
Report on the Implementation of the 

Homogeneous Nucleation Scheme in 

MARMOT-based Phase Field Simulations 

Prepared for 

U.S. Department of Energy 

Fuel Cycle R&D Program 

Yulan Li, Shenyang Hu, Xin Sun 

Pacific Northwest National Laboratory, Richland, WA 99352             

M2MS-13PN0602054 
PNNL-22829 



DISCLAIMER 

This information was prepared as an account of work sponsored by an 
agency of the U.S. Government. Neither the U.S. Government nor any 
agency thereof, nor any of their employees, makes any warranty, 
expressed or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness, of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe 
privately owned rights. References herein to any specific commercial 
product, process, or service by trade name, trade mark, manufacturer, or 
otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the U.S. Government or any agency 
thereof. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the U.S. Government or any agency 
thereof. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Homogeneous Nucleation Scheme 
Sept 2013 iii 

Reviewed by: 

National Technical Director, Nuclear Energy 

Advanced Modeling and Simulation 

Keith Bradley Date

Concurred by: 

Acting Director, Advanced Modeling and 

Simulation Office 

Trevor Cook Date

Approved by: 

Deputy Assistant Secretary, Nuclear Energy 

Shane Johnson  Date



Homogeneous Nucleation Scheme 
Sept 2013 iv 

Report on the Implementation of the Homogeneous Nucleation 
Scheme in MARMOT-based Phase Field Simulations 

SUMMARY 

In this report, we summarize our effort in developing mesoscale phase field (PF) models for 

predicting precipitation kinetics in alloys during thermal aging and/or under irradiation in nuclear 

reactors. The first part focuses on developing a method to predict the thermodynamic properties of critical 

nuclei, such as the sizes and concentration profiles of critical nuclei, and the nucleation barrier. These 

properties are crucial for quantitative simulations of precipitate evolution kinetics with PF models. An 

iron-chromium (Fe-Cr) alloy is chosen as a model alloy because it has valid thermodynamic and kinetic 

data and is an important structural material in nuclear reactors. A constrained shrinking dimer dynamics 

method is developed to search for the energy minimum path during nucleation. With the method, we are 

able to predict the concentration profiles of the critical nuclei of Cr-rich precipitates and nucleation 

energy barriers. Simulations show that Cr concentration distribution in the critical nucleus strongly 

depends on the overall Cr concentration and temperature. The Cr concentration inside the critical nucleus 

is much smaller than the equilibrium concentration calculated by the equilibrium phase diagram. This 

implies that a non-classical nucleation theory should be used to deal with the nucleation of Cr precipitates 

in Fe-Cr alloys. The growth kinetics of both classical and non-classical nuclei is investigated using the PF 

approach. A number of interesting phenomena are observed from the simulations: 1) a critical classical 

nucleus first shrinks toward its non-classical nucleus, then grows; 2) a non-classical nucleus has much 

slower growth kinetics at its earlier growth stage compared to the diffusion-controlled growth kinetics; 3) 

a critical classical nucleus grows faster at the earlier growth stage than the non-classical nucleus. All of 

these results demonstrate that it is critical to introduce the correct critical nuclei into PF modeling to 

correctly capture the kinetics of precipitation.   

In most alloys, the matrix phase and precipitate phase have different concentrations and crystal 

structures. For example, copper (Cu) precipitates in Fe-Cu alloys have a face-centered cubic (fcc) crystal 

structure, while the matrix Fe-Cu solid solution has a body-centered cubic (bcc) structure at low 

temperature. The Wheeler-Boettinger-McFadden (WBM) and Kim-Kim-Suzuki (KKS) models, where 

both concentrations and order parameters are chosen to describe the microstructures, are commonly used 

to model precipitations in these alloys. The WBM and KKS models have yet to be implemented into 

MARMOT. In the second part of this report, we focus on implementing the WBM and KKS models into 

MARMOT. The Fe-Cu alloys, which are important structure materials in nuclear reactors, are used as the 

model alloys to test the models. 

Key words: precipitation; non-classical nucleation; Fe alloys; phase field modeling; MARMOT.  
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FUEL CYCLE R&D PROGRAM 

REPORT ON THE IMPLEMENTATION OF THE HOMOGENEOUS 

NUCLEATION SCHEME IN MARMOT-BASED PHASE FIELD 

SIMULATION 

 

1. Introduction 

Nucleation is a ubiquitous physical phenomenon. It occurs when a material becomes 

metastable with respect to its transformation to a new state or phase. For example, the formation 

of liquid droplets in saturated vapor is a nucleation process. Typically, nucleation is divided into 

two types, i.e., homogeneous and heterogeneous nucleation. Heterogeneous nucleation happens 

preferentially on surfaces, pre-existing interfaces (grain boundaries), dislocations or impurities, 

etc. Nucleation without preferential nucleation sites is homogeneous nucleation. Homogeneous 

nucleation occurs spontaneously and randomly, but it requires supersaturation, superheating, or 

supercooling of the medium. Compared to heterogeneous nucleation, homogeneous nucleation 

occurs with much more difficulty in the interior of a uniform substance.  

