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Abstract The combined application of organic resour-
ces (ORs) and mineral fertilizers is increasingly gaining
recognition as a viable approach to address soil fertility
decline in sub-Saharan Africa (SSA). We conducted a
meta-analysis to provide a comprehensive and quanti-
tative synthesis of conditions under which ORs, N
fertilizers, and combined ORs with N fertilizers posi-
tively or negatively influence Zea mays (maize) yields,
agronomic N use efficiency and soil organic C (SOC)
in SSA. Four OR quality classes were assessed; classes
I (high quality) and II (intermediate quality) had >2.5%
N while classes III (intermediate quality) and IV (low
quality) had <2.5% N and classes I and III had <4%
polyphenol and <15% lignin. On the average, yield
responses over the control were 60%, 84% and 114%
following the addition of ORs, N fertilizers and ORs +
N fertilizers, respectively. There was a general increase
in yield responses with increasing OR quality and OR-
N quantity, both when ORs were added alone or with
N fertilizers. Surprisingly, greater OR residual effects
were observed with high quality ORs and declined
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with decreasing OR quality. The greater yield
responses with ORs + N fertilizers than either resource
alone were mostly due to extra N added and not
improved N utilization efficiency because negative
interactive effects were, most often, observed when
combining ORs with N fertilizers. Additionally, their
agronomic N use efficiency was not different from sole
added ORs but lower than N fertilizers added alone.
Nevertheless, positive interactive effects were observed
in sandy soils with low quality ORs whereas agro-
nomic use efficiency was greater when smaller
quantities of N were added in all soils. Compared to
sole added ORs, yield responses for the combined
treatment increased with decreasing OR quality and
greater yield increases were observed in sandy (68%)
than clayey soils (25%). While ORs and ORs + N
fertilizer additions increased SOC by at least 12%
compared to the control, N fertilizer additions were not
different from control suggesting that ORs are needed
to increase SOC. Thus, the addition of ORs will likely
improve nutrient storage while crop yields are
increased and more so for high quality ORs. Further-
more, interactive effects are seldom occurring, but
agronomic N use efficiency of ORs + N fertilizers were
greater with low quantities of N added, offering
potential for increasing crop productivity.

Keywords Organic resource quality - Interactive
effects - Integrated soil fertility management - Yield
response - Meta-analysis - Agronomic N use
efficiency - N fertilizer
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Abbreviations

OR(s) Organic resource(s)

SSA  Sub-Saharan Africa

SOC  Soil organic carbon

MAP  Mean annual precipitation

Introduction

Enhanced food crop production in sub-Saharan Africa
(SSA) is critically dependent on external nutrient
inputs, especially N and P. This is mainly because of
negative soil nutrient balances caused by continuous
cultivation with little or no addition of nutrients
(Cobo et al. 2010; Sanchez 2002; Smaling et al.
1997). While mineral fertilizers are widely used
globally to overcome nutrient deficiencies, their use
remains very low in SSA with average application
rates of 8 kgha 'yr ' (Crawford and Jayne 2010;
Morris et al. 2007; Smaling 2006). Fertilizer use has
been limited mainly because of low availability and
lack of purchasing capacity by the smallholder farmers
in SSA (Morris et al. 2007). Ironically, in SSA, where
more than half the population lives on less than US
$1 day ', fertilizer costs are two to eight times more
expensive than in the rest of the world (Bationo et al.
20006).

Organic resources (ORs), ranging from animal
manures, household composts, crop residues, legumi-
nous cover crops, to leguminous and non-leguminous
trees and shrubs, are often used as major nutrient
sources to crops. However, their use in most African
cropping systems is usually limited by low availability
(Giller et al. 1998; Mugwira and Murwira 1997; Rufino
et al. 2010). Application of ORs usually leads to
increased crop yields (Kimetu et al. 2004; Mugwira
1984; Vanlauwe et al. 2001b) but depressed yields with
OR use have also been reported (Mugwira and
Murwira 1997; Nhamo 2002). The differential yield
responses following OR application have been attributed
mainly to differences in OR quality and soil fertility
status (Giller and Cadisch 1995; Koné et al. 2008; Palm
et al. 2001a). Quality of ORs is often defined using
their N, lignin and polyphenol concentrations (Con-
stantinides and Fownes 1994; Melillo et al. 1982).
Based on the same parameters, Palm et al. (2001a)
proposed four OR quality classes and developed a
decision support tool for the management of OR N.
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They proposed to directly apply high quality ORs which
have a fast nutrient release, class I (>2.5% N, <4%
polyphenol, <15% lignin) and to surface apply low
quality ORs, class IV (<2.5% N, >15% lignin) for
erosion control. Class IV ORs induce N immobilization
that can last for extended periods of time. On the
other hand, intermediate quality ORs, i.e. class II
(>2.5% N, >4% polyphenol or >15% lignin) and class
II ORs (<2.5% N, <4% polyphenol, and <15% lignin),
are to be added in combination with N fertilizers to
alleviate a slow nutrient release due to biochemical
recalcitrance for class II ORs and low N content for class
IIT ORs.

The combined application of ORs and fertilizers is
increasingly gaining recognition as one of the
appropriate ways of addressing soil fertility depletion,
especially in low-external input systems in SSA and
forms an integral part of integrated soil fertility
management (Vanlauwe et al. 2010a, 2002a). Greater
yield benefits can be achieved following the com-
bined application of ORs and fertilizers compared to
either resource applied alone (Mucheru-Muna et al.
2007; Nziguheba et al. 2002; Vanlauwe et al. 2002a).
Nutrient cycling and the associated yield benefits
derived from combining ORs and fertilizers are
dependent on a number of factors including climate,
bio-physico-chemical soil environment and OR quality
and there are intricate interactions among these factors
(Chivenge et al. 2009; Giller and Cadisch 1995; Palm
et al. 2001a). For example, Tian et al. (2007) observed
increases in rate of decomposition and nutrient release
with increase in OR quality in wetter climates but in
drier climates decomposition and nutrient release was
faster with low quality ORs than high quality ORs.
Low quality ORs have a mulching effect that influence
soil microclimate and thus enhance their decomposi-
tion (Lavelle et al. 1993; Tian et al. 2007, 1993).

While the combined addition of intermediate
quality ORs with N fertilizers or the sole addition of
high quality ORs can enhance nutrient cycling and
increase crop yields, their effects on soil organic C
(SOC) build-up may be negative. The addition of
fertilizers with intermediate quality ORs may increase
OR decomposition (Sakala et al. 2000; Zingore et al.
2003) and thus may result in reduced SOC stabiliza-
tion compared to OR added alone. The addition of
intermediate and low quality ORs may result in
greater SOC concentrations than high quality ORs
(Bossuyt et al. 2001; Six et al. 2001). However, recent
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studies have shown no long-term effects of OR
quality on SOC dynamics (Chivenge 2008; Gentile
et al. 2010). Nevertheless, there may be interactions
with other factors such as soil texture and rainfall
(Chivenge 2008; Feller and Beare 1997).

Although narrative reviews provide useful sum-
maries of the knowledge of a given discipline, meta-
analysis offers a more precise and quantitative
synthesis of treatment effects by statistically com-
paring results from multiple studies (Gurevitch and
Hedges 1999; Rosenburg et al. 2000). This approach
has been borrowed primarily from medical, physical
and behavioral sciences (Gurevitch and Hedges
1999) and has been used recently for ecological
studies (de Graaff et al. 2006; Gurevitch et al. 2000;
Knorr et al. 2005; van Groenigen et al. 2006) and
agricultural experiments (Miguez and Bollero 2005;
Sileshi et al. 2008; Tirol-Padre and Ladha 2006).
Meta-analyses methods provide a robust synthesis
of results from independent studies in a manner that
is both objective and statistically defensible (Ains-
worth et al. 2007; Hungate et al. 2009). Meta-
analytic procedures were used in the current study to
analyze the effects of the addition of ORs, N
fertilizers and ORs in combination with N fertilizers
on Zea mays (maize) productivity and SOC and
interactions among different factors. Although pub-
lication and research bias cannot be ruled out, we
believe that the studies included in this meta-
analysis were sufficient to capture the diversity of
soils, climate and OR quality classes that are
generally used by smallholder farmers in SSA.

