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ABSTRACT

Firewall configuration is critical, yet often conducted manu-
ally with inevitable errors, leaving networks vulnerable to
cyber attack [36]. The impact of misconfigured firewalls
can be catastrophic in Supervisory Control and Data Ac-
quisition (SCADA) networks. These networks control the
distributed assets of industrial systems such as power gen-
eration and water distribution systems. Automation can
make designing firewall configurations less tedious and their
deployment more reliable. However, current research gaps
prevent firewalls from being automatically configured.

In this paper, we propose ForestFirewalls, a high-level ap-
proach to configuring SCADA firewalls. Our goals are three-
fold. We aim to: first, decouple implementation details from
security policy design by abstracting the former; second,
simplify policy design so as to encourage good design; and
third, provide automated checks, pre and post-deployment,
to guarantee configuration accuracy. ForestFirewalls meets
these goals by automating the implementation of a policy to
a network and by auto-validating each stage of the configu-
ration process. We test our approach on a real network to
demonstrate its effectiveness in simplifying and automating
the configuration of SCADA firewalls.

1. INTRODUCTION

“The single most important factor of your firewall’s
security is how you configure it.”
Rubin and Greer [32]

Supervisory Control and Data Acquisition (SCADA) net-
works control the distributed assets of many industrial sys-
tems. Power generation and water distribution are just two
examples that illustrate the critical nature of these net-
works. Others include factory automation, sewage manage-
ment, airport control systems and chemical plant control.

SCADA networks are not like corporate I'T networks [34].
IT networks can accept a degree of reliability orders of mag-
nitude lower than the network controlling a power station.
A fault in the latter will cost serious money, if not lives.
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At the same time, SCADA networks often incorporate
highly vulnerable devices. The Programmable Logic Con-
trollers (PLCs) that control physical devices such as gas
valves have highly constrained memory and computational
power. Today, they often include network functionality such
as a TCP/IP stack, but cannot possibly contain sophisti-
cated security functionality.

Despite their name, PLCs are not user programmable.
The plant operator does not program them — that requires
a programming board that pushes low-level code into an
EPROM or the like. The devices come pre-installed with
code (and security holes). There are many PLCs in a power
station, along with similar devices providing telemetry, and
their upgrade is likely to occur during a major overhaul of a
plant, which might happen once in a decade (if that often).

We can see that these devices would be incredibly vul-
nerable if exposed to the wide world, and a plant operator
cannot fix the vulnerabilities on the devices. Air gaps have
been proposed as a solution to protect these devices, but an
air gap is no longer a feasible approach for many reasons. In
fact, Byres calls the idea a myth [8] to emphasise how poor
a solution it is.

The only viable approach today is a firewall, or
series of firewalls [9,34].

As Rubin and Greer note [32], it is, therefore, vital that
these firewalls are configured correctly. Misconfiguration of
SCADA firewalls can lead to security breaches, resulting in
significant environmental damage, financial loss or worse,
the loss of human lives. An example past incident is the
hacking of Maroochy Shire Council’s sewage system in 2000,
which saw tonnes of raw sewage released into public park-
lands and river systems [22]. Other examples include the
sophisticated Stuxnet worm which attacked and damaged
Iran’s nuclear facilities in 2010 [34], and the hacking of a
German steel mill in 2014 that destroyed its blast furnace [5].

Unfortunately, firewall configuration, in practice, is a com-
plicated and repetitive manual task. It involves training in
proprietary and device specific configuration languages, and
long and complex device configurations. Lack of automa-
tion tools to assist this task has resulted in unoptimised,
error-prone configurations [2,36, 37].

The problem is exacerbated in SCADA plants where in-
dustrial engineers generally lack specialised networking and
security knowledge. Such knowledge is often brought in
through third party contractors. These IT security special-
ists, on the other hand, are not familiar with the particular
requirements of industrial engineering, and are on-site only
for brief periods.



A cost-effective alternative to training plant engineers to
become IT specialists is to build network operations tools
that derive firewall configurations from high-level policy. High-
level configuration approaches using SDN have been pro-
posed [25,33], but they remain a distant reality for SCADA
networks, where TCP is a recent innovation. And power
plants are insecure now [2]! SCADA networks need a solu-
tion that works now, using off-the-shelf technology. In this
paper, we propose such a solution: ForestFirewalls.

Our system provides a mechanism for specification of se-
curity policy at a level any non-IT specialist could under-
stand. What’s more, it forces good designs on its users
through principles derived from the study of real SCADA
firewall configurations [2] and International Society for Au-
tomation (ISA) best practices [3,7,34]. Most notably:

e Single source of truth: more specifically, “Security man-
agers need a single place to look for the corporate policies
on who gets in and who doesn’t.” [20]. This is a general
principle in computer science [6], and it applies doubly so
here.

o Simplify: we don’t try to provide every possible security
feature or knob. At best, advanced features create confu-
sion, and at worst, bad implementations can create secu-
rity flaws.

o Verify everything again and again: there is a clear danger
in assuming any one piece of software functions correctly,
from the firewall up to and including our own system. We
check the configuration works at every level possible.

e No implicit rules: implicit rules allow unexpected inter-
actions, and undesirable consequences [2]. Desired flows
must be explicitly allowed.

e Rule order should not matter: it should be possible to
add, or subtract a policy rule without considering its effect
on every other rule! Surprisingly, none of the existing
firewall configuration platforms we checked [11,13,14,23]
achieved this. Operators using these tools, have to provide
correct rules, and also maintain correct rule order, to avoid
unexpected interactions.

e Separate structure from function [30]: decoupling
‘structure’ (i.e., network topology) from ‘function’ (i.e.,
policy specification) allows policies to be specified in high-
level requirements, instead of network-centric minutiae
like IP addresses.

e (Convenience: security and convenience are usually at odds,
but wherever possible convenience should be provided.
This is not a luxury — lack of convenience is one of the
main reasons operators circumvent their own security, cre-
ating flaws in that security.

Our system comprises a suite of tools to write policy, val-
idate, test configurations, and create real configurations. It
already provides some of the core functionalities required in
this domain, but is extensible.

We demonstrate it with a real example, derived from the
actual (but anonymised) firewall configurations of a real
SCADA plant. The example is intentionally small for clarity,
but it shows a core set of functionality. The example includes
several zones, two firewalls, and multiple real services much
as they would run in the real network. Our testbed uses two
different firewalls: one Cisco and one Linux-based, in order
to show both the device independent nature of our policy
language, and that heterogeneous network devices can be

configured in the same network. The network offers multi-
ple services: routing, DNS, HTTP, HTTPS, FTP, Oracle,
etc., and we use test traffic (both allowed and disallowed)
on the network to show correct function.

