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Abstract—Human Embryonic Stem Cells (HESCs) possess
the potential to provide treatments for cancer, Parkinson’s
disease, Huntington’s disease, Type 1 diabetes mellitus etc. Con-
sequently, HESCs are often used in the biological assay to study
the effects of chemical agents in the human body. However,
detection of HESC is often a challenge in phase contrast images.
To improve the accuracy of HESC colony detection, we combine
spatial information and the outcome of a mixture of Gaussians
model. While a mixture of Gaussians generates reasonable
labels for various regions of HESC images, it lacks spatial
details and connectivity. Sets of spatially consistent candidate
labeling are generated by median filtering the image at different
scales followed by thresholding. An optimal combination of
filter scale and threshold which maximizes the correlation
coefficient between the spatial information and the mixture of
Gaussians output is obtained. The paper validates the method
for various HESC videos.

Keywords- Apoptosis, Cell Detection, Human Embryonic
Stem Cell, Expectation-Maximization Algorithm, Mixture of
Gaussians, Spatial Information.

I. INTRODUCTION

Biologists often use noninvasive microscopy imaging
technique such as phase contrast imaging to study living
biological specimens and to learn about their behavior [1].
This paper focuses on Human Embryonic Stem Cell (HESC)
phase contrast images taken from the BioStation IM [2].
The HESC has the capacity to differentiate into diverse
human cell types. With the aforementioned characteristic,
it is well known that HESCs have the potential to be used
in cell replacement therapies for the treatment of human
diseases [3]. Subsequently, biologists need to study the
HESCs more closely under different chemical conditions
in large data sets. However, the study of large volume of
data is strenuous and laborious for a human. Therefore,
biologists need a good tracking technique to understand the
behavior of the stem cells over time. Towards developing an
automated stem cell tracking system, cell detection plays an
important role. However, there are a number of challenges
that make the cell detection challenging: (1) the low signal-
to-noise ratio of the phase contrast microscopy images; (2)
the topological complexity of cell shapes; and (3) the low
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Figure 1: Cell types: (a) Substrate-attached cell, (b) Single
unattached cell, (c) Cell undergoing apoptosis, (d) Cell
undergoing pre-attachment behavior.

rate of change in intensity between cell and background
regions [4].

In HESC phase contrast images, there are four different
cell regions: the substrate-attached cells, unattached cells,
cells going through apoptosis/cell death and cells with pre-
attachment behavior. The four cell types are shown in Fig.
1. The substrate-attached cells are similar to the background
in intensity and are usually surrounded by a low intensity
halo. The unattached cells are brighter and are similar to the
halo in intensity. Cells that are going through apoptosis are
blebbing [5] randomly and are brighter. In contrast, the cells
that are going through pre-attachment behavior are darker
when blebbing and are surrounded by a recognizable halo
that distinguishes the cell from the background. Although an
individual cell can be in the frame by itself, any combina-
tion(homogeneous or heterogeneous) of the above four types
of cells can come together to form a cell colony. The cell
colony inherently has all the characteristic of the cells. As
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seen in Fig. 1(a), the detection for substrate-attached cells
and cell colonies that consist of substrate-attached cells is
harder than the detection for other type of cells and cell
colonies. As a result, a method for accurate detection of
substrate-attached cells or colony that consist of substrate-
attached cells is needed. In this paper, a combination of spa-
tial information and a mixture of Gaussians, which improves
detection accuracy of the cell regions, is introduced.

II. RELATED WORK AND CONTRIBUTIONS

Previous works have shown approaches for cell region
detection in phase contrast images [4], [6]. Ambriz-Colin
et al. [6] discuss two methods for cell region detection:
detection by pixels intensity variance (PIV) and by gray
level morphological gradient (GLMG). The PIV method
performs pixel classification on the normalized image. It
recognizes the probable cell regions and labels the rest as the
background in the normalized image. The GLMG method
detects the cell regions by using morphological gradient that
is calculated from the dilation and erosion operations, and by
a threshold that separates the pixels belonging to a cell and
to the background. Li et al. [4] also mention a combined
use of morphological rolling-ball filtering and a Bayesian
Classifier that is based on the estimated cell and background
gray scale histograms to classify the image pixels into either
the cell regions or the background.