The objectives of this study were to provide a
comprehensive and quantitative synthesis of condi-
tions under which ORs, N fertilizers, and ORs + N
fertilizers positively or negatively influence maize
yields and SOC build-up. The specific objectives
were to determine;

i)  maize yield and SOC responses to the application
of ORs, N fertilizers, and ORs + N fertilizers,

ii) the influence of OR quality, both when applied
alone or in combination with N fertilizers, on
maize yield and SOC responses,

iii) effects of OR-N and fertilizer-N quantities on
maize yield and SOC responses,

iv) the interactive effects of combining ORs with N
fertilizers and how these could be influenced by
OR quality and OR-N quantities,

v) the interactions of the above with soil texture and
mean annual precipitation (MAP).

Materials and methods
Database compilation

We identified 57 studies carried out in smallholder
farms and experimental stations under rain-fed field
conditions in SSA where ORs and N fertilizers were
added separately and in combination with each other
(See Appendix 1). To be included in our meta-
analysis, the studies should have reported maize
yields following the combined addition of ORs with
N fertilizers, sole ORs, and/or sole N fertilizers. Data
from the same experiment but reported in more than
one publication were not repeated, the publication
with the most complete dataset was used. Twelve of
the 57 studies also reported measurements of SOC.
Published data reported in tables were taken directly
from the publications while results presented in
graphs were digitized and measured to estimate the
values. Sixteen studies were carried out over a single
season while only nine studies were carried out over
at least 5 years. Twenty-three studies tested the
repeated application of ORs over at least two seasons
while five tested the residual effects of the ORs.
Residual effects were estimated based on observations
made in the second season when ORs were only
applied in the preceding season and crops planted in
both the first and second season. Crop residues were
removed from the field for other uses such as fodder
or were grazed in situ, except in cases where they
were used as the OR treatment.

The studies used in the meta-analysis covered
104 experimental field sites in 12 countries in SSA
(Benin, Burkina Faso, Cote d’Ivoire, Ethiopia,
Ghana, Kenya, Malawi, Nigeria, Tanzania, Togo,
Zambia, and Zimbabwe) and represent the humid
rainforest, the moist savanna, the dry savanna, the
sudano sahelian, and the guinea savanna agro-
ecological zones. Amounts of N supplied by ORs
ranged from 6 to 547 kgNha ' annually; while
fertilizer-N ranged from 20 to 175 kgNha ' per
season; and the total N in the combined treatments
ranged between 33 and 667 kgNha ' annually. The
ranges of N addition differentiated in the current
meta-analysis (Table 1) are based on the N response
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Table 1 Categorical variables used in describing the experimental conditions

Categorical variable Level 1

Level 2

Level 3 Level 4

Soil texture Sand (<20% clay)
Mean annual precipitation Low
<600 mm

Class 1 >2.5% N,
<4% polyphenol,
<15% lignin

Organic resource class®

Loam (20-32% clay)
Medium
600-1000 mm

Class 11 >2.5% N,
>4% polyphenol
or >15% lignin

Clay (>32% clay)
High
>1000 mm

Class III <2.5% N,
<4% polyphenol,
<15% lignin

Class IV <2.5% N,
>4% polyphenol
or >15% lignin

Organic resource N Low Medium High

<30 kgNha ' 30-100 kgNha ™' >100 kgNha '
Fertilizer-N Low Medium High

<30 kgNha ™' 30-100 kgNha ' >100 kgNha '

# Organic resource classification according to Palm et al. (2001a).

curve. The 0-30 kgNha ' and 31-100 kgNha '
ranges represent the linear and curve-linear parts of
the N response curve, respectively whereas at >100 kg
Nha ! the curve plateaus (Murwira et al. 2002; Oikeh
et al. 1998; Vanlauwe et al. 2001a). However, it is
worth noting that the N response varies from site to site
and is dependent on other factors such as soil texture
and climate (Bationo et al. 2005; Murwira et al. 2002).
In order to calculate N addition rates of ORs, OR-N
amounts were taken directly from the publications or
were calculated based on the % N and quantities of
ORs applied. Where the OR-N content was not
reported but total added biomass was indicated,
average % N contents from the Organic Resource
Database (Palm et al. 2001a) were used to estimate
OR-N quantities added.

Mean annual precipitation ranged from 500 to
1800 mm. The categories of MAP used in the meta
analysis (Table 1) were based on precipitation and
approximated FAO guidelines for agro-climatic zoning
(Fischer et al. 2001). Soil textures ranged from sandy
(2% clay; 98% sand) to clayey (75% clay; 10% sand)
and the categorical textural classes are based on the
textural triangle (Shirazi and Boersma 1984). Crop
yield responses, interactive effects of combined appli-
cation of ORs and N fertilizers, agronomic N use
efficiency and SOC changes were used as the response
variables. For the purposes of meta-analysis, we
established discrete levels of the categorical variables
and coded each variable (Table 1). Table 2 summarizes
the number of observations for the categories.
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Meta-analysis

Data was analyzed using MetaWin 2.1 software
(Rosenburg et al. 2000). An effect size of each
observation was calculated as the natural log of the
response ratio (r). The response ratio was calculated
using the equation:

r=Xe/Xe, (i)

where X, is the mean for the treatment (i.e. ORs, N
fertilizers, or ORs N + fertilizers) and X, is the mean
of the control group (Rosenburg et al. 2000). Yields
observed with the no input control were used as X,
when control was compared to ORs, N fertilizers, or
ORs + N fertilizers. Where the combined treatment
was compared to either ORs or N fertilizers, X, was
the mean of ORs or N fertilizer treatment, respective-
ly, and X, was the mean for the combined treatment.
For clarity, in figures presenting percent yield
responses [(X.-X)*100/X.] under different treat-
ments are compared to the control for ORs, N
fertilizers and ORs + N fertilizers, or to ORs or N
fertilizers when the combined treatment was evaluat-
ed. Mean effect size for each categorical variable was
calculated with bias-corrected 95% confidence inter-
vals generated by the bootstrapping procedure in
MetaWin using 4999 iterations. Maize yield responses
and SOC changes to addition of ORs, N fertilizers, or
ORs + N fertilizers for each categorical variable were
considered to be significant if the 95% confidence
intervals did not overlap each other.
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Table 2 Summary of number of studies and data points of the observations made under different categories

Category Level Organic resource quality class®

Organic resource N (kgNha ')

Fertilizer N (kgNha ")

I IT 1 v

Low Medium High

Residual Low
31-100  >100 <30

Medium High
31-100 >100

Number of data points (number of studies)
Soil texture Sand 75(5) 75(5) 232(18) 30(2)

Loam 87 (11) 73 (10) 188(13) 30 (2)

Clay 135 (11) 167(12) 348 (19) 24 (2)
Mean annual <600 58(2) 46(1) 113(6) 10(1)

precipitation o1 135 (13) 95 (13) 255 (18) 34 (3)
(mm) 1000
>1000 152 (11) 209 (12) 400 (23) 40 (2)

98 (11) 127(10) 99(5) 59(2) 22(6) 143 (13) 168 (4)
45(6)  77(10) 152(10) 52(4) 6 (1) 151 (14) 184 (4)
71 (18)
52(7)  48(6) 22(2) — 48(7) 46(4) 50(1)
7709 162(13) 135(Q8) 67(3) -

85(15) 112(7)  50(1) 16 (4) 546 (23) 169 (7)

230 (18) 206 (8)

85 (10) 387 (21) 206 (9) 94 (3) 16 (4) 564 (26) 265 (6)

#Organic resource classification according to Palm et al. (2001a).