The proof of the pudding is that we can specify all of
the policy for this network in only 68 Lines of Code (LoC),
to generate the equivalent of 2720 device-level LoC found
in a real SCADA case study [2]. This order of magnitude
reduction, along with rigorous validation, shows the value of
ForestFirewalls.

2. RELATED WORK

Firewall vendors have introduced many products and se-
curity management tools with varying levels of sophistica-
tion [11, 13,14, 23]. But, security policies still cannot be
specified flexibly enough and in detail using high-level re-
quirements through these tools.

Several attempts have been made at high-level configura-
tion of firewalls. For one, Cisco introduced security levels for
quick and easy access between internal and external firewall
interfaces [13], but these cannot specify detailed traffic re-
strictions. Hence, Access Control Lists (ACLs) are required
to supplement these levels. Security levels may also not
map to clear security policies. This hinders firewall auto-
configuration, which needs clear policies [6] to admit traffic.

The problem of firewall configuration is well studied. Fang
[29] and Lumeta [35] are interactive management and anal-
ysis tools that run queries on firewall rules. They accept a
network topology description and firewall configurations to
detect firewall errors, but do not address the root cause: the
manual and device-centric configuration approach.

Tesseract implements a network control plane that enables
direct control of Ethernet and IP based services [38]. It
promotes centralised policy implementation, but lacks the
ability to abstract low-level policy configuration details.

SANE uses a central Domain Controller with trusted priv-
ileges [10] to reduce end-host initiated attacks in corpo-
rate networks. It supports topology-independent high-level
declarative policies, but provides no assurance of expected
configuration behaviour prior to deployment. Such assur-
ance, even via simple automated emulations, is essential in
SCADA networks where downtimes must be minimised.

Firmato [4] employs a network grouping language that is
independent of the firewalls and routers used in the network.
However, the specification also relies on minute details such
as IP addresses as input.

The network programming language introduced in the
Frenetic project [16], is able to capture dynamic policies,
but cannot assist with queries related to network reachabil-
ity. NetKAT is a language [1] built on a complete equational
theory to address this shortfall. It additionally supports fea-
tures such as traffic isolation and compiler correctness. But
the language is not specifically aimed at configuring firewalls
and does not provide means to generate filtering rules.

Network virtualisation requires traditional network bound-
aries to be broken, to allow N:1 mapping between operating
systems (i.e., VMs) and a network port. Cisco has intro-
duced security policy management products (e.g., VNMC
for VSG policy management) to cater for the complexity this
introduces to network management [15]. For scalability, the
products allow VMs to be allocated to zones and policies to
be defined per zone. However, each VM still needs to be
defined using low-level detail such as hostnames.



Most related works do not propose a high-level description
that intuitively decouples policy from topology. In some
cases [4], topology needs to be explicitly mapped to pol-
icy through the specification per host/subnet basis. There
is also no automated pre- and post-deployment verification
of policies. Moreover, none of the above works examine
SCADA networks, with unique security requirements and
best practices compared to Corporate networks.

The prior work does not address some of the practical
issues. Most notably, complexity. Firewall vendors have
concentrated on new and impressive features to create sys-
tems with as much or more complexity as the base firewall
configurations.

Our research aims to tackle the problem head-on. The
solution we propose, ForestFirewalls, uses security abstrac-
tions to drastically reduce firewall policy complexity. It sup-
ports a vendor and device independent policy specification
platform that is easy to use, yet powerful. Our system also
supports automated verification to reduce firewall misconfig-
urations. We aim to make firewall configuration a commod-
ity skill rather than a specialisation, so business managers
and plant engineers alike can manage their SCADA firewalls.

3. REQUIREMENTS

Bush and Bellovin [6] investigated the core requirements of
an automated security configuration system. They identified
the following;:

e C(lear policies: an automated system cannot resolve be-
tween a plausible and a correct policy [6]. For example,
between allowing HTTP access to a publicly shared Web
server or to a sensitive internal Web server. So the policy
must be clearly understood by a Manager.

e Database driven: all device configurations and their changes
must be recorded in a database [6]. Creating a single refer-
ence point for configuration data encourages fast response
to security incidents as well as accurate security audits.

e Meta-configurations: specifications or instructions
about real configurations need to be obtained by abstrac-
tion and parameterisation.

However, there are extra issues not described by [6]. For one,
there is an assumption that the auto-configuration system
generating the configurations is correct. Correctness must
stem from configuration validation, as we describe next.

3.1 Policy verification

SCADA operators need assurance that the device config-
urations generated produce the expected security outcome,
both pre- and post-deployment. Multiple verification stages
(Figure 1) can provide this assurance.

Upper Verification Tier
(SCADA best practices, Alloy)

Middle Verification Tier
(Netkit emulations, pathological-traffic tests)

Lower Verification Tier
(real network, live-traffic tests)

Figure 1: Policy verification tiers.

Upper verification tier: it is important initially to check
a specified SCADA firewall policy against available industry
best practices [9,34]. Direct violations of best practices indi-
cate exploitable vulnerabilities of the network implementing
the policy, and should be prevented. Best practice violations
can be accurately identified by conducting equivalence and
inclusion checks on the canonicalised policies. See §7.

Complex firewall policies also produce unintended conse-
quences through rule overlaps [27,39]. So it is additionally
necessary to check policies from high-level through firewall-
level for inconsistencies. We do so accurately, using a math-
ematical and logic based formal tool: Alloy [21].

Mziddle verification tier: the second stage help debug
configuration problems prior to deployment. Network em-
ulation offers a cost effective method to test configurations
before actual deployment [24]. The Netkit open source soft-
ware package [31] provides such an emulation platform with
virtual devices and interconnections via User Mode Linux
(UML). Automated pathological traffic tests, together with
Netkit emulations, can verify that the generated configura-
tions produce the expected outcome prior to deployment.

Lower verification tier: the final stage guarantees that
the real firewalls operate as intended, post deployment. The
automated tests are extended from emulations to the real
network, to generate live-traffic and reveal unexpected con-
figuration behaviour in the real firewalls.