Computer simulations of homogeneous nucleation are an extraordinary difficult issue. In a 

previous report, we propose a scheme to deal with homogeneous nucleation by introducing 

classical nuclei into a phase field (PF) simulation cell.1 Actually, the critical nuclei are not 

always of the classical profile, i.e., having bulk properties. Both kinetic Monte Carlo (kMC) 

simulations2 and tomographic atom probe (TAP) experiments3 show that the concentration inside 

small chromium (Cr) precipitates in iron-chromium (Fe-Cr) alloys is smaller than the equilibrium 

concentration, and it increases with precipitate growth. This implies that the nucleation of Cr 

precipitates is non-classical. In this report, one objective is to develop a method to predict the 

thermodynamic properties of non-classical critical nuclei, including concentration profiles inside 

the critical nuclei and nucleation energy barrier. These thermodynamic properties are input 

parameters for introducing nuclei into PF simulation cells. 

MARMOT is a PF-method-based multiphysics simulation tool at the mesoscale. It is 

implemented using the Multiphysics Object-oriented Simulation Environment (MOOSE) 
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framework, a massively parallel, finite element-based system to solve large systems of equations 

using the Jacobian-free Newton Krylov (JFNK) method.4 The main governing equations for PF 

modeling are Cahn-Hilliard equations (the fourth-order partial differential equations (PDE)) and 

Allen-Cahn equations (the second-order PDEs)5. The implementation of pure Cahn-Hilliard and 

pure Allen-Cahn equations into MARMOT and their applications have been reported by Tonks 

et al.6 However, in most alloys, the matrix and precipitate phases have different concentrations 

and crystal structures. For example, copper (Cu) precipitates in Fe-Cu alloys have a face-

centered cubic (fcc) crystal structure, while the matrix (i.e., Fe-Cu solid solution) has a body-

centered cubic (bcc) structure at low temperature. PF models, such as the Wheeler-Boettinger-

McFadden (WBM) model2 and an equivalent model developed by Kim et al.7 (referred to as 

“KKS” model herein), are commonly used to model precipitation in such alloys. Both must solve 

coevolution of concentrations and order parameters governed by Cahn-Hilliard equations and 

Allen-Cahn equations, respectively. The WBM model and KKS models have yet to be 

implemented into MARMOT. Another objective of this report is to implement the WBM and 

KKS models into MARMOT. 

This report is organized into two main sections and a conclusion. In the first section, an 

efficient constrained shrinking dimer dynamics (CSDD) method8 is proposed to search for the 

energy minimum path during the nucleation of precipitates. With the method and valid 

thermodynamic properties of Fe-Cr alloys, we are able to systematically investigate the effect of 

temperatures and overall Cr concentrations on the thermodynamic properties of critical nuclei in 

Fe-Cr alloys. The growth kinetics of Cr nuclei with predicted concentration profiles inside the 

critical nucleus are examined using the PF approach. In the second section, both the WBM and 

KKS models are used to describe the precipitation kinetics of fcc Cu precipitates in a bcc Fe-Cu 

matrix and are implemented into MARMOT. Finally, we offer our concluding remarks. 

2. Non-classical critical nuclei and their growth kinetics of Cr precipitation 

in Fe-Cr alloys  

In fusion and advanced fission reactor components, high-chromium ferritic/martensitic steels 

are the preferred candidates for structural materials.9 The addition of Cr has a positive effect on 

mechanical, corrosion, and radiation resistance properties. However, it is well known that Fe-Cr 

alloys undergo thermal- and irradiation-induced phase separation from the solid solution into Fe-
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rich and Cr-rich phases in the temperature range spanning 300°C~550°C.10, 11 The phase 

separation causes material property degradation, such as embrittlement and stress corrosion 

cracking.10, 12 In predicting microstructure evolution and material property degradation, a 

fundamental understanding of the thermodynamics, mechanisms, and kinetics of phase 

separation is of significant technological importance. 

Phase separation in Fe-Cr solid solutions happens via two different mechanisms: 1) spinodal 

decomposition and 2) Cr-rich phase nucleation and growth. Cr concentration and aging 

temperature dictate which mechanism operates. Spinodal decomposition can be naturally 

simulated using atomistic and field theoretical methods by introducing any fluctuations of 

temperature, composition, and/or order parameters. However, modeling nucleation generally is 

considered one of the most challenging issues. For example, the PF approach is a powerful 

simulation tool to predict microstructure evolution during phase separation.5 Although the PF 

approach accounts for energy changes during nucleation, such as a bulk free energy decrease that 

is proportional to the nucleus volume, an interfacial energy increase that is proportional to the 

interfacial area, or long-range interaction energies (e.g., elastic energy), it is unable to simulate 

the nucleation process because the PF approach assumes that microstructure evolution is driven 

by the energy minimization while nucleation needs to overcome an energy barrier. Therefore, to 

simulate the phase separation, PF simulations must introduce critical nuclei into the simulation 

cells. According to classical nucleation theory, the thermodynamic and kinetic information, 

including the critical nucleus radius, nucleation barrier, and nucleation rate, can be calculated 

once the chemical free energy, interfacial energy, and long-range interaction energy are known. 

