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Abstract

This paper presents a model-based matching technique for recognition of articulated objects (with two parts) and the
poses of these parts in synthetic aperture radar (SAR) images. Using articulation invariants as features, the recognition
system first hypothesizes the pose of the larger part and then the pose of the smaller part. Geometric reasoning is carried
out to correct identification errors. The thresholds for the quality of match are determined dynamically by minimizing
the probability of a random match for the recognition system. Results are presented using both occluded synthetic
articulated object SAR signatures and actual signatures of articulated objects from the real-world data. The system
performance is evaluated with respect to identification performance and accuracy of estimates for the poses of the
object parts. © 2002 Elsevier Science B.V. All rights reserved. '
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1. Introduction

Recognition of objects in synthetic aperture
radar (SAR) imagery is an active area of research
in pattern recognition and computer vision (Jones

and Bhanu, 1999; Novak et al., 1994). In this.

paper we focus on the problem of recognizing artic-
ulated objects (with two parts) and the poses of the
articulated parts in SAR imagery. Previous work
in the area of recognizing articulated objects in
visual imagery (Beinglass and Wolfson, 1991; Hel-

" Corresponding author. Tel.: +1-909-787-3954; fax: +1-909-
787-3188.

E-mail addresses: ahn@cris.ucr.edu (J.S. Ahn), bhanu@cris.
ucr.edu (B. Bhanu).

Or and Werman, 1994), has used simple models
(like scissors and lamps) and has used constraints
around a joint to recognize these objects. For SAR
images, it is difficult to extract linear features
(commonly used in visual images), especially at six
inch to a foot resolution. This is because of the
unique characteristics of SAR image formation
(specular reflection, multiple bounces, low resolu-

- tion and non-literal nature of the sensor). Previous

recognition methods for SAR imagery using tem-
plates (Novak et al., 1994) or boundary contours
are not suitable for the recognition of articulated
objects, because articulation or occlusion changes
the object outline and each different articulation
configuration requires a different template leading
to a combinatorial explosion.

The key contribution of the paper is the rec-
ognition of articulated objects and the articulation
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of the objects in SAR imagery using models based
on articulation invariants. In contrast to other
work on recognizing articulated objects in SAR
images (Bhanu and Jones, 2000; Jones and Bhanu,
1999, 2001), this paper presents an approach that
explicitly models both parts and, thus, can deter-
mine the poses of both parts.

An end-to-end system has been developed whose
input is a target chip (region-of-interest, ROI) and
the final result is the identification of the target and
the poses of its parts. The system has been exten-
sively tested using both simulated and publically
available real-world SAR image data.

2. System overview

Fig. 1 depicts an end-to-end system for recog-
nizing articulated objects. It shows the matching
components including the feedback (loop) used
in geometric reasoning from the matching module
to the indexing module that generates all the
hypotheses.

The basic assumption behind our approach is
that more scattering centers (local peak features in
the SAR image) are from the larger part than from
the smaller one so that the models for the larger
part are used first to find the target identification
(ID) and the pose of the larger part. As an ex-
ample, tanks have two parts: body (larger part)
and turret (smaller part). For some targets like the

M1 tank, occasionally more scattering centers
come from the smaller part (turret) than from the
larger one (body). If the system succeeds in rec-
ognizing the target and its body pose, those scat-
tering centers used for the body part recognition
(the positives) are eliminated from the test data.
The remaining scattering centers (called the nega-
tives) are supplied to the next stage to recognize
the turret part and its pose. If the system fails to
recognize the target ID and its body pose, the
system tries to recognize the target ID and its
turret pose instead. After the recognition of the
turret, it tries to recognize the body pose based on
the negative scattering centers, which are left over
from the turret part recognition.

