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Abstract

Most of the current image retrieval systems use
\one-shot" queries to a database to retrieve similar im-
ages. Typically a K-NN (nearest neighbor) kind of al-
gorithm is used where the weights of the features that
are used to represent images remain �xed (or manu-
ally tweaked by the user) in the computation of a given
similarity metric. However, neither all of the features
are equally important for a given query nor a similarity
metric is optimal for all kinds of images in a database.
The manual adjustment of these weights and the se-
lection of similarity metric are exhausting. Moreover,
they require a very sophisticated user. In this paper
we present a novel image retrieval system that contin-
uously learns the weights of features and selects an ap-
propriate similarity metric based on the user's feedback
given as positive or negative image examples. Experi-
mental results are presented that provide the objective
evaluation of learning behavior of the system for image
retrieval.

1. Introduction

The rapid advance in digital imaging technology
makes possible the wide spread use of image libraries
and databases. This in turn demands e�ective means
for access to such databases. It is well known that sim-
ple textual annotations for images are often ambiguous
and inadequate for image database search. Thus, re-
trieval based on image \content" becomes very attrac-
tive [1, 3]. Generally, s set of features (color, shape,
texture, etc.) are extracted from an image to represent
its content. Then the image database retrieval proce-
dure becomes a K-NN search in the feature space under
a given similarity metric.

There are three fundamental problems associated
with this simple content-based image retrieval scheme.
First, di�erent similarity measures capture di�erent as-

pects of perceptual similarity between images [3]. In
general, what similarity metric to use is image depen-
dent, and plays an important role in the outcome of im-
age retrieval. Second, di�erent features are unequal in
their di�erential relevance for computing the similarity
between images. When a user says that two images are
similar, the user really means that the images are sim-
ilar in an individual feature, some combination of the
features, or some features still unknown to the user.
This implies that the similarity does not vary with
equal strength or in the same proportation in all di-
rections in the feature space emanating from the query
image. Third, the user understands more about the
query, whereas the database system can only \guess"
what the user is looking for during the retrieval process.
The system must interact with the user to learn di�er-
ential feature relevance and an appropriate similarity
metric to guide its search and to iteratively re�ne its
retrieval at run-time. In this paper, we present a novel
method that enables image retrieval systems to learn
di�erential relevance of features and optimal similar-
ity metric in an e�cient manner, and which is highly
adaptive to query images.

1.1 Related Research
Ma and Manjunath [7] extract Gabor texture fea-

tures from images and use a hybrid neural network
to partition the feature space into clusters by train-
ing on a large number of labeled images. During test-
ing a query image is assigned to a cluster label by the
network and similar images from the same cluster are
returned to the user. All features are treated equally
important and Euclidean distance is used. Hu and Cer-
cone [8] identify relevant features by using the rough
set theory. Di�erent weights are assigned to di�erent
features based on the signi�cance value of features and
the value-similarities. Both [7] and [8] do not involve
user's feedback and can not re�ne their retrieval inter-
actively. Minka and Picard [4] select features based
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Figure 1. Learning features and similarity metrics.

on positive and negative examples to choose groupings
for the query. This work is similar to [7] but feedback
from the user is integrated for feature selection. How-
ever, all the selected features are treated with equal
importance.

Unlike the above, in our research we select features
based on user's feedback and where the query lies in the
feature space. We also learn similarity metrics since
di�erent metrics are optimal for di�erent classes of im-
ages [3]. Further, since feature relevance is strongly
related to the similarity metric used, we develop an ap-
proach and show results where we learn both of them
simultaneously.

2. System Overview

Figure 1 shows the overall architecture of our sys-
tem. Images in the database are represented by the fea-
ture vectors whose components are normalized mean
and standard deviations of responses from Gabor �l-
ters. The user presents a query image to the system.
Since the system has no knowledge about the query
at the beginning, it uses all the features (with equal
relevance) to compute similarity measures and returns
to the user highly similar images (based on the chosen
metric for similarity) corresponding to the top K near-
est neighbors in feature space of the image database.
All the components of the feature relevance are ini-
tialized to the same value (1/dimension of the feature
space) and are considered equally important for the
�rst time retrieval. The user then marks the retrieved
images as positive (e.g, click on an image by using the
left mouse button) or negative (e.g, click on an im-
age by using the right button). The user \thinks" that
positive images look similar to the query image but the
negative ones don't. These marked images constitute

training data. From the query and training data, the
system computes the relevance (weights) of di�erent
features. The components of the weight vector repre-
sent local relevance of each feature. They are adaptive
to the location of the query image in the feature space.
After the feature relevance has been determined, the
system selects a similarity metric using reinforcement
learning. Based on this new weight vector for feature
relevance and the chosen similarity metric, the system
restarts a new round of retrieval and repeat the above
procedure until the user is satis�ed with the results.