However, experiments3 and kMC simulations2 all show that the nucleation of Cr precipitates in 

Fe-Cr alloys is a non-classical nucleation, i.e., the Cr concentration inside the nucleus is not the 

same as the thermal equilibrium concentration, particularly when the Fe-Cr alloys have high 

supersaturations. The thermodynamic and kinetic information of non-classical nuclei in Fe-Cr 

alloys are lacking for the PF simulations. Furthermore, it is unknown how the critical nuclei from 

non-classical nucleation and classical nucleation affect growth kinetics.  

In Fe-Cr alloys, Cr precipitates are Cr-rich phases with the same structure of the matrix phase 

(i.e., bcc Fe-Cr solid solution). Therefore, the precipitate microstructure in bcc Fe-Cr alloys can 

be uniquely described by Cr concentration. In a PF approach framework, the concentration of Cr, 
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CCr(r,t), is employed as the PF variable, where r=(r1, r2, r3) is the spatial coordinate and t is time. 

Compared with Cr solubility in Fe-Cr alloys, thermal equilibrium vacancy concentration is very 

small and, thus, ignored in the present model. So, the concentration of Fe is 1-CCr. Due to the 

low lattice mismatch, the elastic energy contribution in the Fe-Cr system is negligible and 

omitted in this study. Therefore, the total free energy of the binary system can be expressed as: 

dVCTCf
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Because the concentration CCr is a conserved field variable, its temporal evolution is 

described by the Cahn-Hillard equation:  
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where M is the mobility of CCr and related to Cr atom diffusivity, D, as  TDM  0  with   

being the gas constant of  KmolJ/314.8  . For numerically solving Eq. (2), the following 

normalizations are used: 
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Equation (3) will be solved numerically using the semi-implicit Fourier-spectral method13 under 

periodic boundary conditions. 
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2.1 Assessment of thermodynamic properties 

2.1.1 Chemical free energy 

To predict Cr precipitate formation and growth or solve the evolution equation (3), the free 

energy density ),( TCf Cr  is needed. As a result of many people’s valuable efforts, an analytical 

free energy density now is available for the Fe-Cr system:14, 15 

 TCGTCf CrCr ,1),(                                                                                                  (4) 
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where T0=410 K, kB=8.617310-5 eV/K is the Boltzmann constant, and CrCx 1  is the 

concentration of Fe. Table I lists the corresponding coefficients. At the given temperatures, the 

free energies are plotted in Figure 1. 
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Figure 1. Chemical free energy of Fe-Cr alloys. 
 

Table I: Coefficients for the Fe-Cr free energy given in Eqs. (4-9). 

 A B c d f 

0 0.3856 2.630×10-4 3.145×10-9 -1.7601×10-13 0.3817 

1 0.0973 4.696×10-5 -2.203×10-8 5.579×10-12 0.1007 

2 -0.0467 -4.959×10-5 3.960×10-8 -5.935×10-12 -0.0485 

3 0.1945 1.133×10-5 -3.090×10-8 1.229×10-11 0.1541 

4 -0.1856    -0.1684 

5 0.0044    0.0416 

6 -4.1231    -4.1671 

7 -3.8366    -3.8602 

 

With the free energy density f(CCr,T), we calculate the Cr solubility, spinodal concentrations, 

and equilibrium concentration of Cr precipitate in the Fe-Cr alloys at different temperatures. The 

chemical free energy f(CCr,T) has a common tangent at the Cr solubility in Fe-Cr solid solution 

and Cr equilibrium concentration in Cr precipitate. The spinodal concentration is associated with 

the inflection point of f(CCr,T). Table II lists the Cr solubility and spinodal concentrations in Fe-

rich side and Cr thermodynamic equilibrium concentration in Cr precipitates.  
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Table II. Cr solubility and spinodal concentrations in Fe-rich side and Cr equilibrium 
concentration in Cr precipitates.  

Temperature (K) Cr solubility 

( eqM
CrC , ) 

Cr spinodal 

concentration 

Cr equilibrium concentration 

in Cr precipitate ( eqP
CrC , ) 

300 0.04199 0.19049 1.0 

400 0.04829 0.19422 1.0 

500 0.05501 0.19840 0.99998 

600 0.06223 0.20309 0.99989 

700 0.07008 0.20840 0.99958 

 

2.1.2 Interfacial energy 

In the PF model described in Eqs. (1) and (2), both the chemical free energy f(CCr,T) and the 

gradient energy contribute to the interfacial energy. For given characteristic length 0l  and 

gradient coefficient  , the interfacial energy of a flat interface can be numerically calculated. To 

do so, we place a precipitate at the center of a one-dimensional (1-D) simulation cell (512 0l × 0l ×

0l ) and allow the system to approach equilibrium through Cr diffusion. At the equilibrium state, 

the equilibrium concentrations in both precipitate and matrix and the equilibrium interface 

concentration profile reach. Then, interfacial energy can be numerically calculated with the 

equilibrium concentration profile by: 

dVCTCf
NA

V
CrCr 



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


2**

0

0

2

1
),(

2

1  ,                                               (10) 

where the ½ factor outside the integral is due to the fact that there are two interfaces in the 1-D 

model. By tailoring the characteristic length 0l  and gradient coefficient * , the PF model can 

correctly describe the interfacial energy of Cr precipitates. In general cases, the interfacial energy 

is anisotropic. Then, the gradient coefficient   is a tensor. The same method can be used to 

determine the tensor  .  