We suggest using spatial information and the result from
the mixture of Gaussians model to estimate the cell regions.
The mixture of Gaussians provides an estimate for various
cell regions. However, it lacks spatial consistency as the cell
region intensities lie on both lower and higher side of the
background intensities. We generate spatial information for
the image first. The result from the mixture of Gaussians is
then used to estimate the optimal threshold to segment the
spatial information into cell regions and background.

III. TECHNICAL APPROACH

In this section, we formulate the HESC detection and
analysis process. The overview of the process is shown in
Fig. 2.

A. Motivation and Problem Formulation

Cell lineage analysis is a popular technique to learn about
cell behavior through tracking. In order to track the cells,
the accurate detection of the cell regions is essential. To
improve the accuracy and consistency in the detection of
cell regions, a reliable detection technique for HESC phase
contrast image is needed. To formulate our approach, we
enlist important properties about the HESC images.

∙ The intensity of the substrate region is locally constant
while in the cell regions, the intensity varies locally.

∙ The images can be split into three distinct areas based
on their intensities:

A. Substrate-attached cells (the darkest regions),

Figure 2: Human Embryonic Stem Cell Detection and Anal-
ysis Process.
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Figure 3: A typical HESC image histogram with regions of
interest

B. Substrate (intensities in the middle),
C. Halo (the brightest regions).

Figure 3 shows the histogram of a typical HESC im-
age, which is divided into three regions. Region A is the
substrate-attached cell region, Region B is the substrate
region and Region C is the halo region. Our method uses the
local spatial information as well as the intensity information
to estimate cell regions. The mixture of Gaussians is an
intensity based approach and only provides part of the cell
regions. Therefore, we utilize the spatial information to
recover the missing regions.

B. Estimating Spatial Information

The input image contains the spatial information that can
be used to distinguish the cell regions from the substrate.
We apply combination of median filtering to separate these
regions. A spatial information image 𝐼𝑆 at scale 𝑚 is
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estimated as,

𝐼𝑆(𝑚) = 𝑚𝑒𝑑(𝑎𝑏𝑠(𝐼 −𝑚𝑒𝑑(𝐼,𝑚)),𝑚+ 2) (1)

where 𝑚𝑒𝑑(⋅, 𝑠) denotes the median filtering operation with
window size 𝑠 and 𝐼 is the original image. The operation
𝑎𝑏𝑠(𝐼 − 𝑚𝑒𝑑(𝐼,𝑚)) yields low values in the area with
constant local intensity (i.e., substrate) and high values in
areas with varying intensities (i.e. cell regions). The larger
median filter smooths interior cell regions while preserv-
ing the edges. Unlike the original image which has three
intensity modes, the spatial information image is bimodal.
Thus, a single threshold can be used to separate the substrate
and cell regions. However, one still has to select appropriate
threshold 𝑇 and scale 𝑚.

With the estimated spatial information, 𝐼𝑆 from equa-
tion (1), we can choose the spatial information with a
specific window size to selectively attenuate the input image
for the mixture of Gaussians which follows. We normalize
the spatial information at location (𝑟, 𝑐) as,

𝐼𝑀𝑆(𝑟, 𝑐) = 1− 𝐼𝑆(𝑟, 𝑐)

max(𝐼𝑆)
(2)

𝐼𝑀𝑆 is then used to attenuate the original image:

𝐼𝐺(𝑟, 𝑐) = 𝐼(𝑟, 𝑐)× 𝐼𝑀𝑆(𝑟, 𝑐) (3)

𝐼𝐺 is the attenuated image that is used as the input image
to the mixture of Gaussians. The attenuation affects both
substrate-attached cells and halo regions. It creates more
separation between substrate and substrate-attached cells.
Although halo regions undergo undesired attenuation, the
effect is minimal due to the high contrast between the
substrate and halo regions. Fig. 4 (c) shows the effect of
selective attenuation.