Automated verification can drastically reduce the number of
firewall misconfigurations. It can be used to identify best-
practice violations and adverse policy interactions, and pre-
vent those from propagating through to the firewalls. Most
importantly, it provides users with a guarantee of the secu-
rity outcome prior to implementation. This is particularly
useful in successfully responding to intrusions and attacks.
A second issue not described by [6], but key to autocon-
figuration, is the need to decouple policy from the network
implementation. We discuss this in detail next.

3.2 Decouple policy from network

In practice, network architects and business managers de-
cide what type of services are allowed through firewalls. Net-
work engineers then implement these policies in the SCADA
network. Intuitively, separation of the network intricacies
from policy specification better suits these distinct phases.
Conceptually this is analogous to the separation of archi-
tects and building contractors in construction. Contractors
don’t usually decide what roof shape a building should have!

Network topology can change often in response to new
business needs, upgrades and service demands. This may
alter the devices, services and administratively assigned pa-
rameters such as IP addresses and hostnames in the network.

Comparatively, security policies are static, changing mostly
to meet business imperatives. These policies commonly only
involve dozens of distinct services [2], making policy com-
plexity relatively low compared to that of the network. This
relative simplicity and invariant nature leads to decoupling
policy from the network. The adage “Structure and function
should be independent” [30] truly applies here.

Decoupling structure from function, has these advantages:

e Policy specifiable via high-level, vendor neutral' require-
ments: assists management-level policy makers not fluent
in network-centric details.

Wendor platform and device independent requirements.
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Figure 2: A Zone-Conduit model, adapted from [7].

e (Centralises policy management and promotes reuse: a sin-
gle topology-independent policy (i.e., source of truth) can
be maintained for an organisation and applied across sites.

o Streamlines network changes and upgrades: the policy can
be quickly re-mapped to a new topology, retaining previ-
ous levels of protection.

e Simplifies best-practice enforcement: best practice stan-
dards can be precisely specified in absence of proprietary
details of specific networks.

Security abstractions are key to decoupling policy from net-
work as we discuss in the next section.

4. SECURITY ABSTRACTIONS

A good high-level security abstraction captures the un-
derlying network security concepts naturally and concisely.
For one, in real networks, we might group systems with a
similar set of traffic services enabled. For another, traffic re-
strictions between two systems may be enforced by a single
or a series of firewalls. A good abstraction should decouple
what is restricted between systems from how it is restricted.

The American National Standards Institute (ANSI)/ ISA
standards introduce the Zone-Conduit abstraction as a way
of segmenting and isolating the various sub-systems in a
control system [3]. We conducted real SCADA firewall con-
figuration case studies [2] using the Zone-Conduit abstrac-
tion, to evaluate its suitability for auto-configuration. A key
finding was that the ISA Zone-Conduit model in its original
specification is too flexible for automation. To increase its
precision, we needed to add several extensions [2].

We describe our modified version here.

4.1 The ISA Zone-Conduit model

A zone is a logical or physical grouping of an organisa-
tion’s systems with similar security requirements, based on
criticality and consequence [3]. By grouping systems in this
manner, a single zone-policy can be defined for all mem-
bers of a zone. For example, 3 disjoint security zones can
be defined to accommodate low, medium and high-risk sys-
tems, with each device assigned to its respective zone, based
on their security level needed. A low-risk system can be ac-
commodated within a medium or high security zone without
compromising security, but not vice versa.

A conduit provides the secure communication path be-
tween two zones, enforcing the policy between them [3].
Security mitigation mechanisms (e.g., firewalls) are imple-
mented within a conduit. A conduit could consist of multiple
links and firewalls, but logically is a single connector. Con-
duits abstract how a policy is enforced, so we can focus on
what needs to be enforced.

Figure 2 shows two typical zones in a SCADA network, the
SCADA-Zone and the Corporate-Zone, linked by a conduit.

4.2 Our modifications to the model
Through real SCADA firewall configuration case studies

[2] we found that ISA Zone-Conduit model in its original
specification is too flexible for automation. For one, the ISA
model allows alternate ways of defining zones and conduits
to cater for business models. It loosely permits 1:n or n:1
mapping between conduits, firewalls and policy.

To refine the model, we introduce several extensions [2].
First, we need to enforce a 1:1 mapping between policies
and conduits. Second, dedicated Firewall-Zones are required
to capture firewall management policies. Third, Abstract-
Zones are required to capture the distinct policy require-
ments of serial firewalls. Carrier-Zones are also necessary to
abstract any carrier based transit outside of an administra-
tive domain’s control. With these revisions, the best practice
produces a tight specification suitable for auto-configuration.

4.3 Single zone-policy

Our approach is to strictly enforce a single zone-policy.
This implies that selected subsystems in a zone (e.g., a
server) should not have their own separate policies (i.e.,
no exceptions). Allowing exceptions would impart a false
sense of security to those systems. These systems are only
as secure as the zone itself, in the absence of any firewalls
enforcing a real separation.

A single zone-policy leads to every device within a zone to
have same set of permissions to initiate, accept or block one
or more services. This property allows us to specify policies
simply and unambiguously using inter-zone flows.

4.4 Positive, explicit policies

We can further restrict inter-flows to express positive abil-
ities? and all flows not explicitly allowed are explicitly denied.

Policy specification is much simplified by use of positive,
explicit flows. These flows render the rule order irrelevant in
a policy. A policy now holds the same semantics, irrespective
of how its rules are organised. Hence, policy makers need
not concern about the order when adding or removing policy
rules. By being explicit, we also guard against services being
accidentally enabled implicitly or by default.

4.5 Isolation of traffic

Inter-zone flows can be grouped by (source-zone,dest-zone)
tuples. The policy of each tuple reflects a piece of the net-
work that can be programmed independently from the rest
of the network, representing a high-level network-slice [19].
In the example policy below, (Z1,Z2) and (Z2,Z3) represent
network slices.

Policy A { Z1 -> Z2 :
Z2 -> 73 :

https, dns;
http, ftp, dns; }

Network-slices allow modular construction of policies that
help deliver guarantee of traffic isolation for specified zones.
Traffic isolation restricts the set of destinations that a packet
may reach. For instance, a packet applicable to a slice is only
processed by the policy of that slice. In the above example,
traffic flow from Z1 to Z2 is controlled by the policy of slice
(Z1,22) only. Therefore, to identify what destinations pack-
ets are allowed to reach from Z1, we simply need to consider
such slices containing Z1 as the source zone.