By taking l0 as the α-Fe lattice parameter, i.e., nm287.00 l  and 8.0*  , the 

corresponding interface energies are calculated with Eq. (10) for different temperatures. They are 

listed in Table III and compared with those obtained by Schwen et al.14 through fitting the results 
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from Sadigh and Erhart.16 It is evident that the interfacial energy from this work is slightly larger 

than that from the previous works. This can be adjusted by taking a smaller l0. Figure 2 provides 

the corresponding equilibrium profiles for an average concentration of CCr=0.158% at different 

temperatures. From the figure’s inset, we can see the PF model can aptly predict the equilibrium 

concentrations. 

Table III. Interfacial energies at different temperatures. 

Temperature 
(K) 

This work with
8.0*   

nm287.00 l  
(J/m2) 

Work 14, 16 
(J/m2) 

300 0.5334 0.4049 

400 0.5016 0.3910 

500 0.4811 0.3762 

600 0.4382 0.3606 

700 0.4093 0.3441 

 

 

Figure 2. Equilibrium profiles of Cr precipitates in a 1-D simulation model when Cr average 

concentration is c0=0.158%. The two insets display the Cr concentration at the interface and matrix 

phases, respectively. 
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2.2 Constrained Shrinking Dimer Dynamics 

In recent years, high-performance numerical methods have been proposed to find the critical 

nucleus17, 18 and have been applied to nucleation in solid-state phase transformation.8, 19 In 

particular, shrinking dimer dynamics (SDD)20 and its extension on a constrained manifold, or 

CSDD,21 have been used successfully to efficiently compute the saddle point associated with an 

energy functional. Here, we apply the CSDD to predict the critical nuclei of Cr precipitates in 

Fe-Cr alloys based on the free energy and interfacial energy provided in the previous section. 

The constraint of the current model is from the mass conservation, i.e.,  

       0, 0   dVcTCCG
V

CrCr r .                                                              (11) 

To construct the dimer system, we let  1CrC  and  2CrC  be the two end points of a dimer with 

a length of    21 CrCr CCl  . The dimer orientation is given by a unit vector v so 

    lvCC CrCr  21 . The rotation center of a dimer is defined as    2)1(1 CrCrCr CCC   , where 

the parameter  1,0 . Thus, the geometric center (midpoint of the dimer) corresponds to 

5.0 . Thereby,   lvCC CrCr  1 ,    lvCC CrCr   12 . 

To enforce the constraint, CSDD uses the projected natural force, which is the negative 

gradient force projected on the tangential hyperplane of the constraint, i.e., 
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with the relaxation constants 1, 2, and 3. Also,  )1(1
~~

CrCFF   and  )2(2
~~

CrCFF  . The first 

equation of the CSDD in Eq. (13) represents the translation step of the dimer, and the operator 

 TvvI 2  is the Householder mirror reflection, which reverses the component of the negative 

gradient force at v direction. The rotation step of the CSDD is the second equation in Eq. (13). 

The third equation in Eq. (13) follows a gradient flow of the dimer energy, resulting in the dimer 

shrinking over time and the solution of Eq. (13) converging to an exact saddle point. In this 

work, we choose an auxiliary function   2/2
dimer llE  , which provides an exponential decay of 

the dimer length. 

The initial condition of the CSDD must satisfy the following compatibility assumption:

    1,0 0
0  rvCG Cr ,   00 

V

dVv r . The 0v  represents the magnitude of vector 0v . One 

straightforward way to implement time discretization of the CSDD, is to apply the modified 

forward Euler scheme: 
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   (14) 

which performs a normalization on v at each iteration for the dimer rotation step so the scheme 

improves the local stability and optimal error reduction rate. To further improve the Euler 

method’s stability and afford a larger time step in the algorithm, we employ a semi-implicit 

splitting scheme for the CSDD, where the principal linear operator is treated implicitly to reduce 

the associated stability constraint while the nonlinear terms still are treated explicitly to avoid the 

expensive process of solving nonlinear equations at each time step. To achieve exponential 

convergence in space, the Fourier-spectral method is used for spatial discretization. In our 

calculations, 1=2 =3 =1 and 5.0 . 
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2.3 Non-classical critical nuclei and nucleation barriers of Cr precipitates in Fe-

Cr alloys  

Here, we assume that interfacial energy is isotropic. Thus, the critical nucleus will be a 

sphere in a real three-dimensional (3-D) space. Experiments3 also show that Cr precipitates in 

Fe-Cr alloys have spherical shapes. As the chemical free energy of Eq. (4) depends on Cr 

concentration and temperature, the critical nucleus profile also will vary with overall Cr 

concentration and temperature. To calculate the concentration profiles of critical nuclei, we 

consider a 3-D simulation cell of 64 0l ×64 0l ×64 0l . For a given temperature (T) and Cr overall 

concentration (c0), the critical nucleus profile is obtained by solving the CSDD equations. Figure 

3 plots critical nuclei profile dependence on Cr overall concentration (c0) and temperature (T). 

We can see that the concentrations inside the nuclei are much smaller than the equilibrium 

concentration of Cr-precipitates (i.e., eqP
CrC ,  º1) calculated from the equilibrium phase diagram. 