C. Mixture of Gaussians

The HESC phase contrast images have three regions of
interest: the substrate-attached cell region, the substrate and
the halo region. Thus, a mixture of three Gaussians [7] is
used to estimate the probable cell regions. The expectation
maximization (EM) algorithm [8] is used to estimate the
parameters 𝜃 = {𝜃1, 𝜃2, . . . , 𝜃𝐿} of the mixture of 𝐿
Gaussians. 𝜃𝑖 is a vector of weight 𝑤𝑖, mean 𝜇𝑖 and standard
deviation 𝜎𝑖 for the 𝑖th component of the mixture. The EM
algorithm is used to maximize the likelihood of three regions
of interest: the substrate-attached cell regions, the substrate
and the halo regions. The probability that pixel located at
(𝑟, 𝑐) belongs to 𝑖th component of mixture can be written
as,

𝑃𝑖(𝑟, 𝑐) =
1

𝜎𝑖

√
2𝜋

exp

{−(𝐼𝐺(𝑟, 𝑐)− 𝜇𝑖)
2

2𝜎2
𝑖

}
(4)

where 𝐼𝐺 is an 𝑀 × 𝑁 image to be modeled by the
mixture of Gaussians. With a known 𝑃𝑖, the membership

probabilities 𝐹𝑖 can be estimated as,

𝐹𝑖(𝑟, 𝑐) =
𝑤𝑖𝑃𝑖(𝑟, 𝑐)∑𝐿

𝑘=1 𝑤𝑘𝑃𝑘(𝑟, 𝑐)
(5)

The membership probabilities are then used to update 𝜃𝑛

in the 𝑛th iteration. The weights, means and standard
deviations at each iteration are updated by,

𝑤𝑖 =
1

𝑀 ×𝑁

𝑀∑
𝑟=1

𝑁∑
𝑐=1

𝐹𝑖(𝑟, 𝑐) (6)

𝜇𝑖 =

∑𝑀
𝑟=1

∑𝑁
𝑐=1 𝐹𝑖(𝑟, 𝑐)𝐼𝐺(𝑟, 𝑐)∑𝑀

𝑟=1

∑𝑁
𝑐=1 𝐹𝑖(𝑟, 𝑐)

(7)

𝜎𝑖 =

√√√⎷∑𝑀
𝑟=1

∑𝑁
𝑐=1 𝐹𝑖(𝑟, 𝑐)(𝐼𝐺(𝑟, 𝑐)− 𝜇𝑖)2∑𝑀
𝑟=1

∑𝑁
𝑐=1 𝐹𝑖(𝑟, 𝑐)

(8)

The process is repeated until convergence which means that
the absolute change between 𝜃𝑛 and 𝜃𝑛−1 is lesser than
a small user defined value [9]. After convergence, each
pixel is assigned to the region with maximum membership
probability.

Figures 5(a) to (c) show the membership probabilities
of each region of interest for one of the images. The
brighter means higher membership probability while darker
represents a lower membership probability.

After the mixture of Gaussians segmentation, we can
improve the detection of the substrate-attached cell regions
with region growing. The conventional region growing
cannot capture the substrate-attached cell regions as their
intensity and substrate intensity are similar. Therefore, we
need to add the spatial knowledge to attenuate the pixel
intensity near the substrate-attached cell regions.

𝐼𝑀 (𝑟, 𝑐) = 𝐼𝐺(𝑟, 𝑐)− 𝐼𝐺(𝑟, 𝑐) exp (−𝐼𝐷(𝑟, 𝑐)) (9)

where 𝐼𝐷 is a Euclidean distance transform of the substrate-
attached cell regions. The effect of equation (9) is shown in
Fig. 6(b). The local information used in equation (9) helps
detecting the substrate-attached cell regions that conven-
tional region growing would miss. After the region growing,
grown substrate-attached cell regions and halo regions are
combined to form the probable cell regions. The rest of the
image is labeled as the substrate.

D. Cell Region Detection

Although the cell regions found by mixture of Gaussians
lack the spatial details and connectivity, it provides a good
template for the actual cell regions. On the other hand,
the spatial information images retain spatial details and
connectivity. However, each combination of a threshold 𝑇
and a scale 𝑚 results in a different detection. Depending on
the value of 𝑚, the image might be under- or over-smoothed.
If threshold is too high or too low, the cell region would
be recognized incorrectly. To overcome these problems, we
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(a) (b) (c)

Figure 4: Selective attenuation: (a) Original Image, (b) Spatial information image, (c) Selective attenuation on (a).