Interactive effects of the combined application of
ORs with N fertilizers on maize yields were calculated
according to Vanlauwe et al. (2001c) using the
equation:

Interactive Effects (kg hail)
comb — Yeon — (YOR - Ycon)

- (Yfert - Ycon) (11)

where Yeon, Yers Yor, Yeoms are mean grain yield
(kgha ') in the control, the sole N fertilizers, the sole
ORs and the ORs + N fertilizers, respectively. The
interactive effects were considered to be significant if
the 95% confidence interval did not overlap zero.
Interactive effects represent extra maize grain yields
obtained following the combined application of ORs
with N fertilizers compared to the sum of the two when
added separately (Vanlauwe et al. 2001c). Positive
interactive effects imply extra grain yield whereas
negative interactive effects show lower grain yield
observed with the combined addition of ORs and N
fertilizers compared to the addition of either resource
alone. Since it was not possible to obtain the statistics
for each of the interactive effects without the avail-
ability of all the raw data of all the replicates, we used
an unweighted analysis where standard deviation was
considered to be the same for all data. However,
individual studies had different sample sizes but the

calculated unweighted effect sizes would not take into
consideration variances brought about by these different
sample sizes.

Agronomic N use efficiency of the addition of
ORs, N fertilizers or ORs + N fertilizers was
calculated as the kg yield increase over the control
per kgN applied (Cassman et al. 1998) using the
equation:

Agronomic N use efficiency

_ (Ytrt - Ycon)(kg hail)
Total N applied(kg N ha=")

(iii)

Where Y represents the yield for OR, N fertilizer, or
OR + N fertilizer treatments, Y., represents the yield
in the control treatment, and total N applied represents
N applied in the OR, N fertilizer or the combined
treatment. Similar to interactive effects, an unweighted
effect size was calculated for agronomic N use
efficiency and used in the meta-analysis.

An unweighted effect size was also calculated and
used for meta-analysis for SOC changes because
some studies did not report standard deviations. In
addition, since there were few studies that reported
SOC measurements, it was essential not to omit
studies and maintain a larger sample size. Effect sizes
of ORs and ORs + N fertilizers over the no input
control were calculated as the natural log of the
response ratio of ORs or ORs + N fertilizers over the
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control. The initial C contents were not always
available and hence SOC changes over time were
not calculated.

Because there are many interactions among the
factors that influence maize yield and SOC responses,
agronomic N use efficiencies and interactive effects,
there are many ways that the data could have been
presented. However, we looked at the possible
interactions and selected only the data that showed
the most interesting trends.

Results
Maize yields
Overall responses

For all the treatments, i.e. ORs, N fertilizers and ORs +
N fertilizers, maize yield responses over the control
were greater when the control yield was low but as the
yield of the control increased, the yield responses
became smaller (Fig. 1). Additionally, most of the
studies that had lower control yield but with greater
yield responses were on sandy soils (Fig. 1).

Maize yield responses were positively influenced
by the addition of ORs, N fertilizers and ORs + N
fertilizers (Fig. 2a). The sole addition of ORs and N
fertilizers resulted in 60% and 84% greater maize
yields than the no input control, respectively (Fig. 2a).
The combined application of ORs + N fertilizers more
than doubled maize yields (114%) compared to the no
input control. The combined application of ORs + N
fertilizers increased maize yields compared to sole
applied ORs and N fertilizers by 33% and 17%,
respectively (Fig. 2b).

Fertilizer-N alone

When sole N fertilizer was compared to the no input
control, greater yield responses were observed in
experiments where <30 kg fertilizer-Nha ' was added
compared to the control than when 31-100 kg
fertilizer-Nha ' was added (Fig. 3a). However, the
yield difference between the control and the N fertilizer
treatment was 936 kgha ' following the addition
of <30 kg fertilizer-Nha ' compared to >1450 kg
ha ! when greater amounts of fertilizer-N were added
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(Fig. 3b). Yield responses to N fertilizer addition were
greater in clayey and sandy soils than loamy soils
(Fig. 3a) but the yield difference was greatest in clayey
soils, while there were no differences between loamy
and sandy soils (Fig. 3b). Although maize yield
responses were greater in areas receiving <600 mm
MAP than in areas receiving 600—-1000 mm MAP,
absolute yield differences were lowest where MAP
was <600 mm (691 kgha ') whereas the yield
difference was more than double in areas where MAP
was >600 mm (>1450 kgha'; Fig. 3).

Organic resource alone

Organic resource quality and OR-N quantity added
influenced maize yield responses, but interactions
with soil texture were observed (Fig. 4). Independent
of soil texture for sole applied ORs, greater yield
responses were observed with ORs in classes I and 11,
but there were no differences between these two
classes for all soil textures (Fig. 4a). Lowest yield
responses were observed with class IV ORs, with
depressed yields in sandy soils by up to 45%
(Fig. 4a). Looking at all soils combined, there seems
to be three distinct OR quality classes where classes I
and II ORs would be combined into one class, i.e.
high quality, whereas classes III and IV ORs would be
the intermediate and low quality classes, respectively
(Fig. 4a).

Overall, yield responses tended to increase with
increasing OR-N quantity but distinct differences were
only observed in clayey soils (Fig. 4b). Across all soil
textures, mean yield responses were 100% in experi-
ments where >100 kg OR-Nha ' was added, whereas
in experiments where <30 kg OR-Nha ' was added,
yield responses were only 8% (Fig. 4b). Residual
effects of ORs applied in one season were positive
in the subsequent season with crop yield responses of
38% over the no input control when all textures
were combined but in sandy soils there were slightly
negative but not significant (Fig. 4b). In clayey
soils, residual effects of ORs were greater (49%) than
where <30 kg OR-Nha ' (15%) was added but less
than where greater OR-N quantities were added
(Fig. 4b). Surprisingly, in the loamy soils, residual
effects of ORs resulted in the greatest yield responses
(69%) which were, however, not significantly different
from when >100 kg OR-Nha ' was added (Fig. 4b).
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Fig. 1 The relationship of the yield responses over the no input control to the addition of a organic resources (ORs), b N fertilizers,

and ¢ ORs + N fertilizers with the yield of the control
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a Overall responses vs control

# data points (studies) Management
1010 (39) —&—  OR-+N fertilizer
307 (40) — N fertilizer

824 (39) — OR

0 20 40 60 80 100 120 140 160
% yield response over the control

b combined treatment vs OR or N fertilizer

# data points (studies)

Management
1152 (41) e N fertilizer
1213 (43) —e— OR
0 5 10 15 20 25 30 35 40

% yield response over OR or N fertilizer

Fig. 2 Yield responses a to the addition of organic resources
(OR), mineral N fertilizers and the combined application of the
two (OR + N fertilizer) compared to the no input control, and b
of the combined treatment compared to sole mineral N fertilizers
or sole ORs expressed as yield responses. Responses are
expressed as weighted average response percentage with 95%
confidence intervals represented by error bars. Numbers of effect
size comparisons are given as # of data points and number of
studies from which the points are taken appear in parentheses

Organic resources with N fertilizers

Yield responses increased with increasing OR quality
when ORs were applied in combination with N
fertilizers, but again there were interactions with soil
texture. Across all textures, the greatest yield
responses were observed with class II ORs but were
not significantly different from class I ORs (Fig. 5a).
Similar to sole added ORs, three distinct OR quality
classes were recognizable when looking across all
soils with classes I and II ORs clustering into one OR
class of high quality residues, and class Il and IV
ORs forming the intermediate and low quality classes,
respectively (Fig. 5a). Unlike sole added ORs, yield
responses were positive for all OR quality classes in all
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soils (Fig. 5a). Yield responses also tended to increase
with increasing quantities of OR-N added with a yield
response of about 215% where >100 kg OR-Nha ' in
sandy and clayey soils (Fig. 5b). The addition of N
fertilizers with residual ORs resulted in yield responses
that were lower than where fresh ORs were added in
the sandy and clayey soils. Again in the loamy soils
residual OR effects resulted in greater yield responses
but was not different from where >100 kg OR-Nha '
was added (Fig. 5b).

