Java String

Introduction

The string is one of the most used variable types in Java. Strings are frequently used in Java to
represent text-based data. They are a collection of letters and numbers encased in double
quotations.

You can use the Scanner class, which is a component of the java.util package to accept string

input from the user. Utilizing the Scanner class is the most commonly used method, but you can
also use the BufferedReader class and other methods.

Overview

This tutorial will explore the techniques, best practices, and commonly asked questions related
to accepting string input in Java. By mastering this fundamental skill, you'll be well-equipped to
create dynamic and interactive Java programs that effectively handle textual data and user
interactions.

How to Take String Input in Java

To take string input in Java, we can use the java.util. Scanner class that provides methods to
read input from various sources, including the standard input (keyboard) and files. We can also
use the BufferedReader class or Command Line Arguments.

Let us use the Scanner class to explain the general process and syntax to take string input in
Java.

1. Import the necessary package (java.util. Scanner):

import java.util. Scanner; /| We are using the Scanner class for this program
2. Create a Scanner object:

Scanner scanner = new Scanner(System.in);

3. Create provisions for user input:

System.out.print("Enter a string: ");

4. Read the input as a string:

String inputString = scanner.nextLine();

The nextLine() method reads the entire input line, including any spaces or special characters,

and returns it as a string.

Method - 1: By Using Java Scanner Class

From the above section, we now have a general idea about using the Scanner class in Java.
Let us look at some examples of taking string input in Java with two essential methods from the

Scanner class:

Java nextLine() Method

SREN > n | ©oeoua | WS SRR M ove |

upGradTutorials java 2
| java.util.Scanner;

upGradTutorials {
main([] args) {
Scanner scanner Scanner (.in);

.out.print("Enter your name: "});
name = scanner.nextLine();

.out.println("Hello, name + "!'");

scanner .close();

LY A input

axit code @

import java.util.Scanner;

public class upGradTutorials {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);

System.out.print("Enter your name: ");
String name = scanner.nextLine();

System.out.printin("Hello, " + name + "I");

/I Close the scanner to free resources
scanner.close();

}
}

The above program starts by importing the java.util. Scanner class, which is used to read user
input. The program then creates a Scanner object, scanner, to read input from the standard
input (keyboard). It prompts the user to enter their name by displaying the message "Enter your
name:".

The nextLine() method of the Scanner object reads the entire line of input as a string and
stores it in the name variable. The program then displays a greeting message using the entered
name by concatenating it with the string "Hello, " and "!". Finally, the scanner.close() method is
called to close the Scanner object and release any associated resources.

Java next() Method
Bl * Run | ©peoug | MSiop | | M save |

upGradTutonals java 2
java.util.Scanner;

upGradTutorials {
ERTT [] args) {
Scanner scanner Scanner (

.out.print("Enter a word:
word scanner.next();

.out.println({"Word entered: " + word);

scanner.close();

v T a input

ith exit code @

import java.util. Scanner;

public class upGradTutorials {

public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);

System.out.print("Enter a word: ");
String word = scanner.next();

System.out.printin("Word entered: " + word);

scanner.close();

}
}

This program demonstrates the next() method in Java to read a single word as input from the
user. The Scanner class is imported to enable reading user input. A Scanner object named
scanner is created to read input from the standard input (keyboard). The program prompts the
user to enter a word by displaying the message "Enter a word: ".

The next() method of the Scanner object is used to read the next word from the input as a
string and store it in the variable word. The program then displays the word entered by
concatenating it with the string "Word entered: ". Finally, the scanner.close() method is called
to close the Scanner object and release any associated resources.