Experiments from atom probe observations3 also demonstrate that the Cr-concentration in the 

nuclei does not have to be its bulk equilibrium values. Therefore, the critical nucleus of Cr 

precipitate is non-classical. Although it is difficult to define the critical size of a nucleus, we can 

clearly see that Cr content inside the nuclei increases with a decrease of the Cr overall 

concentration and an increase in temperature.  
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Figure 3. Cr nucleus profiles at (a) different temperature (T) and (b) different Cr overall concentration 

(c0). The plots illustrate the Cr concentration distribution along the diameter of the spherical nuclei. 
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To validate that the concentration profiles predicted from the CSDD are critical profiles, we 

numerically examine the evolution of the nucleus. Figure 4(a) displays the profiles of the critical 

nuclei for c0=0.16 at T=500 K and T=501 K, respectively. The nucleus at T=501 K is slightly 

larger than the one at T=500 K. However, the difference between them is barely identified in the 

figure. By introducing the nuclei into the PF simulation cells, respectively, and evolving the PF 

equation (Eq. (3)) at the corresponding temperatures, Figure 4(b) and Figure 4(c) indicate that 

both nuclei are stable and grow. If the slightly small nucleus obtained at T=500 K is used for 

T=501K, the nucleus becomes unstable and shrinks as shown in Figure 4(d). These results 

numerically demonstrate that the CSDD method can provide the critical nucleus concentration 

profiles. 
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Figure 4. Critical nucleus concentration profiles for c0=0.16 at T=500 K and 501 K and their temporal 

evolution. (a) Critical profile. (b) Evolution of the nucleus of T=500 K at T=500 K. (c) Evolution of the 

nucleus of T=501 K at T=501 K. (d) Evolution of T=500 K nucleus at T=501 K.  

 

It is known that the critical nucleus is associated with the concentration fluctuation that has 

the minimum free energy increase among all fluctuations, leading to growth. In the following, 

we calculate the energy excess, the energy difference between the system with a critical nucleus, 

and the original supersaturated system with uniform concentration:  
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Actually, Eexcess is the nucleation energy barrier. Figure 5 shows the results of Eexcess for 

different temperatures and concentrations. Clearly, it is evident that the nucleation barrier 

decreases with decreasing temperature and increasing average Cr concentration. The nucleation 

barrier becomes zero when Cr concentration approaches the spinodal concentration c0=0.20, 

which is in agreement with spinodal decomposition theory. The maximum Cr concentrations of 

the nuclei corresponding to Error! Reference source not found.(a) are plotted in Error! 

Reference source not found.(b). Both the nucleation barrier and the maximum value of a 

critical nucleus strongly depend on the temperature and Cr concentration. These thermodynamic 

properties are important to calculate the nucleation rates and introduce the correct critical nuclei 

in PF modeling of precipitation kinetics.   
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Figure 5. (a) The energy excess (nucleation barrier) required for the formation of a critical nucleus and (b) 

the maximum concentrations inside the critical nuclei at different temperatures and different overall Cr 

concentrations. 

2.4 Growth kinetics of classical and non-classical nuclei  

In classical nucleation theory, the concentration inside the critical nucleus is assumed to be 

eqP
CrC , , the equilibrium concentration of the precipitate phase. However, as shown in the 

preceding section, the concentration in a non-classical critical nucleus is much less than the 

equilibrium concentration. Thus, the question is, how do critical concentration profiles affect 

their growth kinetics? To answer, the growth kinetics of the critical nuclei with classical and 

non-classical concentration profiles is simulated with the PF model. In the simulations, we first 

numerically determine the critical concentration profile of a classical nucleus by examining the 

growth and shrinkage of different nuclei with a Cr concentration of eqP
CrC ,  inside the nucleus and 

a smooth interface between the matrix and nucleus. Figure 6(a) shows the concentration profile 

of the classical critical nucleus for a given Cr overall concentration c0=0.16 at temperature 

T=500 K. For comparison, the concentration profile of the non-classical critical nucleus from the 

CSDD method appears in the same figure. This shows that the classical and non-classical nuclei 

have quite different concentration profiles. In analyzing the evolution of the classical nucleus, it 

is interesting to find that the nucleus first shrinks to a critical state, then grows. Figure 6(b) 

depicts the evolution of the classical nucleus at the shrinkage stage, while the concentration 

profile of the nucleus at the critical state is plotted in Figure 6(c). For comparison, the non-

classical critical nucleus predicted from the CSDD method is plotted in the same figure, showing 

that the concentration profile at the critical state is nearly the same as the non-classical nucleus. 

Figure 6(d) illustrates the temporal evolution at the growth stage. The result, showing that the 

classical nucleus concentration profile first evolves to the non-classical nucleus concentration 

profile, further proves the CSDD method’s capability in searching for critical nuclei.   
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Figure 6. Classical nucleus profile of T=500 K and c0=0.16 and its evolution growth with time. (a) 

Comparison of critical nucleus profiles between the classical nucleus and non-classical nucleus. (b) 

Nucleus evolution at its shrinking stage. (c) Comparison of the non-classical nucleus and classical nucleus 

at the stage with lowest concentration at its center. (d) Nucleus evolution at its growth stage.  