Residual effects of ORs

The residual effects of ORs on yield responses, both
when applied alone or in combination with N fertilizers,
increased from class IV to class I ORs but there were no
significant differences among OR classes I, II and III
(Fig. 6). There were no residual effects for sole applied
class IV ORs (Fig. 6a), but the addition of N fertilizers
in the residual season increased crop yields, and the
same was observed with other OR classes (Fig. 6b). In
sandy soils and in areas receiving 601-1000 mm MAP,
there were also no significant residual OR effects but
were increased when N fertilizer was added (Fig. 6).
However, the addition of N fertilizers resulted in no
differences between sandy soils and the other textures
and also between the MAP categories (Fig. 6b).

Efficacy of ORs + N fertilizers over sole ORs
or N fertilizers

When the combined treatment was compared to sole
ORs, yield responses tended to increase with decreasing
OR quality, and were generally positive except in loamy
soils where there were no differences between sole class
IV OR and the combined treatment (Fig. 7a). Greater
yield responses were observed in the sandy soils than
finer textured soils; for class IV specifically; crop yield
responses for ORs + N fertilizers over sole applied ORs
were 249% compared to <35% in finer textured soils
(Fig. 7a). In contrast, the combined application of class
IV ORs with N fertilizers was not different from sole N
fertilizer for all soils (Fig. 7b). Additionally, there was a
general decline in maize yield responses with decrease
in OR quality (Fig. 7b). Contrary to other soils, in the
clayey soils yield responses of the combined treatment
compared to sole N fertilizer were greatest (25%) with
class I ORs compared to 11% observed with classes 1
and III ORs, respectively (Fig. 7b).
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a N fertilizer vs control: % Yield response
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Fig. 3 Yield response to the addition of mineral N fertilizers
compared to the no input control categorized into quantities of
fertilizer-N applied (nghafl), test crop, and mean annual
precipitation (MAP) classes. Yield responses are expressed as
average a response ratio percentage, and b absolute yield

Interactive effects of the combined application of ORs
and N fertilizer on maize yields

Overall, the addition of ORs + N fertilizers resulted in
negative interactive effects on maize yields (—445 kg
ha™'; Figs. 8 and 9), except in sandy and loamy soils

_1)

difference, with 95% confidence intervals represented by error
bars. Numbers of effect size comparisons are given as # of data
points and number of studies from which the points are taken
appear in parentheses

of areas receiving <600 mm MAP (Fig. 8). While
there was a general decrease in interactive effects with
increasing MAP in sandy and clayey soils, there was
no clear pattern for loamy soils (Fig. 8). Generally,
interactive effects decreased with increasing OR
quality with the most negative interactive effects

@ Springer



10 Plant Soil (2011) 342:1-30

a OR vs control: OR quality
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b OR vs control: OR-N quantity
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% yield response over the control

Fig. 4 Yield response to the addition of organic resources (OR) with 95% confidence intervals represented by the error bars.
compared to the no input control categorized into a four quality Numbers of effect size comparisons are given as # of data
classes (See Table 1), and b three OR-N quantities applied. points and number of studies from which the points are taken
Yields are expressed as weighted average response percentage appear in parentheses
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Fig. 5 Yield response to the
combined addition of organic
resources (OR) with mineral

OR + N fertilizer vs control: OR quality

N fertilizers compared to the # data points (studies) OR class
no input control categorized 1010 (39) . Al 8
into a four OR quality 229 (15) - I 3
classes (See Table 1), and 421:32; E;g; — IIIII 3
- —— =
b thfee OR-N quantities 84 (4) v <
applied. Yield responses are
expressed as weighted 388 (20) — Al
a 94 (8) e [
verage response percentage 99 (9) |8
with 95% confidence inter- 171 (13) e m ©
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comparisons are given as # 66 (6) — (>
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OR + N fertilizer vs control: OR-N quantity
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being observed with class I ORs in clayey and sandy
soils (Fig. 9a). Although interactive effects were
generally negative following the addition of ORs + N
fertilizers in sandy soils, the combined application of
class IV ORs with N fertilizers resulted in positive
interactive effects, 360 kgha ' (Fig. 9a). Interestingly,

% yield response over the control

when <30 kg OR-Nha ' was added with N fertilizers
in sandy soils, interactive effects tended to be positive
(Fig. 9b). Surprisingly however, while interactive
effects of residual OR-N effects with N fertilizers were
negative or zero in clayey and sandy soils, respectively,
in loamy soils they were 224 kgha ' (Fig. 9b).
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Fig. 6 Yield responses to
residual effects of a organic
resources (OR), and b OR +

Residual OR vs control

mineral N fertilizers, com- # data points (studies)
pared to the no input control 153 (5) — — Al
for three categorical varia-
bles, mean annual precipita- .
. . £
tlo(ril (()I\I/iAP),l.sml Iex'[urs:,S 94 (3) o ~1000 E
an quality classes (See 59 (3) 601-1000 &
Table 1). Responses are s
average percentages with
95% confidence intervals
represented by error bars. g
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of data points and number 542 ——e— sand 3
of studies from which the
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Agronomic N use efficiency

Agronomic N use efficiency was greater following the
addition of N fertilizers (22 kg grain increase kg ' N
applied) than ORs and ORs + N fertilizers which had
agronomic N use efficiencies of 13.1 and 13.6 kg
grain increase kg ' N applied, respectively (Fig. 10a).
When all soils were combined, agronomic N use
efficiency of the combined treatment were lowest with
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% yield response over the control

class IV ORs but there were no differences among OR
classes I, IT and III (Fig. 10b). In sandy soils agronomic
N use efficiency was 11.7 kg grain increase kg ' N
applied for class III ORs compared to <5 kg grain
increase kg ' N applied with classes II and IV ORs
(Fig. 10b). In loamy soils, on the other hand, class TII
ORs resulted in agronomic N use efficiency, which
was significantly greater than class I and IV ORs
(Fig. 10b). Generally, there were no differences
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Fig. 7 Yield response to the
combined addition of
organic resources (OR) with
mineral N fertilizers com-
pared to a sole OR and, b
sole N fertilizer expressed
as yield responses, catego-
rized into the four OR
quality classes (See Table 1)
for clayey, loamy and sandy
soils. Yield responses are
expressed as weighted aver-
age response percentage
with 95% confidence inter-
vals represented by the
error bars. Numbers of
effect size comparisons are
given as # of data points and
number of studies from
which the points are taken
appear in parentheses
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between OR classes I and II except in sandy soils
where agronomic N use efficiency for class I ORs was
twice as much that of class II ORs (Fig. 10b).
Agronomic N use efficiency of the combined addition
of ORs with N fertilizers increased with decreasing
quantities of both OR-N and fertilizer-N, except in
loamy soils where <30 kg OR-Nha ' was not

-20
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. All

—_— I
— 1}

— 1]
’ \"

All textures

—— All

Il
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Sand
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% yield response

significantly different from when greater amounts of
OR-N were added (Fig. 1la and b). The addition
of <30 kgNha ' resulted in agronomic N use
efficiencies of 20 and 31 kg grain increase kg ' N
added as ORs and N fertilizers, respectively across all
textures (Fig. 11a and b). The combined addition of
ORs and N fertilizers resulted in greater N use
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Fig. 8 Interactive effects of
the combined addition of

Interactive effects of OR + N fertilizer: Mean annual precipitation
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efficiencies in clayey soils; 20 kg grain increase
kg ™' N applied compared to 7 and 10 kg grain increase
kg ! N applied to loamy and sandy soils, respectively
(Figs. 10 and 11). The greatest agronomic N use
efficiency of 27 and 37 kg grain increase kg ' N added
was observed in clayey soils when <30 kgNha ' was
added as OR-N and fertilizer-N, respectively (Fig. 11a
and b). In comparison, in coarser textured soils
agronomic N use efficiency was less than 13 and
20 kg grain increase kg ' N added where <30 kgNha ™’
was added as OR-N and fertilizer-N, respectively
(Fig. 11a and b).