(a) (b) (c)

(d) (e) (f)

Figure 5: Probability map: (a) Membership probability for substrate-attached cell regions, (b) Membership probability for
the substrate, (c) Membership probability for halo, (d)(e)(f) Detailed views of a cell region in (a),(b),(c) respectively

compare thresholded spatial information images with the
outcome of mixture of Gaussians.

We first estimate spatial information image at specific
scale 𝑚. Then we calculate the correlation coefficient of
the spatial information image 𝐼𝑆(𝑚) thresholded at different
values and the probable cell regions after the mixture of
Gaussians. We obtain the optimal threshold that yields the
maximum correlation coefficient value. A set of maximum
correlation values are found by varying the scale 𝑚. The
optimal solution can be determined by finding the maximum
correlation coefficient value that yields a lowest variance
across scale values 𝑚.

E. Cell Colony Analysis

The last step is to further break down the detected cell
colony regions into individual cell regions. In order to detect
the individual cell regions, a marker based watershed tech-

nique is used [10]. The marker is estimated by performing
mixture of two Gaussians on the image data within the
detected cell colony regions. The boundaries that separate
the background and the cell colony regions are also imposed
on the process. The process produces many probable cell
regions. Those regions are the result of the watershed’s over-
segmentation, and it can be solved by creating an entropy
table. The entropy table contains the entropy values of the
individual cell regions as well as the entropy when one of
the neighbors of the cell region is considered as a part of the
cell region. We combine each small region with its neighbor
for which the merge causes the lowest entropy change. The
result of cell colony analysis is shown in Fig. 7.
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(a) (b) (c)

Figure 6: Substrate-attached cell region growing: (a) Conventional region growing of substrate-attached cell regions, (b)
Image attenuated by Eqn. (9), (c) Result of modified region growing with (b) as the input.

(a) (b)

(c)

Figure 7: Cell Colony Analysis: (a) Regions of interest, (b) Markers overlaid on the image, (c) Result after cell colony
analysis.
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IV. EXPERIMENTAL RESULTS

A. Data

We tested our approach on the phase contrast images of
Human Embryonic Stem Cell captured with BioStation IM.
The images were taken under an objective of 20× with a
800×600 resolution. Each frame from the video is captured
roughly every two minutes. Videos 1 and 2 contain more
substrate-attached cells and cells that are going through
pre-attachment behavior. Videos 3 to 6 have more single
unattached cells and cells that are going through apoptosis.
In the experiments, we studied the first ten frames of each
video.

B. Parameters

To estimate the spatial information image, the scale 𝑚 is
varied from 3 to 25 for each video frame in steps of 2. For
each spatial information image, threshold 𝑇 is varied in steps
of 0.5 from the minimum to the maximum of the spatial
information image. For all the videos, we use the spatial
information from scale 𝑚 = 15 for the selective attenuation
before mixture of Gaussians estimation.

C. Mixture of Gaussians

In order to initialize mixture of three Gaussians, we make
an initial assumption that there are only two regions of
interest in the image: the background and the foreground.
The result from the mixture of two Gaussians is then used to
estimate the initial weights, means and standard deviations
of mixture of Gaussians for three regions of interest. The
initial parameters for the mixture of two Gaussians were set
as:

𝑤𝐵 = 0.5;𝑤𝐹 = 0.5;𝜇𝐵 = 64;𝜇𝐹 = 192;

𝜇 =
1

𝑀 ×𝑁

𝑀∑
𝑟=1

𝑁∑
𝑐=1

𝐼𝐺(𝑟, 𝑐) (10)

𝜎𝐵 = 𝜎𝐹 =

√√√⎷ 1

𝑀 ×𝑁

𝑀∑
𝑟=1

𝑁∑
𝑐=1

(𝐼𝐺(𝑟, 𝑐)− 𝜇)2 (11)

where, 𝑤𝐵 and 𝑤𝐹 are the weights, 𝜇𝐵 and 𝜇𝐹 are the
means, 𝜎𝐵 and 𝜎𝐹 is the standard deviations of the back-
ground and foreground, and 𝜇 is the mean of 𝐼𝐺. After the
convergence of mixture of two Gaussians, we find the inter-
section 𝜒 between the components. We spilt the background
at 𝜇𝐵 − (𝜒 − 𝜇𝐵) into substrate-attached cell regions and
the substrate. Estimates are generated from these regions to
initialize corresponding parameters for the mixture of three
Gaussians. The foreground region is directly used to estimate
the initial values for the halo region parameters.
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Figure 10: (a) ROC for all six methods for one of the
frames, the magenta square represents the final solution for
our method. (b) Zoom-in of top left corner (a).