3. Invariant feature extraction and building part
models :

Fig. 2 shows examples of XPATCH (Andersh
et al., 1994) generated synthetic SAR images (at six
inch resolution, a fixed depression angle of 15° and
squint angle of 90°) for a T72 tank with different
turret articulations. The SAR scattering centers
are local peaks in the amplitude of the radar return
(eight-neighbor maxima) and in Fig. 2 their range
and cross-range locations are marked as black
squares. Fig. 2 illustrates that some of the scat-
tering locations are invariant to the turret ar-
ticulations. The invariant scattering centers are

i
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Fig. 1. An end-to-end system for recognizing articulated targets.
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(a)
Fig. 2. SAR images of T72 (body at 240°, 40 scattering centers marked): (a) turret at 240°; (b) turret at 300°.

defined as those that remain in exactly the same
positions as a result of articulation. Details for real
SAR MSTAR images are given in Section 5.2.

Table 1 shows the percentage of articulation
variance for each target with turret 30°, 60° and
90° rotated versus turret straight. The articulation
variances for XPATCH generated M1, T72, and
T80 tanks are 63%, 52%, and 47%, respectively.
For model building and experimentation, we use
the invariants to build body models and a subset
of variants (caused by turret articulation or inter-
reflections) to build turret models. We do not fix
the number of scattering centers to be extracted
from the target chips because we want to get as
many features as possible from both body and
turret.

To build a body model (at some azimuth), we
use two different turret articulations with the body

at the same azimuth. Fig. 3 shows examples of

model building for the body and turret using
XPATCH data. Both (a) and (b) show the T72

(b)

tank with a body pose at 283° but different turret
poses. Using scattering centers from both (a) and
(b), the body model (positives) of the T72 tank at
283° is shown in (c). Similarly, both (d) and (e)
show the M1 tank with a turret pose at 105° but
different body poses. The corresponding turret
model for the M1 tank at 105° is shown in (f).

4. Hypotheses generation and verification

In the recognition phase, a set of hypotheses is
generated using a geometric hashing technique
based on Jones and Bhanu (1999). The system then
finds the best data/model correspondence using
a quadrant analysis technique which transforms
the scattering centers from the model coordinate
system to the image coordinate system. In this
transformation, only translation is considered be-
cause rotation is handled by 360 models for every
single degree of azimuth (note that there is no

Table 1

Average and standard deviation for articulation variance (against 360 non-articulated cases)
Articulation M1 T72 T80

1 (%) 4 w (%) 4 (%) o

Turret 30° 64 9.26 52 12.05 47 8.06
Turret 60° 63 9.37 51 11.75 46 8.02
Turret 90° 63 9.09 52 12.03 47 7.99
Average 63 9.24 52 11.94 47 8.02
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body azimuth : 283"

(a) T72 turret straight
body: 105° turret: 1{}56

(d) M1 turret straight

body azimuth : 283°

(e) M1, turret 90

(f) M1 turret mode!

Fig. 3.T72 bddy model at 283° and M1 turret model at 105°: (a) body at 283°, turret straight; (b) body at 283°, turret at 60°; (c) body
model at 283°; (d) body at 105°, turret pose at 105°; (¢) body at 15°, turret pose at 105°; (f) turret model at 105°.

scaling involved in SAR image formation). This
quadrant analysis technique allows positional er-
ror, €,, within £1 pixel. Finally, the system choo-
ses the top ten hypotheses from the quadrant
analysis, which have the highest matching scores,
then verifies them using threshold determined dy-
namically based on the number of model features,
the number of data features, and the area of
transformation space. If matching scores are low
for all hypotheses, geometric reasoning is per-
formed.

4.1. Quadrant analysis

Each entry in the transformation space repre-
sents a transformation  and the value represents
the number of correspondences between model
and data scattering centers for exact matching
positions. Since the feature extraction module uses
eight-neighbor comparison, the closest two scat-
tering centers (points) are two pixels apart from
each other. In order to allow correspondence be-

tween points that are one pixel apart, the quadrant
analysis routine generates a new transformation
space by adding all values at the four corners of
each quadrant. A new transformation space, 2, is
constructed as follows:

206,) =T (x,y)+ T (x+1,y)+ T (x,y+1)
+7x+1,y+1).