Soil organic carbon

The addition of ORs, both alone and in combination
with N fertilizers resulted in SOC contents that were
17% and 12% greater than the no input control,
respectively (Fig. 12a). Although, there were no differ-
ences in SOC responses over the control between sole
ORs and ORs + N fertilizers, the ORs + N fertilizers
treatment tended to result in lower SOC than sole ORs
(Fig. 12a). The sole addition of N fertilizers resulted in
SOC contents that were not significantly different from
the control but was significantly less than when ORs
were added alone (Fig. 12a). There was a general trend
of increasing SOC responses with increasing OR-N
quantities; greater SOC responses were observed in
treatments where >30 kg OR-Nha ' was added while

@ Springer

Interactive effects (kg ha™)

experiments where <30 kg OR-Nha ' was added were
not different from the control (Fig. 12b). Soil organic C
responses following the application of sole ORs was
greater in sandy soils and least in loamy soils
(Fig. 12c¢).

Discussion
Maize yield responses
Benefits of external nutrients

Results from our meta-analysis clearly highlight the
positive maize yield benefits realized following the
external addition of nutrients in SSA soils in the
following decreasing order; ORs + N fertilizers > N
fertilizers > ORs (Fig. 2a). While the addition of N
fertilizers has been shown to result in greater crop
yields than ORs (Baggs et al. 2000; Bremer and van
Kessel 1992; Ladd and Amato 1986), greater crop
yields have been observed following the combined
application of ORs with N fertilizers (Kimani et al.
2007; Kramer et al. 2002; Mtambanengwe et al.
2006). The greater yield benefits with the combined
treatment have been mainly attributed to the direct
interactions between the two resources where tempo-
rary immobilization of N from fertilizers by ORs may
result in improved synchrony between supply and



Plant Soil (2011) 342:1-30

15

Fig. 9 Interactive effects of
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demand of nutrients (Myers et al. 1994; Palm et al.
2001a; Vanlauwe et al. 2001c). This improved
synchrony enhances the use efficiency of the two
resources, often leading to positive interactive effects
on yield, i.e. yields greater than the sum of yields
obtained following the sole application of either
resource (Vanlauwe et al. 2001a). The positive
interactive effects might also be due to the alleviation

Interactive effects (kg ha™)

of other growth limiting factors such as micronu-
trients (Palm et al. 1997; Zingore et al. 2008).
However, in our analysis across all studies, the
interactive effects of combining the two resources
were, most often, negative (Figs. 8 and 9). Moreover,
the agronomic N use efficiency following the com-
bined addition of ORs and N fertilizers was not
different from sole applied ORs but was instead lower
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Fig. 10 Nitrogen use effi- a
ciency of the combined
addition of organic resour-

Agronomic N use efficiency for OR, N fertilizer and OR + N fertilizer
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than sole applied N fertilizers (Fig. 10a). This
indicates that the extra yields observed with the
combined treatment were not caused by improved
efficiency of utilization when the two resources are
added together, but likely due to the extra N supplied
when the two resources were added together. How-
ever, excess amounts of N were added in the
combined treatment where at least 100 kgNha ' was
added in the combined treatment in more than 70% of
the studies (data not shown) with sum N added as
high as 667 kgNha '. This could have reduced the
agronomic N use efficiency (Cassman et al. 2002) and
masked the possible positive interactions. Nonethe-
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N use efficiency (kg grain increase kg N applied)

less, it should be noted that yield responses were
variable under different conditions; for example
different OR qualities led to different interactive
effects in different textured soils while low quantities
of N added resulted in greater agronomic N use
efficiencies (see sections below).

While results from our meta-analysis imply no
improvement in agronomic N use efficiency follow-
ing the combined addition of ORs with N fertilizers
compared to sole applied ORs or N fertilizers, there is
a possible shift towards increased N utilization
efficiency of the two resources in the long-term.
Previous studies have shown lower recoveries of OR
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Fig. 11 Nitrogen use effi-
ciency of the combined

addition of organic resour- # data points (studies)
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applied N in the first year of application compared to
N fertilizers but with greater residual benefits than N
fertilizers in subsequent seasons (Bosshard et al.
2009; Cadisch et al. 1998; Handayanto et al. 1997).
We also observed residual OR benefits on average
crop yield response of 40% for sole applied ORs
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compared to the control, implying possible build-up
of nutrients in soil following the application of ORs
(Fig. 6a). Moreover, the addition of ORs, alone or in
combination with N fertilizers resulted in greater SOC
increases compared to the control whereas SOC
following N fertilizer additions was not different from
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Overall studies
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Fig. 12 a Soil organic C (SOC) responses to the addition of
organic resources (OR), mineral N fertilizers, or OR + N fertilizer
compared to the control. The combined treatment (OR + N
fertilizer) is also compared to sole applied OR (OR + N fertilizer vs
OR). b SOC responses to the addition of OR compared to the no
input control, categorized into three OR-N quantities. ¢ SOC
responses to the addition of OR compared to the no input control,
categorized into three soil textural classes. SOC responses are
expressed as average response percentage with 95% confidence
intervals represented by the error bars. Numbers of effect size
comparisons are given as # of data points and number of studies
from which the points are taken appear in parentheses

the control (Fig. 12a). Greater sustainability and soil
organic matter build-up in the long-term following the
addition of ORs, alone and in combination with N
fertilizers (Bhattacharyya et al. 2007; Bhattacharyya
et al. 2008; Bi et al. 2009) also imply greater crop
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yields may be achieved by these treatments than sole
applied N fertilizers over time. Most of the studies
(48) included in our meta-analysis were carried out
over less than 5 yr, with 16 of them being carried out
over one season. Thus, although there were lower
agronomic N use efficiencies and negative interactive
effects following the combined addition of ORs with
N fertilizers in the short-term, there are possible
improvements on these in the long-term. This brings a
need to invest in long-term evaluations of the
combined addition of ORs with N fertilizers in SSA.