 

The evolution kinetics of classical and non-classical nuclei is compared. Figure 7(a) shows 

the comparison of Cr concentration distribution evolution. Because the maximum concentration 

varies with time, the radius of the nucleus cannot reflect the growth kinetics. We analyze the 

evolution of the total Cr contents in Cr precipitates, which are plotted in Figure 7(b). Both Figure 

7(a) and Figure 7(b) illustrate that the classical nucleus grows faster at the early growth stage 

than the non-classical nucleus. By examining the total amounts of Cr in the classical and non-
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classical nuclei in Figure 6(a), we easily find that the difference in their growth kinetics 

attributes: 1) the classical critical nucleus requires more Cr than the non-classical one, and 2) 

when the classical nucleus shrinks to the critical state, the extra Cr causes a higher 

supersaturation around the nucleus compared to the non-classical one. If we compare the 

similarity of the two curves in Figure 7(b), we find that non-classical nucleus growth has a 

certain time delay. In classical nucleation theory, the diffusion-controlled growth of a spatial 

particle can be described by 2/1)(DtR  , where R is the radius of the particle, D is the 

diffusivity, t is time, and l is a dimensionless growth parameter that depends on the 

supersaturation, as well as the particle size.22 It is clear that non-classical nucleus growth does 

not follow the growth kinetics of classical diffusion-controlled growth. The non-classical nucleus 

has a very long waiting time, which cannot be ignored when compared with the whole particle 

growth process. During this waiting time, the system almost does not evolve. Figure 7(c) and 

Figure 7(d) plot the evolution of the energy excess and maximum concentrations inside the 

nucleus and minimum concentration in the matrix. It is evident that the energy excess, as well as 

the maximum and minimum concentrations, changes very slowly during the waiting time. One 

explanation could be that the non-classical critical nuclei are at the saddle point of the energy 

landscape, where the driving force to grow is limited. After the long waiting time, nucleus 

growth speeds up. The energy excess starts deeply decreasing. The maximum concentration 

increases, and the minimum concentration decreases. Figure 7(d) shows how they gradually 

reach their thermal equilibrium concentrations. Afterward, the nucleus growth follows diffusion-

controlled growth. The growth kinetics of the classical nucleus is different from that of the non-

classical nucleus. The big differences are 1) the nucleus first shrinks, and 2) it has a shorter 

waiting time due to higher supersaturation around the nucleus. The results demonstrate that the 

non-classical nucleus at the early growth stage has a different growth kinetics from that predicted 

by the classical diffusion controlled growth theory. The deviation of the nucleus concentration 

profiles introduced in a PF model related to the critical nucleus concentration profile could result 

in a profound effect on the growth kinetics. Therefore, to correctly capture the kinetics of 

precipitation, it is essential to introduce the correct critical nuclei. 
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Figure 7. Comparison of the growth kinetics of the non-classical nucleus and classical nucleus. (a) 

Nucleus profile evolution with time. The dashed and solid lines represent the evolution of the non-

classical nucleus. The lines with symbols represent the evolution of the classical nucleus. Only partial 

profiles are shown for clarity. Grid point 33 is the center of the spherical nuclei. (b) Total Cr 

concentration inside the nucleus cores. The core is defined as CCr¥0.20. The total Cr concentration in the 

simulation cell is 64×64×64×0.16=41943. (c) Evolution of the energy excess, and (d) the evolution of 

maximum concentration inside the nucleus and minimum concentration in the matrix. 
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2.5 Summary 

With the thermodynamic and kinetic properties of Fe-Cr alloys from CALculation of PHAse 

Diagrams, or CALPHAD, calculations and atomistic simulations, the CSDD and PF method 

have been used to predict quantitatively the critical nucleus concentration profiles, nucleation 

energy barriers, and growth kinetics of Cr precipitates in Fe-Cr alloys. We have found that the 

critical nuclei of Cr precipitates from the CSDD method are non-classical because the 

concentration inside the nuclei is much smaller than the thermal equilibrium concentration 

calculated from the equilibrium phase diagram. The results are in agreement with atomic probe 

observations. Moreover, the simulations of critical nucleus evolution show a number of 

interesting phenomena: 1) a critical classical nucleus first shrinks to a non-classical nucleus, then 

grows; 2) a non-classical nucleus has much slower growth kinetics at the earlier growth stage 

compared to diffusion-controlled growth kinetics; and 3) a critical classical nucleus grows faster 

at the earlier growth stage than the non-classical nucleus. All of these results demonstrate it is 

critical to introduce the correct critical nuclei to correctly capture the kinetics of precipitation.     

 

3. Implementation of the phase field model in MARMOT 

3.1 Phase field modeling 

In Fe-Cr alloys, the precipitates and matrix phases have the same bcc structure. One 

concentration can uniquely describe the precipitation. However, in most alloys, the precipitate 

phase has a different concentration and crystal structure. For example, Cu precipitates in Fe-Cu 

alloys have an fcc crystal structure, while the matrix phase, i.e., the Fe-Cu solid solution, has a 

bcc structure at low temperatures. In thermodynamic calculations such as CALPHAD, two free 

energy functions are needed to describe the free energies of the bcc matrix phase and the fcc 

precipitate phase. To describe the precipitation in such alloys, the PF model usually requires two 

field variables. One is the concentration, and the other is an order parameter that describes the 

different crystal structures. The total system free energy is described in a function of the 

concentration and order parameter. The WBM23 and KKS models24 are commonly used to 

describe the total free energy of the system.  
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The WBM and KKS models have yet to be implemented into MARMOT. In this section, we 

present the two models and implement them into MARMOT. The Fe-Cu alloys—important 

structure materials in nuclear reactors—are used as model alloys to present and test the models. 