Fig. 4 shows an example of quadrant analysis.
4.2. Dynamic selection of matching threshold

Grimson and Huttenlocher (1991) have derived
an expression for a matching threshold using a
statistical occupancy model. The main assumption
underlying this model is that the extraneous fea-
tures in an image will be uniformly randomly
distributed with respect to a given object model.
We use this approach with restrictions and modi-
fications that are required for SAR images. In
particular, we are concerned with scattering cen-
ters as point features in a SAR image and only the
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Model Points

Data Points

Octagonal Transformation Space Octagonal Transformation Space
Before Quadrant Analysis

After Quadrant Analysis

Fig. 4. An example of new transformation space with convex octagonal bounding box.

translation transformation between the model and
data features.

Given a correspondence between data and
model points for a fraction f (f€[0,1]) of the m
model points, what is the relation between f and
the probability ¢ that correspondences can occur
at random? Once f and é are known, the matching
threshold can be dynamically selected for each
input. In order to characterize the probability of
a false match of a model to an image, statistical
occupancy models are used. Let / be the number of
random feature correspondences. Assuming the
acceptable positional error to be within +e, in
both x and y directions, which is a square of di-
mensions 2¢, X 2¢,, the size of the range of feasible
transformations V; for single data—model pairing
(j,J) is ¢y = 4e2. Let the sum of the sizes of all the
transformation space over the total size of the
transformation space be A. Then,

A smde’

A
where s and m are the number of scattering centers
for data and model, respectively, 4 is the convex
octagonal area (the bounding octagon) of the
transformation space, and ¢ is the average nor-
malized size which is 4¢? /4.

Given n cells and r events, what is the proba-
bility, p:, that a given cell contains exactly k&
events? Two widely used models for the probabil-
ity are Maxwell-Boltzmann and Bose-Einstein
models. Maxwell-Boltzmann model assumes that

= smc,

the events are uniformly randomly distributed,
such that all »” possible placements of the r events
in the n cells are equally probable. Bose-Einstein
model, an alternative model, assumes that each
distinguishable distribution of events across cells
has an equal probability of occurrence.

To select a particular occupancy model for ar-
ticulated object recognition, we generate test data
with random scattering centers inside the bound-
ing box whose size is the average size of all test
SAR chips. We compute the cumulative empirical
distribution as follows:

(1) For each pair of model and data points,
compute a point in the transformation space. En-
ter an event into the cell containing this point; (2)
Do the quadrant analysis to get a new transfor-
mation space; (3) Over all cells inside the convex
octagonal hull of the events, count the number of
events in each cell (the occupancy numbers), and
tally the number of cells with each occupancy
number; (4) For each entry in the tally, normalize
the entry by the total number of cells, thus pro-
ducing the empirical distribution of the number of
events per cell; (5) Sum the normalized values to
obtain the cumulative empirical distribution.

Fig. 5 shows the fitness comparison of the two
occupancy models for the empirical distribution
generated using the model and data shown in Fig.
4. This cumulative empirical distribution is sup-
plied to the Kolmogorov—Smirnov test (K-S test),
which measures the maximal difference between the
empirical distribution F(x) and some hypothesized
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Fig. 5. Comparison for the fitness of two occupancy models.

distribution, F;(x), (e.g., Bose—Einstein model or
Maxwell-Boltzmann model). All 360 models of
both body and turret parts for each target are
tested against the data. Table 2 shows the results
of the K-S test. For «=0.05 level, D,’s (the
maximum difference between two cumulative dis-
tribution functions) for the Maxwell-Boltzmann
model are large enough to reject hypothesis Hy
(Ho : F(x) = F,(x)) while D,’s for the Bose-Ein-
stein model are not large enough to reject Hy.
Accordingly, we choose the Bose-Einstein model
for the occupancy model.

From Pr{v > I}, probability that / or more of
the spaces intersect at random, we can determine
the fraction of model features f; such that the
probability of mf; features being matched at ran-
dom is less than some predefined level 4. Since J is
a function of the noise in the data measurements,
and the uncertainty in position 4612), we have

In the verification stage, we consider the number
of correspondences from the quadrant analysis,
the number of data features, the number of model
features, and the size of the transformation space.
Based on this information, the verification stage
calculates the matching score along with the for-
mal threshold.

