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Abstract

Efficient probability modeling is indispensable for uncertainty quantification of the
recognition data. If the model assumptions do not reflect the intrinsic nature of data
and associated random variables, then a strong performance measure will most likely fail to
come up with a correct match for recognition. This paper proposes the probability models
for two kinds of data obtained with two distinct goals of recognition : identification and
discovery. Both frequentist and Bayesian approaches are considered for drawing inferences
from the data.
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1 Introduction

The uncertainty quantification (UQ) for the available data on a recognition system is

probabilistic in nature and therefore can be performed by statistical modeling. The

model for UQ is dependent on the data and the response variables of interest repre-

senting the different aspects of recognition. The probability distributions for these

variables are functions dependent on the variables and some unknown parameters and

are called the probability models or just models. In matching a probe object with

many gallery objects, the system recognition as a match could be a true match or a

false match, while a non-match could be a true non-match or a false non-match. For

the performance modeling, two categories of recognition are considered : true match

(TM) and not-true match (NTM), where NTM includes false match and non-match.

On the one hand, the number of TM in a recognition process is a variable of interest.

On the other hand, the number of NTM preceding the first TM is another variable

of interest. These two variables have different probability distributions.

The UQ using a binomial probability model was considered in the work of Wang

and Bhanu (2007) for describing the probability that the match score is at rank r

and then calculating the probability that the match scores are within rank r and its

expression when the correct matches happen above a threshold t. Bhanu and Tan

(2003) presented a model based approach of an accurate and efficient indexing of

fingerprint images and performed scientific experiments to compare the performance

of their approach with another prominent indexing approach and demonstrated that

the performance of their approach is better for both the live scan database and the

ink based database NIST-4. Boshra and Bhanu (2005, 2000) presented a theoretical

framework for prediction of lower and upper bounds on the probability of correctly
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recognizing model objects from scene data considering data distortion factors such

as uncertainty (noise in feature locations), occlusion (missing features), and clutter

(spurious features) as well as the structural similarity between model objects. Their

two stage approach calculated a measure of the structural similarity between every

pair of objects in the model set in the first stage, and the model similarity informa-

tion is used along with statistical models of the data distortion factors to determine

bounds on the probability of correct recognition in the second stage. Daugman (2003)

analyzed the statistical variability that is the basis of iris recognition using new large

databases. Daugman (1993) had previously proposed a method for rapid visual recog-

nition of personal identitity based on the failure of a statistical test of hypothesis.

Grother and Phillips (2004) proposed binomial models of open- and closed-set iden-

tification recognition performance, giving formulae for identification and false match

rates as functions of database size, match rank and operating threshold. Johnson,

Sun, and Bobick (2003) gave a method to estimate recognition performance for large

galleries of individuals using data from a significantly smaller gallery by mathemati-

cally modeling a cumulative match characteristic (CMC) curve. The similarity scores

of the smaller gallery were used to estimate the parameters of the model and then

the rank 1 point (nearest neighbor) of the modeled CMC curve is used as our mea-

sure of recognition performance. This method is non-parametric in the sense that it

does not make any assumptions about the gallery distribution. Olson (1995) used

the probabilistic picking effect to discriminate between likely and unlikely matches in

object recognition.

This paper presents UQ with two recognition system data: Data-I and Data-II

for the probe and gallery matching. It also proposes the probability modeling for
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Data-I and Data-II with hyper-geometric, multinomial, and negative binomial dis-

tributions. Both frequentist and Bayesian approaches are considered for estimating

the model parameters. The proposed models do not depend on the type or nature of

the objects but depend on TM scores and NTM scores obtained from the ordered

similarity scores between probe and gallery objects. The concentration measure

McDiarmid-Hoeffding-Azuma (MHA) Inequality is not meaningful for the multino-

mial model considered here because the random variables are not independent. This

opens up possibilities for developing the new concentration measures in UQ research.

The remainder of the paper is organized as follows. Section 2 presents two kinds

of recognition : one for identification and another for discovery. Section 3 presents

two kinds of data, Data-I and Data-II, for uncertainty modeling. Section 4 proposes

the hyper-geometric probability model for UQ from Data-I. Section 5 proposes the

multinomial and negative binomial probability models for UQ from Data-II. Section 6

discusses the analytical methods and issues in performance evaluation while Section 7

considers the outcome of experimental evaluation. Section 8 concludes with possible

future research directions.

