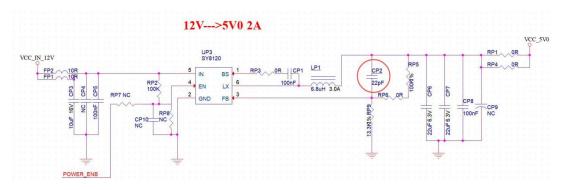


### Pin definition


The BW15-Kit development board module has a total of 30 interfaces. As shown in the pin diagram, the pin function definition table is the interface definition.

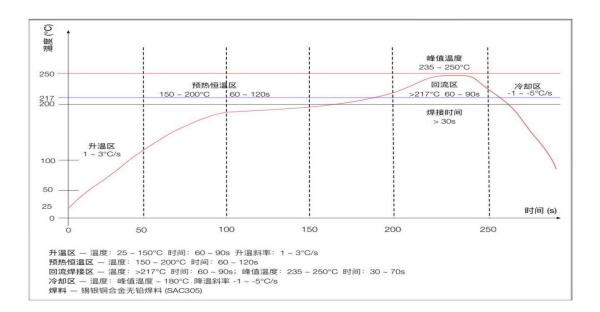


| PINS | NAME | Function Description                                             |
|------|------|------------------------------------------------------------------|
| 1    | I01  | GPIOA_ 1/UART1_OUT/PWM1                                          |
| 2    | I03  | GPIOA_ 3/UART1_OUT/SPI_SCL/I2C_SDA/PWM3                          |
| 3    | 100  | GPIOA_ O/UART1_ IN/EXT_ 32K/PWMO                                 |
| 4    | 1020 | GPIOA_<br>20/SD_D1/SPI_M_D1/UART2_RTS/SPI_MISO/I2C_S<br>DA/ PWMO |


|    |      | GPIOA                                                            |
|----|------|------------------------------------------------------------------|
| 5  | L TX | 16/SD_D3/SPI_M_CLK/UART2_OUT/SPI_SCL/I2C_S                       |
|    |      | DA/ PWM4                                                         |
| 6  | 3V3  | 3 3V power supply (VDD); maximum 500mA                           |
| 7  | GND  | Grounded                                                         |
| 8  | NC   | nul1                                                             |
| 9  | L RX | GPIOA_ 15/SD_D2/SPI_M_CS/UART2_<br>IN/SPI_CS/I2C_SCL/ PWM 3      |
| 10 | NC   | nul1                                                             |
| 11 | NC   | nul1                                                             |
| 12 | RXD0 | AT UART RX                                                       |
| 13 | TXD0 | AT UART TX                                                       |
| 14 | GND  | Grounded                                                         |
| 15 | 3V3  | 3 3V power supply (VDD); maximum 500mA                           |
| 16 | NC   | nul1                                                             |
| 17 | I017 | GPIOA_ 17/SD_CMD/SPI_M_D2/PWM5                                   |
| 18 | I018 | GPIOA_ 18/SD_CLK/SPI_M_D3/PWM6                                   |
| 19 | 102  | GPIOA_ 2/UART1_ IN/SPI_CS/I2C_SCL/PWM2                           |
| 20 | I04  | GPIOA_4/UART1_CTS/SPI_MOSI/PWM4                                  |
| 21 | 1019 | GPIOA_<br>19/SD_DO/SPI_M_DO/UART2_CTS/SPI_MOSI/I2C_S<br>CL/ PWM7 |
| 22 | NC   | nul1                                                             |
| 23 | NC   | nul1                                                             |
| 24 | NC   | nul1                                                             |
| 25 | GND  | Grounded                                                         |
| 26 | 3V3  | 3 3V power supply (VDD); maximum 500mA                           |
| 27 | EN   | Chip enable terminal                                             |
| 28 | NC   | null                                                             |
| 29 | GND  | Grounded                                                         |
| 30 | 5V   | 5V power supply                                                  |

Schematic diagram




#### 1. Power supply

- (1) Recommended 3.3V voltage, peak current above 500mA
- (2) It is recommended to use LDO for power supply; if using DC-DC, it is recommended that the ripple be controlled within 30mV.
- (3) It is recommended to reserve the position of the dynamic response capacitor for the DC-DC power supply circuit, so that the output ripple can be optimized when the load changes greatly. Wave.
- (4) It is recommended to add ESD devices to the 5V power interface.



# 2. Antenna layout requirements

It is forbidden to place metal parts around the module antenna, away from high-frequency components.