4.3. Geometric reasoning

In our approach, we assume that a target has
two parts one of which is larger than the other.
For example, the body part is larger than the
turret part and the body part has more articulation
invariant points than the turret part. But there are
some exceptions like the M1 tank which has a
relatively large turret compared to the size of the
body. Even though the body part is still larger
than the turret part, there are more articulation
invariant points on the turret than on the body for
some configurations. In this case, the recognition
of the body part will fail because of the lack of
articulation invariant points from the body. For
this case we try to recognize the turret part first.

Fig. 6 shows the improvement obtained
through geometric reasoning (‘with-loop’ results).
The identification does not consider the pose of
each part. For the body and turret pose recogni-
tion, the correct pose is within +5° accuracy. The
improvement is significant for the identification
and turret pose recognition cases.

5. Results

log(4) The geometric hashing technique of the recog-
> _%_ nition engine (Jones and Bhanu, 1999) efficiently
mlog(l +.5) accumulates the evidences of invariance, but does
Table 2
D, for Kolmogorov—Smirnov test (total 360 models/target)
Body Turret
Bose—Einstein (%) Maxwell-Boltzmann (%) Bose-Einstein (%) Mazxwell-Boltzmann (%)
M1 4.13 13.20 3.31 10.99
T72 12.52 3241 3.64 9.38
T80 431 15.97 4.97 522
Average 6.90 20.53 3.97 8.53
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Fig. 6. Effect of geometric reasoning for M1 tank: (a) identification; (b) body pose recognition; (c) turret pose recognition.

not show the one-to-one correspondence between
model and data. Our algorithm developed here,
based on the ‘positive-negative’ feature analysis,
finds the best correspondence between two given
sets of points, divides the data into a set of ‘posi-
tives’ that match and ‘negatives’ that do not
match, and finds the distance transform. This is
needed ultimately to determine the pose of the
body and turret. Given two sets of points, one
from the hypothesized model and the other from
the input data, we transform the first set to find the
maximum number of corresponding points. In this
transform, only translation is considered because
the rotation and scaling are taken care of by the
design of the recognition system and the charac-
teristics of the SAR sensor. The algorithm basi-
cally uses each model and data point in turn as a
trial basis for the transform and finds the trans-
form with the maximum number of corresponding
points. The data points which have corresponding
points to the model points, are called positives, and
the rest of the points, are called negatives.

5.1. Results using XPATCH data

In building synthetic models, we use three tar-
gets: T72 tank, M1 tank and T80 tank. Each tar-
get has four different configurations which are
achieved by rotating the turret by 0°, 30°, 60°, and
90° relative to the tank body centerline. For each
articulation configuration, we generate 360 SAR
images (one for each degree in azimuth) of each

target at a constant radar depression angle of 15°.

So, the total number of images generated is 4320
(3 targets x 4 articulations x 360). From each im-
age, we extract scattering centers from their signal

returns as point features of the model. We are able
to perform six sets of experiments by using.the (4
choose 2) combinations of two articulation con-
figurations of each target to build both the turret
and body models, while the remaining two .artic-
ulation configurations (2160 images). are-used as.a
test data set. The results are averaged over the six
experiments to obtain the final performance.

In addition to the articulated test data as de-
scribed above, we also generated occluded test
data (with upto 50% occlusion) to further evaluate
the performance of the technique. The occluded
data is simulated by starting with a given number
of strongest scattering centers and then removing
the appropriate number of scattering centers en-
countered in order, starting in one of the four
perpendicular directions d; (where d; and d; are the
cross-range directions, along and opposite the
flight path, respectively, and d, and dj are the up
range and down range directions). This simulates
the spatial correlation of missing features in oc-
cluded objects. Then the same number of scatter-
ing centers (with random magnitude, within the
overall range of target scatterers) are added back
at random locations within the original bounding
box of the chip. This synthetic noise keeps the
number of scatterers constant and acts as a sur-
rogate for some potential occluding object.