D. Results

The results of cell region detection achieved by our ap-
proach were compared with ground truth labeling conducted
by an expert. The average accuracy and false discovery rates
for all the videos are reported in Tables I and II respectively.

Table I: Average accuracy

Video HBBC GLMG PIV M2G M3G Our app.

1 0.8251 0.8122 0.8369 0.8703 0.8695 0.9534
2 0.7628 0.8214 0.8528 0.8017 0.8201 0.9311
3 0.8584 0.8102 0.8449 0.9116 0.9039 0.9562
4 0.8768 0.8613 0.8556 0.9308 0.9175 0.9482
5 0.8913 0.8577 0.8708 0.9272 0.9174 0.9491
6 0.8631 0.8172 0.8332 0.9116 0.8988 0.9571

Table II: Average false discovery rate

Video HBBC GLMG PIV M2G M3G Our app.

1 0.4745 0.4944 0.4605 0.2116 0.2894 0.1612
2 0.4792 0.4054 0.3620 0.2065 0.2345 0.1732
3 0.4635 0.5377 0.4868 0.2585 0.3211 0.2006
4 0.4698 0.4996 0.5097 0.2704 0.3484 0.2661
5 0.4058 0.4743 0.4508 0.2341 0.3043 0.2335
6 0.4204 0.4939 0.4705 0.2267 0.3021 0.1724
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(a) (b) (c)

(d) (e) (f)

Figure 8: Comparison with related work: (a) Detection by histogram based Bayesian classifier, (b) Detection by pixel intensity
variance, (c) Detection by gray level morphological gradient, (d) Detection by our method, (e) Detection by mixture of two
Gaussians, (f) Detection by mixture of three Gaussians.
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Figure 9: Cost and benefit plots of videos 1 to 6 for different methods.
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Figure 11: Comparison of estimated cell counts with the
actual cell counts for video 1.

For comparison, we implemented PIV, GLMG and his-
togram based Bayesian classifier (HBBC) detection meth-
ods. The result of our method and these methods are shown
in Figs. 8(a) to (d). We can see that the overestimation of
cell regions is a major problem for the PIV, GLMG and
HBBC methods. Moreover, detection by PIV and GLMG
require a user defined threshold to determine whether a pixel
belongs to the cell region or to the substrate. The HBBC
method is more tedious compared to other methods since it
requires ground truth for the cell regions for training of the
classifier. Our method needs only an initial scale to estimate
the spatial information image for selective attenuation and
a largest allowable scale that is to be used for optimization.
In addition, we compare our approach with the outcome
from the mixture of two and three Gaussians as shown in
Figs. 8(e) and (f) respectively. The performance of all the
six methods is summarized in Tables I and II. Table II shows
that our method has a consistent low false discovery rate.
The low false discovery rate for mixture of Gaussians is
due to the underestimation of cell regions by the method.
Table I shows that our approach yields higher accuracy in
cell region detections compared to other methods. The cost
(False positives) and benefit (True positives) statistics for all
six videos is shown in Fig. 9. As one can see, our method
has a high true positive rate while maintaining a low false
positive rate for all six videos. Figures 10(a) and (b) show
the ROC plots for all the methods discussed in this paper and
our method outperforms all other methods. Figure 11 shows
the cell count results compared to the cell count ground
truth. Although the cell counts are satisfactory, the current
method overestimates the count.

V. CONCLUSIONS

In this paper, we proposed a cell region detection method
by using spatial information and mixture of Gaussians
model. This method gives tight boundaries for cell regions.
The method can be used for individual cell detection with

the local markers found by the mixture of Gaussians. Ex-
periments were carried out to test the method for cell region
detection and the results show that it provides a better
detection accuracy than the other methods in literature. In
the future, our work will focus on further improving the
cell colony analysis by developing a new marker detection
method. We will also look into developing a tracking system
for the HESCs.
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