Organic resource quality and OR-N quantity
influences

Generally, greater OR-N quantities were added with
high quality ORs than low quality ORs thus the
greater yield responses with high quality ORs were
likely due to greater amounts of N added (Figs 4). In
support, several studies have observed greater crop
yields with high than low rates of OR application
(Chivenge et al. 2009; Mtambanengwe and Mapfumo
2006). Similarly, greater yields have been observed
with high than low quality ORs (Mtambanengwe
et al. 2006; Murwira et al. 2002; Teklay et al. 2006;
Vanlauwe et al. 2001c). The addition of high quality
ORs, class I, results in a fast release of nutrients,
which may be taken up by plants if they are in
synchrony with crop demands (Kimetu et al. 2004;
Mafongoya et al. 1998a; Palm et al. 2001b). In
contrast, the addition of intermediate to low quality
ORs, classes III and IV ORs, may cause N immobi-
lization and, therefore, lead to lower yields than the
no input control (Kapkiyai et al. 1999; Mugwira and
Murwira 1997; Sakala et al. 2000). In our meta-
analysis, although low quality ORs, class IV, resulted
in lower crop yield responses than other OR quality
classes, the decline in crop yields with class IV ORs
compared to the control was only observed in sandy
soils (Fig. 4a), probably reflecting the inherent
infertility of sandy soils (Bationo et al. 2007; Grant
1981). This was supported by the low yields of the
control and the greater yield responses following the
external addition of nutrients in sandy soils compared
to other textures (Fig. 1). Although the addition of
low quality ORs would have been anticipated to
increase moisture retention and availability (Bationo
et al. 2007; Bauer and Black 1992; Tian et al. 2007,
Vanlauwe et al. 2002a), nutrient limitations may have
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been more critical for crop growth (Greenwood et al.
1996; Ouédraogo et al. 2006) and probably more so in
sandy soils where the nutrient base is low. Nonethe-
less, differences among OR quality and OR-N
quantity classes were more distinct in the clayey soils
(Fig. 4b) and this was probably because of the greater
contact between OR and clay particles (Gentile et al.
2008; Mary et al. 1996). Clay particles have a large
surface area, enhancing microbial contact with ORs
whereas the limited contact in coarse textured soils
may limit OR decomposition (Strong et al. 1999).
Additionally, coarse textured soils have a lower
moisture holding capacity which may also limit
decomposition of ORs (Manning et al. 2008), and
thus result in less distinct OR quality differences
compared to fine textured soils. Moreover, soil
aggregate and SOC dynamics in clayey soils are
influenced by OR quality and in turn influence OR
decomposition and nutrient dynamics whereas in
coarser textured soils there are fewer aggregates
(Bossuyt et al. 2001; Six et al. 2001).

Although OR quality was clearly important in
influencing maize yield, there were generally no
differences in maize yield responses, agronomic N
use efficiency and interactive effects between OR
classes I and II when applied alone or in combination
with N fertilizers in all soils (Figs. 4, 5, 6, 9 and 10).
This suggests that polyphenol content, which sepa-
rates the two classes (Mafongoya et al. 1998a;
Oglesby and Fownes 1992; Palm et al. 2001a), may
not play a significant role in nutrient release under
field conditions. While polyphenols have been shown
to be biochemically recalcitrant and, therefore reduce
N mineralization (Heal et al. 1997; Mafongoya et al.
1998b; Palm and Sanchez 1991), Vanlauwe et al.
(2001b) showed that polyphenol contents influenced
maize N uptake in a pot trial, but its impact was
minimal under field conditions. Similarly, N minerali-
zation (Basamba et al. 2007; Gentile et al. 2008; Teklay
and Malmer 2004) and crop yields (Chivenge et al.
2009; Kimetu et al. 2004; Shisanya et al. 2009) have
been observed to be similar for the two OR classes,
probably because in some instances the polyphenols
are leached out of the soil (Vanlauwe et al. 2002b).
Additionally, recent studies have shown that biochemical
recalcitrance may not be as long lasting as initially
thought (Gentile et al. 2008; Grandy and Neff 2008,
Marschner et al. 2008) but that OR decomposition is
primarily driven by OR-N content (Parton et al. 2007).

Thus, contrary to the decision support system proposed
by Palm et al. (2001a, 1997) where they separated
classes I and II ORs, we conclude that there are no
differences in maize yield responses between the two
classes. The current meta-analysis suggests three
distinct OR classes with classes I and II falling in the
high quality class, classes III and IV in the intermediate
and low quality classes, respectively (Figs. 4a, S5a
and 9a). Similarly, Vanlauwe et al. (2005b) showed
three distinct quality classes based on short-term N
mineralization assays.

When the ORs + N fertilizer treatment was
compared to sole ORs, greater yield responses were
observed with low quality ORs than high quality ORs
(Fig. 7a). This was probably because greater yields
were observed with sole high quality ORs (Fig. 4a)
such that the supplementary addition of N fertilizers
resulted in a small increase in maize yields. On the
contrary, low quality ORs may have induced N
limitations that were alleviated by the addition of
fertilizer-N resulting in greater yield increases com-
pared to sole ORs. This alleviation was more
pronounced in sandy soils where the addition of N
fertilizers to class IV ORs resulted in maize yield
responses of 249% when compared to sole ORs,
whereas in clayey soils it was only 35% with the same
OR class (Fig. 7a). Several studies have also observed
greater increases with the combined application of
low than high quality OR over sole OR (Friesen et al.
2002; Teklay et al. 2006; Vanlauwe et al. 2002a).
Similarly, Mtambanengwe et al. (2006) observed a
mere 13% yield increase when class I OR, C. juncea,
was added in combination with N fertilizer compared
to sole C. juncea in a sandy soil. In contrast, there
was a 325% and 800% yield increase with the
combined addition of class III and IV ORs with N
fertilizers compared to sole ORs, respectively.

Positive interactive effects have been observed
when intermediate and low quality ORs are applied
in combination with N fertilizers but not with high
quality ORs (Vanlauwe et al. 2002a, 2005a). Thus,
we expected positive interactive effects with class
IIT and IV ORs but these were only observed with
class IV ORs and only in sandy soils (Fig. 9a).
However, when class IV ORs + N fertilizers were
compared to sole N fertilizers, there were no yield
responses for all soil textures (Fig. 7b). In addition,
agronomic N use efficiency for the combined
addition of class IV ORs with N fertilizers was less
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than 5 compared to 12 kg grain increase kg ' N
added with class III ORs in sandy soils (Fig. 10).
Thus, in support of the decision support system
(Palm et al. 1997; 2001a), where fertilizers are
available, there are no added benefits of combining
their application with class IV ORs.

In contrast to comparisons with sole ORs, when the
combined treatment was compared to sole N fertilizers,
yield responses increased with increasing OR quality
(Fig. 7b). While there were no differences between OR
classes I and II in sandy and loamy soils, in clayey soils
class IT ORs + N fertilizers resulted in a yield response
of 25% over N fertilizers compared to 11% with class I
ORs (Fig. 7b). This suggests that the combined addition
of N fertilizers with class II ORs may be more
beneficial than with class I ORs, as proposed by Palm
et al. (2001a; 1997) but only in clayey soils. However,
the interactive effects of combining class Il ORs with N
fertilizers were generally negative and not different
from class I ORs (Fig. 9a). Additionally, the agronomic
N use efficiencies were not different for the two classes
in clayey soils but were greater with class I ORs than
class II ORs in sandy soils (Fig. 10).

Residual effects of ORs were also influenced by
OR quality with greater residual effects observed
with high quality ORs, both when ORs were
applied alone or in combination with N fertilizers
(Fig. 6). This contradicts the general consensus that
low quality ORs may have greater residual benefits
due to the slow decomposition of ORs making nutrients
available over longer periods of time (Mafongoya et al.
1998a, 1997; Palm et al. 2001b; Tian et al. 2007).
However, given that OR-N added by the low quality
ORs was less than that added by high quality ORes, it is
possible that there were just not enough nutrients to be
used by the following crop. The lack of residual effects
in sandy soils indicates the need to continuously add
nutrients to these inherently infertile soils (Bationo
et al. 2007). However, while there were no residual
effects of ORs in sandy soils, the addition of N
fertilizers in the residual year resulted in crop yield
responses of about 80% over the control whereas in
clayey soils residual effects were 49% and 63% over
the control for ORs and ORs + N fertilizers. These
results stress the need to continuously add nutrients
in the inherently infertile sandy soils and suggest
that the addition of ORs in sandy soils may lead to
improved water use efficiency once nutrients are
added.