Table 3 shows the object identification confu-
sion matrix for M1, T72 and T80 tanks for various
occlusion rates. The test data for each (non-zero)
percent of occlusion is 4320 XPATCH images: 3
targets x 4 articulations (turret 0°, 30°, 60°, and
90° relative to the tank body) x 360 azimuths. The
NIL column shows the cases where no hypothesis
has a high enough matching score (determined by
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Table 3

Confusion matrices for occluded articulated objects
Ocl. (%) M1 tank T72 tank T80 tank

M1 T72 T80 Nil M1 T72 T80 Nil Ml T72 T80 Nil

0 99.75 0.23  0.00 0.02 0.00 100.0  0.00 0.00 0.00  0.00 100.0  0.00
10 98.31 1.64  0.02 0.02 0.00 100.0  0.00 0.00 0.00  0.00 100.0  0.00
20 95.60 417  0.02 0.21 0.00 99.81 0.00 0.19 023 051 99.24 0.02
30 91.46 7.57  0.09 0.88 0.12 98.38 0.02 1.48 1.76  3.03 9493 0.28
40 86.46 11.04 044 2.06 1.69 92.94 0.09 5.28 537 525 88.82 0.56
50 74.75 17.96  0.62 6.67 4.75 83.52 0.14 11.60 11.11  8.24 79.12 1.53

Total test data used for each (non-zero) % of occlusion =4320 images.

the dynamic threshold algorithm) to be accepted
as valid.

In Figs. 7(a)(f), average, M1, T72, T80 curves
represent the experimental results of the average
and each individual target for percent correct
recognition as a function of percent occlusion. The
results in Figs. 7(a)—(c) are the identification, body
pose and turret pose recognition rates without the
geometric reasoning step. The corresponding Figs.
7(d)—(f) show the improvements achieved with
geometric reasoning (the M1 curves). The identi-
fication performance degrades gracefully as the
occlusion rate increases. The recognition of T72

and T80 are similar, while the M1’s recognition
rate decreases faster as the occlusion rate increases.
In the body and turret pose recognition results,
correct pose recognition is within +5°. The low
pose recognition rate of the M1 tank body is due
to the fact that the relative size of the turret to the
body is large. This characteristic is reflected in the
pose recognition of the turret part, where the M1
turret pose recognition is much better than the
other two tanks. As the occlusion rate increases,
the turret pose recognition drops rapidly beyond
30% occlusion. This is expected because the turret
part is in the middle of the image, in general, and
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Fig. 7. Recognition results without (a, b, ¢) and with (d, e, f) geometric reasoning: (a) identification; (b) body pose recognition;

(c) turret pose recognition; (d) identification; (e) body pose recognition; (f) turret pose recognition.
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will have fewer valid point features as the occlu-
sion rate increases. Note that in addition to rec-
ognition of the objects we obtain the poses of both
parts. ,

5.2. Articulated MSTAR results

Real SAR images (at one foot resolution) of
only two articulated objects (a T72 tank and a
ZSU 23/4 anti-aircraft gun) with only two articu-
lations (turret straight and at 315°) are publicly
available in the MSTAR (Ross et al., 1998) data
set. The baseline non-articulated set has 288 dif-
ferent azimuthal views for each target and the
articulated set has 118 azimuths for each tar-
get. With this real data, we are able to correctly
recognize the articulated objects (with the turret
rotated) based on models with the turret straight.

Example SAR images and ROI, with scattering
centers superimposed, are shown in Figs. 8 and 9
for baseline and articulated versions of the T72
and ZSU. The ROIs were found in the MSTAR
target chips by reducing the speckle noise using
the Crimmins algorithm in (Khoros, 1998), thres-
holding at the mean plus two standard deviations,
dilating to fill small gaps, eroding to have one large
region and little regions, discarding the small re-
gions with a size filter and dilating to expand the
extracted ROI. The scattering centers were ex-
tracted from the MSTAR magnitude data (within
the boundary contour of the ROI) by finding local
eight-neighbor maxima. In these experiments we

@ ()

obtained an average of 19 scattering centers for
T72 tank and 17 for the ZSU-23/4. For the
MSTAR data the matching process is divided into
three steps.

In the first step, we use the scattering centers as
2D (range and cross-range) point features like
before with the XPATCH generated data. As only
two articulations are available for each object (T72
tank — serial number a64 and ZSU anti-aircraft
gun — number d08), we could not apply the body
and turret model building approach directly, be-
cause we require two data sets for the models and
need a third for test. Instead, we use baseline
(turret straight) sets for models and articulated
(turret at 315°) sets for test data to obtain the
recognition results for articulated object identifi-
cation and body pose only (no turret pose).