PF variables c(r,t) and ϕ(r,t) are used to describe the concentration of Cu and the crystal 

structure, respectively. The total energy of the system is written as:  
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where r is the spatial coordinate, t is time, and V is the system volume. c and ϕ are the gradient 

energy coefficients. f(c, ϕ) defines the local free energy density. The evolution of the variables is 

described using: 
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Equations (17) and (18) are the Cahn-Hilliard and Allen-Cahn equations, respectively. The local 

free energy f(c, ϕ) in both the WBM and KKS models is expressed as: 

             wgcfcfcf  22111,                                               (19) 

with 

    232  ,                                                                                      (20) 

   22 1  g ,                                                                                      (21) 

where f1(c1) and f2(c2) are the free energies of the matrix and precipitate phases, respectively. 

And, c1 and c2 are Cu concentrations in the matrix and precipitate phases, respectively. They can 

be obtained from thermodynamic calculations, such as CALPHAD.    is a shape function that 

describes the volume fraction of the precipitate phase at point r.  g  is the double well 

potential, and w is the height of the double well. The WBM model assumes the material is a 

mixture of the two phases with the same concentration, i.e., c1=c2=c. Thus,  

        cf
c

cf
cc

f
211










  ,                                                                     (22) 

        


gwcfcf
f 



21 .                                                                             (23) 



Homogeneous Nucleation Scheme 
20 Sept 2013 
 

 
 

Kim et al.24 modify the WBM model by assuming the material is a mixture of the two phases that 

have the same chemical potential. This means the concentration and order parameter should 

satisfy the following equations: 

     211 ccc   ,                                                                                (24) 
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Then cf  /  and  /f  in Eqs. (17) and (18) can be calculated by:  
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                         (27) 

Both the WBM and KKS models have been extensively used in modeling precipitations. In 

the following section, we implement them into MARMOT.  

3.2 Implementation into MARMOT 

The splitting scheme is used to solve the Cahn-Hilliard equation with the MARMOT 

framework. The chemical potential is calculated as:  







 



 c
c

f
c

2 .                                                                          (28) 

Then, the Cahn-Hilliard equation changes into: 

 



M
t

c
.                                                                            (29) 

Its weak form is: 

      n
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
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

  MMM

t

c
,,,, ,                         (30) 

where the parentheses and angle brackets refer to interior and boundary integrals, respectively.  

is a test function or weight function. The corresponding kernels are listed with underlines and 

can be found in the MARMOT library: 
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Similarly, we have a weak form of Eq. (25): 
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when c  is a constant. The corresponding kernels are listed as: 
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The weak form of the Allen-Cahn Eq. (18) is: 
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when L and   are constants. The corresponding kernels are: 

 
eACInterfacACBulktiveTimeDeriva

.,,,, 



 n





















LL
f

L
t                                                (35) 

In the preceding equations,  and  also are test functions.  ,nM ,  ,ncc , and 

 ,nL  are all the weak form of Neumann boundary conditions. So these boundary 

integrals do not appear when we consider periodic boundary conditions.  

To implement the WBM and KKS models into MARMOT, the two kernels of 








 


,
f

L  and 









 ,

c

f
 must be changed. 
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3.3 Application of WBM and KKS models in Fe-Cu alloys 

 
Figure 8. Equilibrium phase diagram of Fe-Cu alloys.25 

 

Figure 8 provides the equilibrium phase diagram of Fe-Cu alloys, where α and  indicate the 

bcc and fcc Fe-Cu solid solution and the  phase is the fcc pure Cu. The free energy densities (f1 

and f2) and their first derivatives of α-phase and -phase at different temperatures are plotted in 

Figure 9 and Figure 10, respectively, which are calculated with the Gibbs energy function 

provided in Refs. (7, 26). In the figures, R is the gas constant, and T is temperature. 
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Figure 9. Free energy densities of α-phase (bcc) and -phase (fcc) in Fe-Cu alloys at different 

temperatures.  
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Figure 10. Derivatives of the free energy densities of α-phase (bcc) and -phase (fcc) in Fe-Cu alloys at 

different temperatures. 

 

The equilibrium concentrations of Cu at the α-phase solid solution and -phase Cu 

precipitates (i.e., the -phase) can be obtained by determining their common tangent (listed in 

Table IV). 

 

Table IV. Equilibrium concentrations of Cu at the α-phase solid solution and -phase Cu 
precipitates. 