@ Springer

Fertilizer-N and OR-N quantities and soil fertility
influences

The greater yield responses to N fertilizer additions
observed in experiments where <30 kgNha ' was
added (Fig. 3a) were likely because most of the
studies with this low fertilizer-N addition rate were
in areas receiving <600 mm rainfall annually. As
shown in the analyses, greater yield responses were
observed in studies done in low rainfall areas
(Fig. 3a). When considering the yield differences, it
was clear that the absolute yield increases due to addition
of <30 kgNha ' were lowest among the N application
classes (Fig. 3b). Furthermore, absolute yield increases
were lowest in climates receiving <600 mm MAP
(Fig. 3b). Thus, similar to previous observations
(Vanlauwe et al. 2001c), proportional yield responses
to nutrient additions (ORs, N fertilizers, ORs + N
fertilizers) were greater when the initial control yields
were low and vice versa (Fig. 1).

The efficiency of utilization of applied N fertilizers
was greater when lower quantities of N fertilizers
were applied and decreased with increasing fertilizer-
N quantities (Fig. 11b). Lower agronomic N use
efficiencies have been observed with greater quanti-
ties of fertilizer-N added (Cassman et al. 2002; Ortiz-
Monasterio et al. 1997; Raun et al. 2002). Thus, the
lower agronomic N use efficiencies observed with the
combined addition of ORs + N fertilizers than sole N
fertilizers were likely because of greater quantities of
N that were generally added with the combined
treatment compared to sole N fertilizers. However,
the same was not observed when the combined
treatment was compared to sole ORs where generally
lower quantities of N were added compared to the
combined treatment (Fig. 10a). The lack of differences
in agronomic N use efficiencies between sole applied
ORs and the combined treatment imply that ORs may
reduce the efficiency of N fertilizers, similar to
observations by Takahashi et al. (2007) where the
agronomic N use efficiencies of N fertilizers were
reduced when applied with compost. Although reduced
N losses and improved N synchrony have been
proposed to lead to increased N use efficiencies
following the combined application of ORs + N
fertilizers (Giller 2002; Palm et al. 2001a; Vanlauwe
et al. 2002a), in the current meta-analysis there was no
evidence of increased N use efficiencies when ORs
were combined with N fertilizers. It is worth noting
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that, agronomic N use efficiencies were greater where
lower amounts of N were added, both as OR-N and
fertilizer-N, but were greater for low fertilizer-N than
OR-N. This was particularly more so in clayey soils
where agronomic N use efficiency was 27 and
37 kg grain increase kg ' N added when <30 kg
OR-Nha ! was added as OR-N and fertilizer N,
respectively (Fig. 1la and b). Thus, while low
quantities of N as OR-N and fertilizer-N enhance
utilization efficiency of added N, clayey soils tended
to also promote greater efficiency of N utilization.
Clayey soils are generally more fertile with greater
SOC than coarser textured soils, influencing the
efficiency of N utilization. In support, greater
agronomic N use efficiencies have been observed
in fertile soils close the homestead than those that are
further from the homestead and less fertile (Vanlauwe
et al. 2010b, 2000).

Soil organic carbon responses

The increases in SOC with ORs and ORs + N fertilizers
and not with sole N fertilizers show the need for OR
additions to increase SOC (Fig. 12a). Similar to yield
responses, greater differences in SOC were observed in
sandy soils than in clayey and loamy soils (Fig. 12c).
This was most likely because of the low starting SOC
contents such that the addition of ORs caused greater
proportional increases in SOC, which, in absolute
terms may be lower than in finer textured soils. In
addition, because of the lower protection of added ORs
and faster loss of nutrients in sandy soils than clayey
soils, there is a need for continuous addition of C in
sandy soils (Mapfumo et al. 2007). Chivenge et al.
(2007) observed greater responses in SOC contents
following the addition of mulch in a sandy soil while
there were insignificant responses in a clayey soil.
Although there were greater yield increases with OR +
N fertilizer compared to sole OR (Fig. 2a), there were
greater C contents with sole OR than OR + N fertilizer
(Fig. 12). This is likely because the added N fertilizers
enhanced decomposition of the added OR, which likely
resulted in greater N supply but also greater losses of
added C (Khan et al. 2007; Nardi et al. 2004). In
contrast, Bhattacharyya et al. (2007) observed greater
SOC with ORs + N fertilizers than ORs, whereas
Nayak et al. (2009) found no differences in SOC
between sole applied ORs and ORs + N fertilizers.
Nevertheless, Nayak et al. (2009) observed greater

microbial biomass C and N, and active SOC with
ORs + N fertilizers than ORs.

Greater yield responses with sole N fertilizer than OR
probably also led to greater belowground C inputs in the
sole N fertilizer (Fig. 2), but N fertilizers applied alone
did not increase SOC (Fig. 12a). Similarly, Gentile et
al. (2010) and Khan et al. (2007) observed greater SOC
contents in treatments where OR was added than when
N fertilizer was added. In contrast, Goyal et al. (1992)
found that the addition of N and P fertilizers resulted in
increased SOC contents. In their study, they also
observed greater SOC contents following the combined
application of OR and N fertilizers and this was mainly
attributed to increased root growth associated with
greater organic matter inputs. Studies that compared
above- versus belowground C input to soil generally
find a greater stabilization of root-derived C than
residue-derived C (Denef and Six 2006; Gale and
Cambardella 2000; Gale et al. 2000; Six et al. 2002).
Nevertheless, our results further emphasize the need of
adding C inputs in order to build up and/or maintain
SOC, especially in sandy soils.

Conclusions

Given that the studies included in the meta-analysis were
carried out across most agro-ecological zones in SSA
and across different soil textures using a wide range of
OR qualities, we can confidently conclude that yield
responses are largely dependent on addition of nutrients,
soil texture and MAP. While OR quality clearly
influences crop yield responses, the use of polyphenol
content to separate classes I and II seems to be of less
importance under field conditions. Organic resource N
content and total quantities of OR-N added, just like total
fertilizer-N added, are more influential on crop yields
than polyphenol contents. Yield responses were greater
following the combined application of ORs with N
fertilizers compared to the addition of either resource
alone. However, the dominance of negative interactive
effects and lack of differences in agronomic N use
efficiencies with ORs applied alone but lower than N
fertilizers applied alone imply that the extra increase in
grain yield is mostly related to the extra N added and not
to an increase in efficiency of utilization by applying the
resources together. However, given that total N added in
the combined treatment was >100 kgNha-1 in 70% of
the observations, possible interactive effects could have
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been masked with reduced resource utilization efficien-
cy. Utilization efficiency of combining ORs with N
fertilizers were greater when lower quantities of OR-N
and fertilizer-N were added, suggesting that this may be
the most appropriate strategy for managing the resour-
ces, particularly in sandy soils. Absolute yield responses
were greater in finer textured soils and high MAP areas,
but the proportional increases to nutrient additions were
greater in low MAP areas and coarse textured soils.
Therefore, positive interactive effects were observed
when low quality OR was incorporated in sandy soils.
Furthermore, there were no residual effects of sole ORs
in sandy soils on yield, showing the need to continu-
ously add N fertilizers in these soils. In addition, the

Appendix 1

Table 3 List of publications included in the meta-analysis

application of ORs increased SOC, and this was more so
in sandy soils, and thus offers, in combination with N
fertilizer additions, the potential for the improvement of
soil quality, crop productivity and its sustainability in
SSA.
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Author Source Country Organic resources # Seasons
Sites
Akinnifesi et al. (2007) Plant & Soil 294: Gliricidium sepium 1 4
203-207
Akulumuka et al. (1996) CIMMYT 5th Maize Tanzania Farmyard manure (fym) 2 1
Conf, 146-148
Ayuk and Mafongoya (2001) SADC/ICRAF 14th Farmyard manure, 1 2