2 Recognition System and its Performance

2.1 Recognition−Identification

Consider an object recognition scenario with m probe objects and n gallery objects

where mt probe objects are present in the gallery (the subscript t represents “true”).

The mt (0 < mt ≤ Min(m, n)) is numerically known in advance and it is strictly

positive confirming the presence of at least one probe object in the gallery. The probe
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objects could be m individuals. In a photo (scene data) of n individuals representing

the gallery, mt individuals in the probe are present facing at different angles while

being engulfed by the other noise factors. The purpose of an object recognition system

is to identify the probe objects in the gallery. The system may or may not correctly

perform this task of identifying the mt probe objects in the gallery. The system

compares between the ith probe object and the jth gallery object with respect to a

set of specified features to obtain a similarity score and declares it as the similarity

score for the pair (i, j). For the ith probe object, the system obtains n similarity

scores from the n gallery objects and determines at most one similarity score for the

pair (i, ji) as the match score, where ji is one of the n gallery objects. If the system

identifies correctly a pair (i, ji), then the ith probe object and the jth
i gallery object

are identical. If the system fails to identify correctly, then they are not identical.

Suppose that the system identifies mc such pairs (i, ji) correctly and 0 ≤ mc ≤ mt.

The system generates nm similarity scores, mc of them are TM, (nm−mc) of them

NTM, and the mc pairs (i, ji). The recognition system performance is then measured

by

PI = mc/mt, 0 ≤ PI ≤ 1. (1)

Naturally, PI = 1 means the recognition system performs a perfect identification and

PI = 0 means the system is totally defective. Uncertainties present make no system

perfect in reality. A totally defective system is definitely unacceptable.

2.2 Recognition−Discovery

In another object recognition scenario with m probe objects and n gallery objects, the

probe objects may or may not be present in the gallery. The number of probe objects
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present in the gallery mt (0 ≤ mt ≤ Min(m, n)) is therefore unknown and it can be

equal to zero confirming the possibility of absence of probe objects in the gallery. The

recognition system discovers the presence or absence of probe objects in the gallery.

If the system discovers correctly m̂c probe objects present in the gallery, then m̂c

objects are TM and (nm− m̂c) are NTM . The recognition system performance is

measured by

PD = m̂c/mt, 0 ≤ PD ≤ 1. (2)

When m̂c = mt, or equivalently PD = 1, the system discovery becomes complete.

The unknown mt makes the evaluation of system discovery completeness challenging.

3 Data

3.1 Data-I

Suppose that n > m and the
(

n
m

)
possible samples of m objects from the gallery

are chosen. In the ith sample, the recognition system discovers correctly the presence

of di probe objects from the m2 similarity scores based on the extracted features of

probe and gallery objects, where 0 ≤ di ≤ m for i = 1, ... ,
(

n
m

)
. So, the di objects

are TM and the m2 − di objects are NTM .

3.2 Data-II

The extracted features of probe and gallery objects are the primary data that are

first collected and then used to obtain the nm similarity scores sij from the nm pairs
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(i, j) presented below in the matrix form:
s11 . . . s1j . . . s1n
...

. . .
...

. . .
...

si1 . . . sij . . . sin
...

. . .
...

. . .
...

sm1 . . . smj . . . smn

 ,

or equivalently

(
s11 . . . s1j . . . s1n, . . . , sm1 . . . smj . . . smn

)
.