2.1 Local Feature Relevance
The performance of indexing for image databases

can be characterized by two key factors. First, for a
given query image, the relevance of all the features in-
put to the indexing procedure may not be equal for re-
trieving similar images. Irrelevant features often hurt
indexing performance. Second, feature relevance de-
pends on where the query is made in the feature space.
Capturing local relevance is essential for constructing
successful indexing procedures in image databases.

In a two class (1/0) classi�cation problem, the class
label c at query x is treated as a random variable from
the distribution fPr(1jx);Pr(0jx)g. c at x can be char-

acterized by yjx =

�
1 cjx = 1
0 cjx 6= 1

. This gives rise to

f(x)
:
= Pr(1jx) = Pr(y = 1jx) = E(yjx); (1)

To predict c at x, f(x) is estimated from a set of train-
ing data. In image retrieval, however, the \label" of x
is known. All that is required is to exploit di�erential
relevance of the input features to image retrieval. Con-
sider the least-squares estimate for f(x), given that x
is known at dimension xi = z, is

E[f jxi = z] =

Z
f(x)p(xjxi = z)dx; (2)

where p(xjxi = z) is the density of the other input
features. Equation (2) shows the predictive strength
(probability) once the value of just one (xi) of the input
features xi is known. Then a feature relevance measure
can be given by

ri(z) = (E[f jxi = zi])
2=

qX
l=1

(E[f jxl = zl])
2: (3)

One can see that 0 � ri(z) � 1. ri(z) = 0 when f(x)
does not depend on xi at query z. And ri(z) = 1 when
f(x) depends entirely on xi at z. Values in between
show the degrees of relevance that xi exerts at z. Thus,
(3) can be used as a weight associated with each feature
for weighted similarity metric computation.



In order to estimate (3), one must �rst compute (2).
The retrieved images with feedback from the user can
be used as training data to obtain estimates for (2)
and (3). Let fxj ; yjg

N
1 be the training data, where xj

denotes the feature vector representing jth retrieved
image, and yj is either 1 or 0 marked by the user as a
desired (positive or hit) or undesired (negative) image,
respectively. Then, based on (1), one can estimate (2)
according to

Ê[yjxi = z] =

NX
j=1

yj1(jxji�zj � �)=

NX
j=1

1(jxji�zj � �)

where 1(�) is an indicator function. � can be chosen
so that there are su�cient data for the estimation of
(2). In addition, the above equation can be computed
within a subregion, thus making the relevance measure
more local. Note that this technique can be readily ex-
tended to multiple class situations where the user can
grade retrieved images.

2.2 Learning Similarity Metrics
The particular framework adopted in this paper

for selecting similarity metrics is connectionist rein-
forcement learning [5, 6]. Units in such a network
are Bernoulli quasilinear units in that the output of
such a unit is either 0 or 1, determined stochasti-
cally using the Bernoulli distribution with parameter
pi = f(si), where f is the logistic function f(si) =
1=(1 + exp(�si)), and si =

P
j wijxj is the usual

weighted summation of input values to that unit. For
such a unit, p represents its probability of choosing 1
as its output value.

In the general reinforcement learning paradigm, the
network generates an output pattern and the environ-
ment responds by providing the reinforcement r as its
evaluation of that output pattern, which is then used
to drive the weight changes according to the particu-
lar reinforcement learning algorithm being used by the
network. For the Bernoulli quasilinear units used in
this research, the REINFORCE algorithm prescribes
weight increments equal to

�wij = �(r � b)(yi � pi)xj (4)

where � is a positive learning rate, b serves as a re-
inforcement baseline, xj is the input to each Bernoulli
unit, yi is the output of the ith Bernoulli unit. In this
paper, r is the ratio of positive hits against the number
of retrieved images.

It can be shown [6] that, regardless of how b is com-
puted, whenever it does not depend on the immediately
received reinforcement value r, and when r is sent to

all the units in the network, such an algorithm satis�es

Ef�WjWg = �rWEfrjWg (5)

where E denotes the expectation operator, W repre-
sents the weight matrix (n � (m + 1), m + 1 because
of m inputs plus a bias, n is the number of units) of
the network, and �W is the change of the weight ma-
trix. That is, the algorithm is guaranteed to converge
to a local optimum. For adapting similarity metrics, it
means that the process is moving towards selecting the
similarity metric that increase the number of desired
images retrieved.