 

Temperature (K) α-phase -phase 

400 3.95384e-7 1. 
500 8.49763e-6 0.999999 
563 0.000034038 0.999995 
600 0.0000675729 0.999986 
700 0.000308429 0.999891 
773 0.000752067 0.99965 
800 0.00101208 0.999489 
900 0.00273375 0.998301 
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To simulate fcc Cu precipitate growth at given temperatures and concentrations, we use both 

the WBM and KKS models. The total free energy of the system is calculated with Eq. (16). The 

normalized evolution equations are: 
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where 
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
  with 

the assumption of        RTcDcRTcDcM 00 11  . Table V lists the material properties 

and normalized model parameters. The model parameters (c, , w) are determined numerically 

by the interfacial properties: interface thickness and interfacial energy. An interfacial energy of 

1J/m2 is assumed. For the KKS model, the solution of nonlinear equations (Eqs. 24-25) is found 

by searching the pre-prepared table of Eq. (25).  

 

Table V. Parameters used in the simulations. 

Parameter WBM model KKS model 

Aging temperature (K) 773, 563 773, 563 

Gradient energy coefficients 
(Jm2/mol) 

c=5.0e-15 

=2.0e-15(1D)  

c=0.0 

=10.e-15(1D)  

Parameter w (J/mol) 1.0e4 1.0e5 
Diffusion coefficient27 

 )/(exp0 RTQDD   

  

D0 (m
2s-1) 

Q (J/mol) 
4.7e-5 
2.44e5 

4.7e-5 
2.44e5 

Characteristic length l0 (m) 0.296e-9 0.296e-9 
L* 1.0 1.0 

t* 1.e-4 (T=773K), e-
5 (T=563K) 

1.0e-3 

Molar volume Vm (m3/mol)27 7.09e-6 7.09e-6 
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3.4 Results and discussion 

To examine both the WBM and KKS models, we simulate the growth kinetics of fcc Cu 

precipitate (i.e., the -phase) in 1-D and two-dimensional (2-D) cases. Table V lists the 

parameters used. Figure 11 and Figure 12 present the growth kinetics of a same-sized fcc Cu 

precipitate in 1-D case for different temperatures (773 K and 563K) and different initial 

concentrations (c0=0.013 and 0.05) in the Fe-Cu bcc solid solution phase. The curves with open 

circles are obtained from the KKS model, while the curves with open diamonds are from the 

WBM model. We can clearly observe that both models produce almost the same growth kinetics. 

Because the two models use the same thermodynamic and kinetic properties, including the free 

energies and interfacial energies, the small difference in the growth kinetics should be from the 

different assumptions of the two models at the interface. In the simulations, we determine that 

the KKS model can use a larger time step (t*) than the WBM model. Furthermore, the time step 

in the KKS model is almost temperature independent, while the time step decreases with a 

temperature decrease. Therefore, the KKS model has much better computational efficiency than 

the WBM model. Regarding the effect of Cu concentration on growth kinetics, the precipitate 

grows faster in a system with higher Cu concentration than one with lower Cu concentration, as 

expected.  
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Figure 11. Fcc Cu precipitate volume fraction change with time in a 1-D simulation cell simulated by both 
the WBM and KKS models under 773 K and different Cu initial concentration c0. 

 

 
Figure 12. . Fcc Cu precipitate volume fraction change with time in a 1-D simulation cell simulated by 
both the WBM and KKS models under 563 K and different Cu initial concentration c0. 
 

We also compare the growth kinetics of fcc Cu precipitate in a 2-D case, and Figure 13 

showcases the results. These results support the same conclusions: the WBM and KKS models 

produce the same results, and the KKS model has higher numerical efficiency than the WBM 

model.  
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Figure 13. Fcc Cu precipitate volume fraction change with time in a 2-D simulation cell simulated by both 
the WBM and KKS models under 773 K and different Cu initial concentration c0. 

 
In summary, two PF models—WBM and KKS—have been used for simulating the growth 

kinetics of fcc Cu precipitates in bcc Fe-Cu alloys. Both models have been implemented into 

MARMOT and within Fast Fourier Transition (FFT). With FFT codes, the model parameters and 

growth kinetics in 1-D and 2-D simulation cells have been evaluated.  The results demonstrate 

that both models produce the same growth kinetics, but the KKS model has better performance 

in terms of numerical efficiency. Currently, 3-D simulations of the KKS models are underway.  

At the time when this report is written, the implementation in MARMOT codes can successfully 

compile. Since the thermodynamic models directly obtained from CALPHAD involve heavy 

natural log functions, we are still testing the MARMOT code in terms of numerical convergence 

and accuracy in the solution process. We are also considering using the tabulated chemical 

potentials to avoid the calculation of natural log, which can greatly improve the numerical 

stability and efficiency from our numerical results of FFT codes.   

4. Conclusion 

In this report, we summarize our effort in 1) developing a method to predict the 

thermodynamic properties of critical nuclei and 2) implementing the WBM and KKS models, 

which simultaneously solve the concentration and order parameter fields, into MARMOT. For 

given thermodynamic properties of the system, we are able to obtain the thermodynamic 

properties of classical and non-classical critical nuclei, i.e., the concentration profile of a critical 

nucleus and nucleation barrier. With this information, the nucleation rate can be calculated, and 

the nucleation process can be introduced into PF modeling. As noted, we also implement the 

WBM and KKS models into MARMOT, allowing for simulations of more complicated phase 

transitions that involve diffusion and structural changes. The simulations with FFT codes 

demonstrate that the KKS model is efficient in both length and time scales, enabling increases to 

the physical domain and time. The testing of MARMOT codes and the implementation of the 

nucleation process into MARMOT codes are ongoing. 
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