Method - 2: By Using Java BufferedReader Class
Bl ” Fun | ©0ebuo | WSiop | | M save | Language Javz v

upGradTutonials java 2

1 java.io.BufferedReader;
java.io.I0Exception;
java.lo.InputStreamReader;

upGradTutorials {
main([] args) {
BufferedReader reader BufferedReader(InputStreamReader(

.out.print("Enter a line of text: ");
line reader.readlLine();

.out.println("Line entered: line);
{I0OException e) {
e.printStackTrace();

.I_

reader.close();
(IOException e) {

e.printStackTrace();

v N input
Enter a line of X

Line entered: woob

import java.io.BufferedReader;
import java.io.|OException;
import java.io.lnputStreamReader;

public class upGradTutorials {
public static void main(String[] args) {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

try {
System.out.print("Enter a line of text: ");
String line = reader.readLine();

System.out.printin("Line entered: " + line);
} catch (IOException e) {
e.printStackTrace();
} finally {

try {
reader.close();

} catch (IOException e) {
e.printStackTrace();

}
}
}
}

The above program demonstrates the usage of the BufferedReader class in Java to read a line
of text as input from the user. The BufferedReader class, along with InputStreamReader and
System.in, is imported to enable reading user input. A BufferedReader object named reader is
created by wrapping an InputStreamReader object around System.in. This allows reading
input from the standard input (keyboard).

The program prompts the user to enter a line of text by displaying the message "Enter a line of
text: ". The readLine() method of the BufferedReader object is used to read the entire line of
input as a string and store it in the variable line. The program then displays the entered line by
concatenating it with the string "Line entered: ".

In case of any input/output errors, the program catches and prints the exception stack trace.
Finally, the close() method is called on the BufferedReader object to close it and release any
associated resources.

Method - 3: By Using the Command Line Arguments

upGradTutonials java ¥

upGradTutorials {
main([] args) {
(args.length) {
.out.println("Command line arguments:");
(1 HE args.length;

| .out.println{args[i]);
F
{
.out.println("No command line arguments provided.");

v . 8 input
Mo command line arguments provided.

Program finished with exit code ©
5 ENTER to ex console.

public class upGradTutorials {

public static void main(String[] args) {
if (args.length > 0) {
System.out.printin("Command line arguments:");
for (inti=0;i < args.length; i++) {
System.out.printin(argsii]);
}
} else {
System.out.printin("No command line arguments provided.");
}
}
}

In the above program, the main method accepts an array of strings, args, as command line
arguments. The program first checks if any command line arguments are provided by checking
the length of the args array. If there are command line arguments, it enters a loop and displays
each argument on a separate line using a for loop.

If no command line arguments are provided, it prints the message "No command line
arguments provided." This program allows you to pass arguments to the Java program when
executing it from the command line. The provided command line arguments are then accessed
and processed within the program.

If command line arguments are provided when running the program, the program will display the
following:

Command line arguments

We must run the program with the command line arguments (apple, banana and orange): java
upGradTutorials apple banana orange

sradTutorials apple banana orange

After we provide the command line arguments, this will be the output:

Command line arguments
apple

ENEGE]
orange

Conclusion

When working with text-based data and user interactions, receiving string input is a crucial
component of Java programming. The Scanner class makes reading string input from files or
the console simple. Remember to handle exceptions and validate the input as necessary to
ensure your program behaves appropriately.

You can make Java programs more interactive and user-friendly by being familiar with standard
methods for validating, transforming, and processing string input. You can supply text-based
data through string input, which can then be processed, changed, or stored to meet your
program's needs.

FAQs

1.

Is it possible for me to accept several strings on a single line?

Yes, the next() method of the Scanner class can take several strings as input on a
single line. This method reads the subsequent token from the input, a string of
characters mostly separated by spaces. To read several strings entered on the same
line, call the next() method multiple times.

Can | use a file instead of the console to input strings?

Yes, by constructing a Scanner object with a File object corresponding to the file we
wish to read, we may use the Scanner class to read string input from a file. We would
supply the File object to the Scanner constructor instead of System.in. Using this
technique, we can read strings from a file and process them accordingly.

How can | change string inputs in Java to another data type?

We can use the methods the corresponding wrapper classes offer if we need to convert
string input to any other data type, such as an integer or a double. For instance, we can
use Double.parseDouble() to turn a string into a double or Integer.parselnt() to turn a
string into an integer.