We use a form of trial generating network in which
all of the units are output units and there are no in-
terconnections between them. This degenerate class
of network corresponds to what is called a team of
automata in the literature on stochastic learning au-
tomata. Each similarity metric is encoded by a set
of Bernoulli quasilinear units and the output of each
unit is binary as we have described earlier. Since we
only consider three similarity metrics, the number of
Bernoulli quasilinear units selected is two. For any
Bernoulli quasilinear unit, the probability that it pro-
duces a 1 on any particular trial given the value of the
weight matrix W is

Pr fyi = 1jWg = pi = f(si) =
1

1 + e�si

where si =
P

j wijxj . Because all units pick their out-
puts independently, it follows that for such a team of
Bernoulli quasilinear units the probability of any par-
ticular output vector y(t), corresponding to an instance
of similarity metrics, conditioned on the current value
of the weight matrix W is given by

Pr fyjWg =
Y

i2f1;���;ng

pyii (1� pi)
1�yi : (6)

2.2.1 Similarity Metrics: The similarity metrics
used in our system are de�ned as follows. Let x and
y represent two feature vectors, then the similarity be-
tween x and y is de�ned as follows.

dt(x;y) =

"
qX

i=1

rijxi � yij
t

#1=t
(7)

where
Pq

i=1 ri = 1, and they are computed using Eq.
(3). Equation (7) yields weighted Euclidean metric
(t = 2), city-block metric (t = 1), or dominance metric
(t = 1) [3]. We call these three metrics as metric 0,
metric 1 and metric 2, respectively.



Table 1. Learning feature relevance for various similarity metrics.

Euclidean Similarity Metric

ItersnClass 106 169 190 4 156 53 127 207 38 146 211 132 111 213 128 103 72 55 151 175 134 206 83 46 62 47 192 216
0 21 14 22 22 18 19 16 15 21 16 20 19 24 23 23 22 22 19 21 22 13 19 17 16 20 21 23 19
1 31 24 24 26 27 26 26 24 26 25 27 24 27 29 26 30 32 25 30 33 27 30 28 24 27 26 29 25
2 26 25 25 25 26
3

City-block Similarity Metric

ItersnClass 37 6 60 211 156 17 46 200 105 143 190 134 83 170 179 216 62 96 98 0 12 33 102 26 23 111 88 139
0 24 23 23 23 23 23 15 24 17 22 19 23 24 18 22 21 24 24 23 23 22 22 18 22 24 21 24 24
1 29 25 24 26 28 27 25 28 25 25 24 31 28 25 26 24 27 27 25 25 25 24 25 27 23 27 27 27
2 25 26 25 25 25
3

Dominance Similarity Metric

ItersnClass 136 169 159 157 37 114 52 55 211 164 156 65 33 165 49 38 188 93 211 26 30 111 188 211 105 5 175 26
0 19 14 20 15 23 18 23 20 20 15 19 17 20 24 21 15 21 7 17 19 9 14 15 9 17 19 23 16
1 32 29 26 24 25 32 33 28 26 24 30 25 25 26 24 31 27 25 23 27 25 23 28 18 27 25 30 22
2 25 29 25 26 27 27 26
3

(a) Query1 (b) Positive (c) Negative

(d) Query2 (e) Positive (f) Negative

Figure 2. Sample sets of database images.

2.3 Gabor Wavelet Based Features
All the images in our database are texture images.

Gabor wavelets [9] are used to extract texture features.
The feature database consists of feature vectors for all
the images in the database.

A two dimensional Gabor function g(x,y) can be
written as :

g(x; y) =

�
1

2��x�y

�
exp

�
�
1

2

�
x2

�2x
+

y2

�2y

�
+ 2�j!hx

�

Using the above formula as the mother function, a
set of self-similar �lters are derived through the fol-
lowing generating function: gmn(x; y) = a�mg(x0; y0);
x0 = a�m(xcos�+ysin�); y0 = a�m(�xsin�+ycos�);
where � = n�=K, n=0, 1, � � �, K-1 and m=0, 1, � � �, S-
1. K is the total number of orientations and S is the

total number of scales. a = (!h=!l)
1=(S�1), where !h

and !l are the highest and lowest center frequencies
of the �lter, respectively. �x and �y are the standard
deviations along x and y dimensions.