Firewall policy complexity is reduced by an order of mag-
nitude by the use of our precision-increased Zone-Conduit
model. This model is easy to understand, maps cleanly to

2Refers to the ability to initiate or accept a traffic service.



topology and abstracts network and vendor specific intrica-
cies well. In contrast to the traditional configuration ap-
proach, the model allows users to focus on what policy to
specify without concerning with which firewall to implement
it on or how to implement it.

S. SYSTEM OVERVIEW

We now describe our auto-configuration system design as
depicted in Figure 3, with the details outlined below:
High-level security policy: The topology independent pol-
icy input file created using our high-level specification. Pol-
icy details are discussed in §6.

Compile to intermediate-level (IL) policy: Parses the

high-level policy to an intermediate format that can be checked.

Network topology: The input network topology described
in the XML-based graph file format GraphML [18]. The
file contains information of all devices of the underlying net-
work and their interconnections. The crucial aspects are the
details of the topology near the policy enforcing firewalls.

| Verify IL policy via
best-practices, Alloy|[ |

Compile to IL policy

~

Network .| Generate network-level | Verify network-level| |
topology vendor-neutral policy policy via Alloy

|

Generate device-level | Verify configurations

Templates configurations via Emulations
Errors ¢
Real network N
Verify via

real-traffic tests

Figure 3: Firewall auto-configuration process.

Generate network-level, vendor-neutral policy: Trans-
lates high-level policy to network-level, by coupling policy
to the input network topology. See §5.1.

Verify IL policy via best-practices, via Alloy: Formally
checks an IL policy for SCADA best-practice violations and
for correctness. Best-practice checks employ canonicalised
policies. Policy correctness is validated using a a mathe-
matical and logic based tool: Alloy [21]. Alloy can reliably
find anomalies within a policy. See §5.2.

Verify network-level policy via Alloy: Formally checks
network-level policy for correctness via Alloy [21]. See §5.2.
Device templates: A repository of meta-configurations for
various vendor and device platforms. Cisco ASA5505 and

UML IPTables models are currently supported, but the sys-
tem is easily extensible.

Generate device-level configurations: The rendering of
device-specific configurations for firewalls using the network-
level policy and the device templates.

Verify via emulations: Device configurations are pushed
to an emulated network for pre-deployment testing. Test
scripts are auto-executed in this network, to generate patho-
logical traffic and validate configurations. See §5.3.

Real network: Device-specific configurations are pushed
to hardware in a real network. At present this is conducted
manually®, but we intend to automate it.

Verify via real traffic tests: Automated tests are created
for the real-network, generating real-traffic, to verify post-
deployment behaviour of firewall configurations. See §5.3.

5.1 Network-level policy generation

A high-level policy is implemented on a network by cou-
pling the security policy to the network topology instance.
The resultant network-level Access Control List (ACL) rules
are vendor/device neutral. A generic format allows easy
checking of rules for inconsistencies. The policy generation
steps are outlined below.

5.1.1 Zone-Conduit model construction

The first step is to generate the Zone-Conduit model of
the input network. To do so, we temporarily ignore the
firewalls and their connecting links in the topology. This
leaves a collection of connected components, each reflecting a
disjoint security zone in the network. Once all disjoint zones
are identified, we build a preliminary Zone-Firewall model,
containing these zones and their firewall interconnections
[2]. Additional Firewall-Zones, Abstract-Zones and Carrier-
Zones are added to the model as required.

The conduits in the network are then defined. A conduit is
not necessarily an atomic device, but it implements a single
security policy between two zones.

There is no guarantee that the Zone-Conduit model gener-
ated for the input network will always match that perceived
by the policy creator. Hence, we must cross check the real
model against that provided through the specification. If
mismatched, an error is reported indicating incompatibility.

5.1.2 Network coupling and rule translation

As the zones and conduits are identified in the input net-
work, an implicit mapping is created between each zone and
its host/subnet composition. This mapping readily trans-
lates the high-level policy to the underlying network. The
source and destination zone of each high-level rule can be
replaced with their corresponding IP address ranges from
this mapping. Then by taking the cross product of these 1P
address ranges, with the original rule operator and service
description, the equivalent network ACL rules are generated.

Multicast rules may also be required for the correct op-
eration of certain protocols. For instance, when OSPF is
specified as a dynamic routing protocol by the user, multi-
cast rules are required to enable neighbour relationships to
correctly form within a single OSPF area. Similarly, stateful
protocols (e.g., TCP) require return path rules in addition

3 Automation of pushing device configurations is more de-
velopment than research.



to the forward path rules for correct operation. ForestFire-
walls handles these requirements automatically, generating
and incorporating any supplementary rules as necessary.

5.1.3  Path selection and conduit configuration

The system identifies possible communication paths in the
Zone-Conduit model per high-level policy rule. Paths that
are deemed impractical are eliminated. For instance, (i) traf-
fic cannot transit a Firewall-Zone. Firewall-Zones only en-
able traffic flow to and from the firewall but cannot forward
traffic, (ii) a traffic path cannot form loops around firewalls.
If a path requires a traffic packet to traverse a particular
firewall interface more than once, it is discarded, (iii) traf-
fic originating from or terminating at a Firewall-Zone must
have a valid external path through the network.

Using valid paths, the system configures all conduits. By
default, each conduit implements a deny all policy between
its interconnecting zones, relying on explicit flows to enable
traffic. The strategy creates a defence in depth security ar-
chitecture [3,9], preventing a single point of failure that can
trigger cascading security breaches across the network.

We evaluate the firewall interface layout within each con-
duit to determine how ACL rules need to be placed (inbound
or outbound) on the respective firewall interfaces. This abil-
ity to configure a group of firewalls at once, makes Forest-
Firewalls scale at lower cost.

Our high-level policy is easily adapted to incorporate new
zone additions to a network. The updated policy is fast
re-mapped to the network to protect the new zones.

5.2 Formal policy verification

Policy rules can also give rise to unintended consequences
through rule overlaps. Overlaps can be classified as redun-
dancies or conflicts [27,39]. Redundant rules can be re-
moved without affecting the semantics of a policy. Such
rules reflect configuration inefficiencies and cause potential
confusion in policy specification. A conflict occurs when a
rule overlaps with preceding rules but specifies a different
action, creating ambiguity.

Our system only supports positive permissions. So, con-
flicting rules are not an issue. Correct ordering of rules is
largely required to avoid rule conflicts. We remove conflicts
by design, rendering rule order irrelevant. Redundancies are
still possible so a policy needs to be checked for these.

