Table 1. Summary of the quantitative comparison of energy transformation in a typical thylakoid membrane and in a purple membrane with half the area occupied by ion-pumping rhodopsin

Characteristics compared	Thylakoid membrane	Rhodopsin-containing membrane
Density of sites	PSII 5 nmol m ⁻²	Rhodopsin 135 nmol m ⁻²
Turnover at light saturation	300 e-PSII ⁻¹ s ⁻¹ (limited by electron flow from PSII to PSI)	$7 \text{H}^+ \text{s}^{-1}$
Non-cyclic electron transport from water to NADP ⁺	$1.5\mu molm^{-2}s^{-1}$	0
H ⁺ flux across the photochemically active membrane	4.5 μmol m ⁻² s ⁻¹ (in non-cyclic electron transport)	$0.95\mu molm^{-2}s^{-1}$
Required rate of photon absorption	$3 \mu \text{mol m}^{-2} \text{s}^{-1}$	$0.95 \mu \text{mol m}^{-2} \text{s}^{-1}$
Efficiency of photon energy use;	47% in redox difference between	8% in trans-membrane H ⁺ electrochemical
percentage of absorbed excitation energy stored in the specified end products	H ₂ O/O ₂ and NADPH/NADP ⁺ and in transmembrane	potential difference
	H ⁺ electrochemical potential difference	