Given an image I(x,y), its Gabor wavelet transform
is then de�ned to be :

Wmn(x; y) =

Z Z
I(�; �)g�mn(x� �; y � �)d�d�

where * indicates the complex conjugate. The mean
�mn and the standard deviation �mn of the magnitude
of the transform coe�cients are used as feature com-
ponents of a feature vector after being normalized by
the standard deviations of the respective features over
the entire feature database.

3. Experimental Results

� Data and experiment: There are 10,314 tex-
ture images of size 64 � 64 in our database that are
represented by 48 dimensional feature vector. We use
24 Gabor �lters (4 scales and 6 orientations) for fea-
ture extraction. For each �ltered image, its normalized
mean and standard deviation are used as features.

In order to perform the objective evaluation of our
system, the images are partitioned into 220 classes.
There are about 45 images in each class. These 220
classes form the ground truth for our experiments. For
each query image, the system retrieves 40 images that
are most similar to the query image based on its cur-
rent similarity metric at each iteration. From the re-
trieved images, the system chooses those as positive
examples that come from the same class as the query
and uses rest of them as negative examples. In practice,
these positive examples will be provided by the user.
The feature relevance algorithm uses these positive and



Table 2. Typical results demonstrating simultaneous
learning of features and similarity metrics. Table en-
tries show (metric number, # of positive hits).

Iterationn 0 1 2 3 4 5 6 7
QueryClass

192 (2,24) (1,21) (2,23) (2,24) (2,24) (0,25)
98 (2,19) (0,21) (1,15) (0,26)
37 (0,24) (2,24) (0,25)
217 (2,18) (0,14) (0,25)
190 (0,23) (0,23) (0,24) (2,13) (2,19) (2,23) (2,21) (0,25)
196 (1,20) (2,35)
52 (0,15) (1,6) (1,16) (1,18) (2,23) (1,17) (2,33)
136 (1,18) (0,26)
164 (2,15) (0,14) (1,6) (2,24) (2,29)
156 (2,19) (2,30)
49 (0,18) (0,21) (2,21) (0,22) (0,22) (2,24) (0,22) (2,25)
207 (2,16) (0,21) (2,23) (1,15) (2,24) (0,26)
216 (0,24) (2,19) (0,24) (1,24) (1,28)
145 (1,1) (0,10) (0,28)
216 (0,23) (1,26)
85 (2,24) (1,12) (0,21) (1,19) (2,29)
96 (2,21) (2,23) (2,25)
131 (0,22) (1,19) (1,24) (0,25)
46 (1,14) (2,15) (1,21) (0,15) (0,25)
177 (0,24) (1,22) (0,25)

negative examples and the query image as input and
generates an updated feature relevance to be used dur-
ing the next iteration. Note that initially all features
are equally relevant and the sum of relevance (weights)
of all the features is unity. The termination conditions
for the retrieval procedure are (i) the number of posi-
tive examples returned becomes larger than a certain
threshold (25 in experiments), (ii) the number of iter-
ations exceeds another threshold (20 in experiments).
Two sample query images and corresponding positive
and negative example images are shown in Fig. 2.
� Optimality of similarity metrics: We per-

formed experiments to determine optimal similarity
metric for each of the 220 classes. Similar to the results
shown in [3], we �nd that di�erent similarity metrics
are optimal for di�erent classes.
� Learning feature relevance: Table 1 shows

sample retrieval results by using di�erent similarity
metrics where learning feature relevance improves per-
formance over time. Three di�erent similarity metrics
are used. In each case, the �rst row indicates the classes
from which queries come from. The second row shows
the number of positive hits received after the �rst it-
eration. The third row shows the number of positive
hits after the second iteration. Similarly, the results
for other iterations are shown.
� Learning feature relevance and similarity

metrics: Table 2 shows that our system can simul-
taneously learn both di�erential relevance of features
and the selection of similarity metric. For example, for
a query from class 217 the similarity metric selection

changes from similarity 2 to similarity 0 to obtain 25
positive hits. Likewise, for a query from class 164 the
number of positive hits increases from 15 to 29 using
the same similarity metric (metric 2). Note that for two
queries from class 216, initially metric 0 is selected and
�nally metric 1 provides the desired number of hits.

4. Conclusions

The paper shows that learning feature relevance and
similarity metrics based on user's feedback can improve
retrieval. The knowledge acquired during one retrieval
can be gradually collected and it can become part of
the database itself through continuous learning. Fu-
ture work includes incorporating additional similarity
measures and evaluation of the learning performance
by designing human psychological experiments.
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