A policy needs to be checked against SCADA best prac-
tices for compliance. We do so accurately, by first deriving
the canonical forms of the input and best-practice policies.
Then we conduct inclusion checks and equivalence checks to
identify any violations. For details, see §7.

A policy needs to be verified for correctness, both at a
high-level and a network-level. At a high-level, the rules

specified using flows may contain inconsistencies. At a network-

level, the generated ACLs rules can include redundancies.
We employ a model checker: Alloy [21], to do our testing.

Formal model-checking is generally complex, so Alloy at-
tempts to find counter-examples to illustrate problems. Es-
sentially it’s a refuter [21] not a prover. But, its ability to
comprehensively analyse a model, even within finite bounds,
makes it very useful in both research and academia [21]. For
Alloy based verification, see §7.

5.3 Pre- and post-deployment testing

Pre-deployment testing of generated configurations requires

test-candidates to be selected from the input network to suit
the specified policy. We consider the source and destination
zone of each high-level rule and select devices. For example,
in the policy below, there must be one or more devices in
SCADA_Zone that are capable of initiating HTTP traffic (i.e.,
HTTP test-clients) and others in Corporate_Zone that are
capable of accepting HTTP traffic (i.e., HT'TP test-servers).

SCADA_Zone -> Corporate_Zone : http

Once selected, test candidates are auto-configured to gen-
erate/accept pathological traffic. For instance, we use Proftpd
for a FTP test-server and configure it with appropriate FTP
control and data ports. Its corresponding FTP-client has [ftp
configured with the required FTP login details.

Pre-deployment tests are conducted using an emulated
network. Netkit is an open source network emulator that en-
ables virtual devices and interconnections using UML [31].
AutoNetkit is a tool designed to automate emulated net-
work experimentation via Netkit [24]. Our system uses an
extended version of AutoNetkit, with basic firewall capabil-
ities, to generate emulations.

Once the emulated network is running, automated tests
verify expected firewall configuration behaviour. ForestFire-
walls uses Fxpect: a UNIX scripting and testing utility, to
generate these test-scripts. Expect enables automated in-
teractions with programs that expose a text terminal inter-
face [26]. Netkit launches these test scripts within a Netkit
Virtual Machine (VM), once the VM is running. The scripts
run sequentially, with independent outcomes (i.e., failure of
one does not affect another, so their ordering is irrelevant).

Expect test scripts verify that the permits rules in a pol-
icy works correctly (i.e., positive vetting), but we still need
to check that all other services not explicitly enabled are
blocked. This negative vetting is conducted using auto-
mated, exhaustive port-scans employing nmap and tshark.

The same test-suite can be used in the real network, post
configuration deployment. The tests now generate live-traffic,
verifying expected real-firewall behaviour.

6. POLICY SPECIFICATION FRAMEWORK

A useful network policy specification framework should
cater for management-level policy makers as well as compe-
tent programmers. Policy makers need to define high-level
policies to meet business goals. Programmers may wish to
extend the framework to add more features. A layered ap-
proach (Figure 4) supports both cases.

6.1 A layered approach

Policy definition high-level language
(service and policy library for non-experts)

More Class library
adaptable | [(detailed validation, extensible by programmers More

Language Grammar expertise

(Static BNF rules, basic checking)

Figure 4: Policy specification in layers.

Policy definition high-level language: designed primar-
ily for non-expert users to define services and security poli-
cies, it uses a library of services and security policies in con-
junction with a very simple language. The service library



consists of Internet Assigned Numbers Authority (IANA)
well-known services and the policy library contains common
SCADA security policies, all easily extensible by a non-
expert user. The language syntax and semantics are also
intuitively simple for non-expert users. Informative warn-
ings and errors are returned for fast debugging. See §6.2.

Class library layer: dedicated to expert Programmers,
this layer features an Object Oriented Programming (OOP)
based, well-defined object hierarchy that consists of rules for
constructing protocols (e.g., TCP, UDP) and services. De-
tailed checking of object specific attributes (e.g., TCP/UDP
port numbers are between 0-65535) are handled by their re-
spective classes. A direct mapping between the grammar
rules and the Classes makes the library easily extensible,
but it is only intended that expert protocol engineers would
extend this. Most operators would use the higher layer.

High-level language grammar: dedicated to the language
designers, this layer consists of Backus-Naur Form (BNF)
rules that control the language semantics. The grammar
includes basic checking (e.g., argument length, null checks),
but delegates detailed checking to the class library layer.
The rules are static and can only be altered by the language
designers as needed. This preserves the original objectives of
a high-level specification which is intended to change slowly.

Our layered policy-specification architecture leads to a ven-
dor and device neutral policy-specification framework. The
system suits naive users, but the framework is easily exten-
sible to cater for new network applications and protocols.

6.2 ForestFirewalls high-level language

Simply put, the ForestFirewalls specification language al-
lows a user to instantiate a high-level security policy. Below
is the definition (a complete example can be found in §8).

ForestFirewalls’ parser is currently implemented in Python
and Ply (a Python specific implementation of lex and yacc).
It translates a ForestFirewalls specification (i.e., a .policyml
file) into its Intermediate Language (IL) representation us-
ing object definitions from the underlying class library, also
implemented in Python.

6.2.1 Service and Service-group description

A service is defined using;:

service <service-name> { protocol=<protocol-base>;
<protocol-attributes-list>; }

For example, a custom implementation of HTTP, based
on the above service description format is given by

service custom_http { protocol=tcp;
tcp.dest_port=8080;
comment=‘‘Internal Web service’’; }

All unspecified attribute values have defaults assigned (e.g.,
here tcp. source_port=0-65535). Service specific comments
are enabled via the comment field. This type of code docu-
mentation allows commentary in the lower tiers to be auto-
generated. The aim is to help document network and device
level firewall rules to avoid the common problem that rules
cannot be deleted because no one remembers why they exist.

ForestFirewalls prohibits the description of generic ser-
vices such as all-TCP or all-IP for several reasons. For
one, SCADA case studies [2] reveal that users exploit generic
rules where possible for convenience, such as allowing all-IP

traffic just to enable EIGRP traffic. Far more services than
necessary are thus admitted through firewalls to achieve a
simple end goal, creating security vulnerabilities.

Secondly, such inherently broad services don’t contribute
towards forming well-defined security policies. They cloud
the ability to accurately see the type of cyber threats a net-
work is being protected from.