In Tables 4 and 5, the columns with ‘Point’
show the results of this first step. All results are
based on the top hypothesis which passed the dy-
namic matching threshold. The confusion matrix
in Table 4 shows the correct identification rate for

“the T72 is 71.0% and for the ZSU 72.9% using the

point features. The percent of correct body pose is
given in Table 5, where the numbers inside the ()’
show the results when the body pose in the op-
posite direction (with a 180° difference) is counted
as correct. The T72 body pose correctness using
the point features are 50.8% and 54.0% for +10°
and +20° accuracy, respectively. If we consider the
opposite body pose recognition the correctness
increases to 56.5% and 65.3%, respectively.

(d)

Fig. 8. MSTAR SAR images and ROIs (with peaks) for T72 tank #a64 at 56°: (a) T72: baseline image; (b) baseline ROI; (c) articulated

image; (d) articulated ROI.
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(b)

(d)

Fig. 9. MSTAR SAR images and ROIs (with peaks) for ZSU 23/4 #d08 at 66°: (a) ZSU: baseline image; (b) baseline ROI;

(c) articulated image; (d) articulated ROL.

Table 4
Confusion matrix for point, area, and magnitude matching

Z8U

Feature T72
Point Area Mags. Point Area Mags.
T72 71.0 87.1 90.3 29.0 12.9 9.7
Z8U 27.1 5.1 42 72.9 94.9 95.8
Table 5 ‘ V
Percent of correct body pose: +10° (180° & 10°) and +20° (180° & 20°)
Feature +10° (180° £ 10°) +20° (180° £ 20°)
Point Area Mags. Point Area ~ Mags.
T72 50.8 (56.5) 82.3 (83.1) 85.5 (86.3) 54.0 (65.3) 85.5 (87.1) 88.7 (90.3)
65.3 (80.5) 65.3 (81.4) 29.7 (45.8) 70.3 (90.6) 70.3 (91.5)

ZS8U 27.1 (38.1)

For the second step, once we find the best data-
to-model transformation for each hypothesis at the
first step, we apply this transformation to the data
ROI, and find the overlapping area, 4,. We then
calculate the ratio R = (2 X 4,)/(4q + 4n), Where
Aq and 4,, are area of ROIs for the data and model,
respectively. Columns with ‘Area’ in Tables 4 and
5 show the results of the second step. This second
step improves the overall identification rate from
72.0% to 91.0%. After the second step the body
pose correctness (within +10° and +20°) improves
to 82.3%and 85.5% for T72, 65.3% and 70.3% for
the ZSU. If we consider the opposite body pose
recognition (180 & 10°), the correctness increases
much more (to 80.5% and 90.6%) for the ZSU
case, which means that for the ZSU there is more
confusion with the body pose in the opposite
direction.

The third step considers the magnitudes of the
corresponding k scattering centers from the first
step. If, in the second step, the difference of R
between the first and second top hypotheses is
less than a (2.5%) threshold, we compute S =
(1/m)(>4—; | Sax — Smx |), where. Sy is the mag-

nitude of the kth scattering center from the data

~ image and S, is the model counterpart, and select

the hypothesis with the smaller value of S as the
answer. Columns with ‘Mags’ show the results of
this third step.

Note that the indexing module (detailed in
(Jones and Bhanu, 1999)), is the critical time ele-
ment in the end-to-end system. (There the models
are implemented as look-up tables and the results
are generated using an efficient search for posi-
tive evidence in the test images.) This paper is
concerned with the verification of the few hypo-
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theses that are generated by the upstream index-
ing module. The processing time is less than one
second on a SUN Ultra 1 workstation.

6. Conclusions

We have developed an end-to-end system for
recognition of articulated objects and we have
demonstrated the performance of our approach
with extensive experiments, both under occluded
conditions using XPATCH data and with real
SAR images from the MSTAR data. We have
explicitly modeled and demonstrated the ability to
recognize the pose of both parts of articulated
objects. While the current work has been primarily
directed toward simple point features, in the future
we plan to use complex features obtained from real
SAR data.
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