S Africa Proc

Bado et al. (2004) AFNET TSBF-CIAT
Proc, 77-87
Baijukya et al. (2005) Nut Cycl 73: 75-87

Carsky et al. (1999) Nut Cycl 55: 95-105

Chikowo et al. (2003)
Chikowo et al. (2004)

DPhil dissertation
Plant & Soil 262: 303-315

Chilimba et al. (2004) CIMMYT Working
Paper No. 11
Agron J. 101:

1266-1275

Chivenge et al. (2009)

Delve et al. (2004) AFNET TSBF-CIAT

Proc, 127-136

Fofana et al. (2005) Nut Cycl 71:
227-237

Franke et al. (2008) Nut Cycl 82:
117-135

Gigou et al. (2002) INM in SSA,

CABI, 199-208
AFNET TSBF-CIAT
Proc, 137-149

Gikonyo and Smithson (2004)
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Tanzania

Zimbabwe

Cote d’Ivoire

Tephrosia vogelii,
Sesbania sesban

Burkina Faso Fym 2 7
Grass fallow, fym, 1 1
Crotalaria juncea

Mucuna pruriens, C. juncea, 2 1
lablab, Vigna unguiculata
(cowpea), grass fallow

Zimbabwe Fym 1 1
Acacia angustisima, 1 2
S. sesban, Cajanus cajun,
grass fallow
Compost, fym 2 1
Tithonia diversifolia, 2 10

Calliandra calothyrsus,
Zea mays (maize),
sawdust, fym

T. diversifolia 1 2
M. pruriens 2 4
Pueraria phaseoloides, 2 3

Stylosanthes guianensis,
Glycine max, Aeschynomene
histrix, cowpea
Compost 1 20

Fym 1 1
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Table 3 (continued)

Author Source Country Organic resources # Seasons
Sites
Goma (2003) Soil Fert. Mgt Africa, Zambia Leucaena leucocephala, 1 1
CIAT, pp 187-218 G. sepium, Ficus macrophylla,
fym
Horst and Hardter 1994 Plant & Soil 160: Ghana Cowpea 1 2
171-183
Tkerra et al. (1998) CIMMYT 6th Maize Malawi G. sepium 1 2
Conf Proc, 226-231
Itimu et al. (1998) CIMMYT Soil Fert Mal Malawi Senna spectabilis, G. sepium 1 1
& Zim, 203-207
Iwuafor et al. (2002) INM in SSA, CABI, Nigeria, Organic matter, Zea mays, fym 3 2
185-198 Benin
Jones et al. (1997) Driven by Nature, CABI Malawi L. leucocephala, G. sepium 1 2
Kapkiyai et al. (1999) Soil Biol Biochem 31: Kenya Zea mays, fym 1 1
1773-1782
Kihanda et al. (1998) CIMMYT 6th Maize Kenya Fym 1 1
Conf Proc, 250-252
Kimani and Lekasi (2004) AFNET TSBF-CIAT Kenya Fym 1 1
Proc, 187-206
Kimani et al. (2007) Advances in ISFM in SSA, Kenya T. diversifolia, M. pruriens, 3 1
353-358 C. juncea, lablab, compost, fym, Zea
mays
Kimaro et al. (2009) Agric Ecosyst Environ 134: Tanzania C. Cajun, fym 1 2
115-125
Kimetu et al. (2004) Nut Cycl 68: 127-135 Kenya T. diversifolia, Senna siamea, 1 2
C. calothyrsus
Kumwenda et al. (1998) CIMMYT Soil Fert Mal Malawi C. cajun, C. juncea, M. pruriens 1 2
& Zim, 85-86
Kwesiga et al. (1999) Agroforest Syst 47: Zambia S. sesban 1 5
49-66
Mafongoya and Dzowela Agroforest Syst 47: Zimbabwe A. anguistisima, C. cajun, 1 2
(1999) 139-151 S. sesban
Mafongoya et al. (2006) Nutr Cycl 76:137-151 Zambia S. sesban 1 3
Makumba et al. (2001) SADC/ICRAF 14th Malawi G. sepium 1 2
S Africa Proc
Mariki et al. (1996) CIMMYT 5th Maize Tanzania Zea mays 1 2
Conf, 200201
Mochoge and Onwonga (1998)  CIMMYT 6th Maize Kenya V. unguiculata 6 1
Conf Proc, 267-270
Mtambanengwe et al. (2006) Nut Cycl 76: 271-284 Zimbabwe C. juncea, C. calothyrsus, 2 5
Zea mays, sawdust, fym
Mucheru-Muna et al. (2004) FORMAT OR Mgt Kenya C. juncea, M. pruriens, 2 4
in Kenya C. calothyrsus, L. leucocephala,
T diversifolia, fym
Mugendi et al. (1999) Agroforest Syst 46: Kenya C. calothyrsus, L.leucocephala 1 1
30-50
Mugwe et al. (2007) African Crop Sci J 15: Kenya M. pruriens, C. ochloleuca, 1 4
111-126 T. diversifolia, C. calothyrsus,
Leucaena trichandra,
cattle manure
Mugwira and Murwira (1997) CIMMYT Soil Fert Net working Zimbabwe Fym 1
paper
no. 2, 18 pp
Mungai et al. (1998) CIMMYT 6th Maize Kenya T. Diversifolia, Zea mays 2 1
Conf Proc, 253-255
Murwira et al. (1998) CIMMYT Soil Fert Mal Zimbabwe Fym 6 1
& Zim, 179-182
Nhamo (2002) MPhil thesis Zimbabwe Fym 11 2
Nyadzi et al. (2006) Agric Ecosyst Environ Tanzania A. crassicarpa, A. julifera, 1 1
116: 93-103 A. leptocarpa, L. pallida,
S. siamea, grass fallow
Nyamangara et al. (2003) African Crop SciJ 11: Zimbabwe Cattle manure 1 2

289-300

@ Springer



24

Plant Soil (2011) 342:1-30

Table 3 (continued)

Author Source Country Organic resources # Seasons
Sites

Nyathi et al. (1995) African Crop Sci J. 3: Zimbabwe Brachystegia spiciformis, 1 1
451-456 L. leucocephala, fym

Nziguheba et al. (2004) AFNET TSBF-CIAT Kenya T. diversifolia 1 4
Proc, 329-346

Nziguheba et al. (2009) Plant Soil 314: Nigeria,
143-157 Benin

Okalebo et al. (2004) AFNET TSBF-CIAT Kenya Triticum aestivum, G. max 1 4
Proc, 359-372

Onyango et al. (1998) CIMMYT 6th Maize Kenya Fym, compost 4 3
Conf Proc, 242-246

Sakala et al. (2000) DARS Annual Proc Malawi C. juncea, M. pruriens, lablab 1 1

Snapp et al. (1998) Ag Ecosyst Environ 71: Zimbabwe Arachis hypogea 1 1
185-200

Swift et al. (1994) Rothamsted Long-term Kenya Farmyard manure 1 15
Exp Proc, CABI,
229-251

Teklay et al. (2006) Nut Cycl 75: 163-173 Ethiopia Albizia, Cordia, Milletia, Crotia 1 2

Vanlauwe et al. (2005a) Plant & Soil 273: Nigeria L. leucocephala, S. siamea 1 17
337-337-354

Vanlauwe (unpublished) Unpublished Kenya T. diversifolia, C. calothyrsus, 2 1

Zea mays, sawdust, fym

Workayehu and Kena (1998) CIMMYT 6th Maize Ethiopia Coffea arabica (coffee) 1 3
Conf Proc, 271-273

Yeboah (unpublished) Unpublished Ghana C. juncea, L. leucocephala, 2 5

sawdust, Zea mays, fym
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