Services can also be grouped using a service-group:

service_group <group-name> {
<service-namel>, <service-group-namel>, ... }

Service-groups provide a level of indirection, so that pre-
cise application protocols used to achieve network function-
ality (e.g., file transfer) can change without needing policy
alterations. They also provide convenience but are explicit.

A service-group is represented as a set allowing set oper-
ations: union (, ), intersection (~) and difference (\). A new
service group can be created by applying these operators on
already defined service groups.

The following snippet defines a service-group containing
various file transfer services:

service_group file_transfer { ftp, http, smb }

6.2.2 ForestFirewalls library file imports

Non-expert programmers may not be familiar using a com-
plex namespace library with many features. We developed
a namespace hierarchy (partially shown in Listing 1) that is
simple enough for them, yet provides rich features for man-
aging and reusing namespaces.

The system namespace contains generic library defini-
tions for all users and is located inside the global namespace
forestlib. It has a fully qualified name of system. An im-
mediate member of system is services. Hence, it has a fully
qualified name of system.services. Shown in Listing 1,
iana_services is a member of system.services and has a
fully qualified name of system.services.iana_services.

| service_groups
| policy_rules
custom_namespacel

1 forestlib (global)
2 system

3 | services

4 | | iana_services
5

6

7

8

|
|
[
[ 1 1 | http
|
[
[
Listing 1: ForestFirewalls namespace hierarchy.

ForestFirewalls assigns a default namespace for each cus-
tom specification created by a user. This namespace is based
on the specification file name and it’s placed directly under
the global namespace (i.e., at the same level as system).
This flat design structure automatically prevents namespace
duplication as two files with the same name and extension
cannot be located at the same level of the global directory.

Importation facilitates reuse of policy. For instance, we
can imagine the ISA creating a best practice ruleset for
SCADA as a baseline for new installations.

6.2.3 Zone-group description

A zone-group groups a set of zones or other zone-groups
(i.e., nesting allowed) and is defined using

zone_group <group-name> {<zone-or-group-list>}



Nested zone-groups are iteratively resolved to a set of dis-
joint zones. Multiple zone-group declarations are checked
for duplicate functionality to minimise code redundancy.

The snippet below describes an example zone-group, de-
picting three_zones: a set of zones in a network which is
made up of 3 disjoint zones.

zone_group three_zones { corp_zone, scada_zone, dmz ¥

We also allow similar syntax and set operators for defining
groups of TCP/UDP ports or ICMP types.

6.2.4 Policy-rule description

A high-level policy rule can be defined as below, where
operator indicates the direction explicitly. service-or-
group—name and zone-or-group-name shown, enable ser-
vice(s) between the specified zones as per the operator.

policy_rule <rule-name> {
<first-zone-or-group-name> operator
<second-zone-or-group-name> :
<service-or-group-name> }

operator == ‘->’ || ‘<>’
(allow-to, allow-to-from)

The following policy rule models the capabilities of a Corp_
orate_zone with regards to Web traffic:

policy_rule corp_web_rule { Corp_zone -> DMZ : Web }

6.2.5 Policy description

A policy is used to hold one or more policy rules and can
be defined using the following format:

policy <policy-name> { <rulel>, <rule2>, ... }

7. VERIFICATION

Once a high-level policy is parsed by ForestFirewalls, it
is stored in IL code and needs to be checked for SCADA
best-practice violations as well as for correctness.

7.1 Best-practice compliance

We need to compare the semantics of an input policy with
that of the SCADA best-practice policy, to check for best-
practice violations. Two policies can contain different rule
sets, but have the same semantics underneath. For instance,
consider Figure 5(a) which depicts an example service plot
for a TCP based policy for the tuple- (source-zone=71,dest-
zone=272, protocol=TCP). The policy consists of two over-
lapping services that create the overlapping rectangles shown.
Together, these rectangles form a single (disjoint) rectilinear-
polygon. We could tediously compare each valid point be-
tween plots, to compare such policies, but that would be
highly inefficient. A more efficient approach would be to de-
rive a unique representation of each service plot (i.e., policy)
and then make comparisons.

We derive a canonical representation of the policies by
dissecting the polygons into partitions. Our aim here is to
find a unique partition quickly rather than a guaranteed
minimal partition. In policy terms, partitioning yields a set
of non-overlapping services with clear semantics.

We dissect the polygon formed in our example policy (Fig-
ure 5(a)), into horizontal partitions as shown in Figure 5(b),
using a Rectilinear-Polygon to Rectangle conversion algo-
rithm [17]. Each horizontal partition is chosen to guarantee

its uniqueness (provable by contradiction). Canonical policy
elements are derived by translating each partition back to
policy level.

Intra-policy verification can be done by conducting equiv-
alence checks on the canonical policy components:

Canonical(Z1 — Z2) = Canonical(SCADA — Corp)

We can also evaluate whether the input policy adheres to
the SCADA best practice policy using the inclusion check:

Canonical(Input Policy) C Canonical(BestPractice Policy)

7.2 Policy correctness

We also generate an Alloy language specification (i.e.,
.als) file for the IL policy. A partial snippet of this ex-
port is shown in Listing 2. It depicts a formal model with
3 signatures: Service, PolicyRule and SecurityPolicy.
In our initial model, a Service has the basic members:
ip_protocol, source_port, dest_port and icmp_type. Of
these members, only ip_protocol is mandatory (the multi-
plicity keyword some requires at least one element).

A PolicyRule has 4 members: zonel and zone2 to cap-
ture the zone names, an operator and a single service el-
ement. The operator is a set of integers containing {1}
(representing a uni-directional permit: ->) or {1, 2} (rep-
resenting a bi-directional permit: <->). The bi-directional
permit is deconstructed as -> {1} and <- {2} for simplicity,
but the latter operator is omitted in the high-level syntax.

The global constraints are partially shown (Listing 2, lines
17-27), stating that the universal set (Univ) of PolicyRule
must be made up entirely of rules in the policy. Additionally,
Univ of Service must be made up entirely of services defined
within PolicyRule objects.

Predicates can determine if two given rules or services
overlap (not shown). Service overlaps are found by comput-
ing their intersection and testing if the result has members.
String type members (e.g., zonel, zone2) can be directly
compared. PolicyRule overlaps are checked similarly.

A ‘no_rule_overlaps’ assertion (also not shown) is defined
to check whether there are distinct rules with overlapping
criteria. If found, the check returns a counter-example, in-
dicating potential inconsistencies in the high-level policy.
Counter-examples can be inspected through Alloy’s user in-
terface to identify the underlying cause(s).

Currently, Alloy is itself run manually and output counter-
examples help debug data. We do not auto-correct rules as
this requires managerial discretion.

When overlaps are absent in the high-level policy, there
should also be none in network-level policy, in theory. But
we cannot simply ‘trust’ our system to always correctly gen-
erate network-level policy. So, we re-check the generated
policy for overlaps and verify the fact.

The Alloy export generated for network policy verification
is similar to the high-level export. The key exception is the
source and destination zone names are now replaced with
IP address ranges in an ACLRule. Additionally, the Service
signature also has members depicting protocol state. We
also define an assertion here to check for ACLRule overlaps.

8. A CONCRETE EXAMPLE

‘We show here a concrete example, illustrating our method-
ology and the prototype system. The example is based on
an actual SCADA case study [2] with the multi-firewall net-
work configuration shown in Figure 6. Due to security con-
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Figure 5: Ezample canonicalisation of a TCP based policy for tuple- (source=Zonel,dest=Zone2,protocol=TCP).

abstract sig Service {
ip_protocol: some Int,
source_port: set String,
dest_port: set String,
icmp_type: set Int

abstract sig PolicyRule {
zonel: one String,
zone2: one String,
10 operator: some Int,
11 service: one Service
12}
13 // Policy definition
14 one sig SecurityPolicy { rules: some PolicyRule }
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16 // List of global constraints
17  fact {

19 // All defined rules are in the policy to check
20 all r: PolicyRule | r in SecurityPolicy.rules

22 // Policy rules make up universe of PolicyRule

23 SecurityPolicy.rules = PolicyRule

24

25 // A service belongs to at least one PolicyRule

26 all s: Service | some r: PolicyRule | s in r.
service

27}

Listing 2: High-level policy verification framework

using Alloy (partially shown).

cerns and non-disclosure agreements, a modified version of
the real network is presented for discussion. Steps have been
taken to keep the core security strategies identified intact.
However, details such as IP addresses are anonymised.

R1 is a Cisco ASA 5505 firewall with 2 active physical
interfaces pointing to Corp and LAN. R2 and GW are Linux
IPtables firewalls with 2 active physical interfaces each. R2
points to SCADA and LAN while GW points to Corp and the
Internet. The subnet summary is below.

The Corporate network (Corp): Provides access to busi-
ness applications and the Internet.

Local Area network (LAN): Responsible for enabling con-
nectivity between R1 and R2. The distinct vendor firewalls
provide defence in depth [9] through multiple nodes of failure
and firewall-software redundancy.

The SCADA network (SCADA): Responsible for pro-
viding networked access to plant equipment.

Figure 6: The SCADA network under study. Corp and
SCADA are the corporate and SCADA subnets while the fire-
walls are R1, R2 and GW.

Corp and SCADA could accommodate up to 2,046 and 65,534
hosts respectively. Corp contains multiple management work-
stations, an HTTP server, an HTTPS server, an FTP server,
an Email server, a syslog server and a DNS server. SCADA in-
cludes 2 Oracle database servers, management workstations
and an HTTPS server.

8.1 Policy goals

The policy we consider is simple, but nonetheless covers
many of the aspects that occur in more complex, real-life
SCADA policies [2]. Its premise is that internal corporate
users are trusted, but are restricted to use safe protocols
when accessing SCADA. External users are allowed access only
to content that is explicitly made public. The policy has the
following goals:

e Corp hosts can access the Oracle servers and the HT'TPS
server in SCADA. They can also access all HTTP, HTTPS,
DNS resources on the Internet.

e SCADA hosts can access Web, Email and DNS servers on
Corp. Additionally, they can perform file transfer using
FTP and HTTP with respective Corp servers.

e External hosts can access the HTTP, FTP and Email
servers in Corp.

e R1, R2 can be managed from Corp using HTTPS and
SSH. R2 can be managed from SCADA using SSH. R1 can
also be managed from R2 using SSH.

e Firewall log messages are stored in a Syslog server located
in Corp.

e OSPF is enabled across the entire site.

8.2 Implementation
A partial snippet of the ForestFirewalls high-level descrip-



// library files
import system.services.iana_services;
import system.services.iana_icmp;

// zone—conduit security topology
load_zone_conduit_model ¢‘zone_conduit.graphml’’

// define zone groups

zone_group all_zones { z1,z2,z3,azl,fwzl,fwz2,fwz3
}

10 zone_group scada_zone { z3 }

11 zone_group corp_zone { zl }

12 zone_group internet_zone { z2 }

13 zone_group all_firewall_zones { fwzl, fwz2, fwz3 }

14 zone_group all_internal_zones { all_zones

15 \ internet_zone }
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17 // FTP passive mode

18 port_group ftp_data_ports { 24500—24600 }

19 service ftp_data { protocol=tcp;

20 tcp.dest_port=ftp_data_ports; }

22 // service groups
23 service_group ftp { iana_services.ftp_control,

24 ftp_data }

25 service_group web { iana_services.http,

26 iana_services.https }

27 service_group ping { iana_icmp.icmp_echo,

28 iana_icmp.icmp_echo_reply }
29 service_group dns { iana_services.dns_tcp,

30 iana_services.dns_udp }

31 service_group file_transfer { iana_services.http,
32 ftp }

33

34 // policy rules
35 policy_rule file_transfer_rule {

36 scada_zone —> corp_zone : file_transfer }
37

38 policy_rule ping_rule {

39 corp_zone <—> scada_zone : ping }
40

41 policy_rule dns_rule {

42 scada_zone —> corp_zone : dns }

43

44 policy_rule web_rule {

45 scada_zone —> corp_zone : web }

46

47 // define policy

48 policy company_policy { file_transfer_rule,

49 ping_rule, dns_rule, web_rule }
Listing 3: ForestFirewalls policy description (partially
shown).

tion implementing the above policy goals is depicted in List-
ing 3. At the start, the required library files containing
the predefined lists of IANA well known services are im-
ported. Next, the Zone-Conduit security model is supplied
as a GraphML file. The zones within this model can be
grouped as necessary (line 9-15), to simplify the specifica-
tion process and increase readability. Additionally, we define
custom port groups, services and service-groups as needed.

A passive mode FTP data service is declared (lines 18-
20) as it’s the best-practice [9,34] approach to enable FTP
through firewalls. Ping is also defined for connectivity tests.
The high-level policy rules are defined to match policy goals
listed earlier. Finally a policy object container is used to
hold all the policy rules (line 48).

8.3 Procedure and Results

Post policy parsing, an Alloy export is generated contain-
ing 134 object by ForestFirewalls for verification.

Running the ‘no_rule_overlaps’ assertion (not shown) re-
turns a counter-example, indicating potential inconsistencies
in the high-level policy. Upon inspection of the counter-
example details in Alloy (Figure 7), we see that rules en-
abling HTTP services (ip_protocol=6, dest_port=80) be-
tween zones z3 and z1, initiate the overlap. The root cause is
the file_transfer and web service-groups in the high-level
policy (Listing 3, lines 31 and 25), both containing HTTP.
Once this is rectified (remove HT'TP from file_transfer),
no further counter-examples are found by Alloy.

Listing 4 shows the ACL-allocation map for firewall R1,
indicating how ACLs are assigned to each of R1’s firewall
interfaces. Also partially shown are the generated vendor
neutral ACL rules. Note the explicit deny all rule supple-
menting the explicit permit rules at the end. The step also
outputs the Zone-Firewall and Zone-Conduit models of the
input network as graphical output (Figure 8).

The Alloy exports for network-level ACL verification have
828 (Service and ACLRule) objects. Assertion checks here
yield no counter-examples.

The device-specific configurations are rendered from the
network-level policy, using vendor and device specific Mako
templates. Mako is a template library written in Python
[28], enabling fast and easy integration into ForestFirewalls.

The device-level configurations generated for the speci-
fied platforms (i.e., Netkit and Cisco), were auto-deployed
to a Netkit-based emulated network. Once the Netkit VMs
booted up, the automated tests were executed. The emu-
lation results confirmed services explicitly allowed by high-
level policy was admitted by the firewalls correctly. More-
over, exhaustive port-scans via nmap and tshark confirmed
that no additional services were allowed through.

Post emulation testing, the device configurations were de-
ployed to the real-network. Although we aim to automate
this deployment, it is currently done manually as its not seen
as an error-prone step in modern configuration tools [13,14].

Once deployed, we re-executed the emulation test scripts
on hosts in the various zones of the network. The tests
confirmed that the services enabled by the input policy were
passing across firewalls as expected. Supplementary port
scans confirmed no additional services were allowed through.

8.4 Performance analysis

A comparison of the firewall configurations observed in
a previous original case study [2] and those generated by
ForestFirewalls is shown in Table 1. We have distilled the
core policy from the original case study by discussing with
security consultants. Our target firewalls were Cisco ASA5505
and Linux IPtables devices instead of the Cisco IOS routers
used originally. However, we are demonstrating and there
are significant improvements achieved by our system.

As shown in Table 1, there are no redundant ACLs gener-
ated by ForestFirewalls. Each ACL serves a purpose and is
assigned to an active firewall interface. Additionally, we ob-
serve that there are no generic permit rules generated by our
system (i.e., all-TCP, all-UDP or all-IP based rules). These
rules produce security holes that can be exploited in cyber
attacks. We also observe that there are no intra-ACL rule
interactions in the ACLs generated by ForestFirewalls, mak-
ing these configurations comparatively more efficient. These



(a) Zone-Firewall model. (b) Zone-Conduit model of (a).

Figure 8: System generated security models of the network.

INFO Firewall—ACL map for firewall: R1
Interface: 3(R1 to R2) direction: in ACL: acl_4
Interface: 3(R1 to R2) direction: out ACL: acl_3
Interface: 4(R1 to t1) direction: in ACL: acl_1
Interface: 4(R1 to t1) direction: out ACL: acl_2

1
2
3
4
5
6
7 INFO Vendor neutral network—level ruleset for ACL: acl_2
8 remark~enable corp_zone to scada_zone HTTPS traffic (return path)
9 permit~tcp~from™10.0.0.16/297t0710.0.0.0/29  sport~ [443] “dport~ [€0—65535°] “state "ESTABLISHED
10 permit~tcp~from™10.0.0.16/297t0710.0.128.4/30 sport~ [443] “dport~ [*0—65535°]“state ESTABLISHED
11 remark~enable scada_zone to corp_zone WEB traffic (forward path)
12 permit~tcp~from~10.0.0.16/297t0710.0.0.0/29  sport”~ [€0—65535°] “dport~ [443] “state NEW,ESTABLISHED
13 permit~tcp~from~10.0.0.16/297t0~10.0.128.4/30"sport~ [¢0—65535°] “dport~ [80] “state~NEW,ESTABLISHED
14 deny~ip~from~any~to~any sport~~dport~~state”

Listing 4: System generated ACL-allocation map and network-level policy (partially shown, t1 is a router in Corp,
comments are denoted by remark).

Table 1: High-level comparison of Original vs Generated configurations (LoC - Lines of Code).

Type Device-level Obsolete-ACL Generic permit- Intra-ACL
LoC count rule count interaction count
Original case study 2720 2 324 167
ForestFirewalls generated 714 0 0 0

_ _ are almost obvious consequences of our design approach but
SecurityPolicy note that the real firewalls [2] had all of these defects!
Our system only requires 68 high-level LoC (only 35 LoC

P rules \Jules are policy specific) to generate 714 device-level LoC to con-

figure all 3 firewalls. A high-level policy with only 68 LoC

Rules Rule3 has replaced 2720 error-prone, inefficient, device-level LoC
(Eno_rule_ovarlaps_r2) (Eno_rule_ovarlaps_r1) of the original case study!

9. CONCLUSIONS AND FUTURE WORK

et | : : The current manual approach to firewall configuration is
1 z3 1 Semvices Servicel .
complex and error prone. Various firewall vendor tools at-
tempt to facilitate high-level configuration, but these lack
flexibility in specifying detailed traffic restrictions and do
not reduce the configuration burden.
ForestFirewalls greatly reduces the configuration burden,
and by use of high-level abstraction, templates and graphs,

g "[EEE 5" offers a simple and manageable approach to SCADA firewall
configuration. Our system guarantees configuration accu-

Figure 7: Counter-ezample thrown by Alloy, indicating a racy through stage-wise validations employing SCADA best-
high-level policy error. practices, a formal verification tool (Alloy), and emulation

based pre-deployment tests. The system gives users assur-
ance of the generated device-level configurations delivering
the expected firewall behaviour prior to deployment.
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