Assume that the lower the similarity score, the higher the match between the probe

and gallery objects. After arranging the similarity scores in ascending order, each of

the mn similarity scores indexed below

(
1, . . . , j, . . . , n; . . . ; (m− 1)n + 1, . . . , (m− 1)n + j, . . . , mn

)
,

represents one of the mn pairs (i, j). The n could be greater or smaller than m

or even be equal to m. Assume the existence of d pairs giving TM , their indexes

are denoted by r1, r2, ... , and rd, where 1 ≤ r1 < ... < rd ≤ mn. The scores

of the remaining mn − d pairs giving NTM can be classified as: the number x1 of

similarity scores below the matched similarity score indexed by r1; the number xi of

similarity scores between two matched similarity scores indexed by ri−1 and ri; and

the number xd+1 of similarity scores above the matched similarity score indexed by

rd with r1 < ... < ri < ... < rd. Clearly ri − i = x1 + ... + xi for i = 1, ..., d and

x1 + ... + xi + ... + xd+1 = mn− d. For a given d, the known values of d and x1, ... ,

xd make the values of r1, ... , rd known and vice versa.
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4 Modeling Uncertainties from Data-I

What is the chance of determining the TM pairs with Data-I by the recognition sys-

tem? The number of true match scores Ti for the ith sample is a random variable

representing the number of TM pairs discovered in the ith sample by the identifica-

tion system. The probability P (Ti = di) can be described by the hyper-geometric

distribution

P (Ti = di) =

(
mt

di

)(
n−mt

m− di

)/(
n

m

)
, max(0, m−n+mt) ≤ di ≤ min(m, mt). (3)

The expectation and variance of Ti (Bain and Engelhardt (1992), page 97) are

E(Ti) = m
(mt

n

)
, V ar(Ti) = m

(mt

n

) (
1− mt

n

) (n−m

n− 1

)
. (4)

When mt = 25, m = 30, and n = 100, E(Ti) = 7.50, V ar(Ti) = 3.98, and mt

E(Ti)
= 3.33̄.

So the geometric probability model describes that on the average less than one-third

of probe objects present in the gallery is greater than the number of true matched

pairs in each of the samples for m = 25 and n = 100. When n = m, E(Ti) = mt and

V ar(Ti) = 0. Naturally

mt ≥ max(d1, ... , d(n
m)). (5)

The maximum likelihood estimator of mt for the ith sample is given by

m̂
(i)
t =

[
di(n + 1)

m

]
, for i = 1, ... ,

(
n

m

)
, (6)

where [x] denotes the largest integer less than or equal to x. If di = 7 for the ith

sample, then di(n+1)
m

= 23.566 and hence m̂
(i)
t = 23. When di = 8, di(n+1)

m
= 26.93 and

thus m̂
(i)
t = 26. If di(n+1)

m
is an integer, then both di(n+1)

m
and di(n+1)

m
−1 are maximum

likelihood estimators of mt. If the gallery size n and the number of TM pairs m
(i)
t
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become very large satisfying
m

(i)
t

n
= πi, then the hyper-geometric distribution for

P (Ti = di) becomes the binomial distribution (Feller (1968), page 59 and Bain and

Engelhardt (1992), page 97)

P (Ti = di) =

(
m

di

)
πi

di(1− πi)
m−di , di = 0, ... , m, i = 1, ... ,

(
n

m

)
. (7)

The maximum likelihood estimator of πi is π̂ML
i = di

m
. Assume the beta prior density

of πi expressed in terms of gamma functions as

Γ(α + β)

Γ(α)Γ(β)
πi

α−1(1− πi)
β−1, 0 ≤ πi ≤ 1, α > 0, β > 0. (8)

The expectation and variance of this prior density are

Epr(πi) =
α

α + β
, V arpr(πi) =

αβ

(α + β)2(α + β + 1)
. (9)

The posterior mean and variance are

Epo(πi|data) =
α + di

α + β + m
, V arpo(πi|data) =

(α + di)(β + m− di)

(α + β + m)2(α + β + m + 1)
. (10)

The Bayesian estimator of πi (Ghosh, Delampady, and Samanta (2006), pages 32−33;

Hoff (2009), pages 38−39) is

π̂Bayes
i =

α + di

α + β + m
=

α + β

α + β + m
Epr(πi) +

m

α + β + m
π̂ML

i . (11)

If m is very large compared to α + β, then π̂Bayes
i

.
= π̂ML

i .

5 Modeling Uncertainties from Data-II

5.1 Model 1

Given the number of TM scores T = d with Data-II, can the uncertainties present

in the NTM scores be adequately explained by a probability model? The numerical
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values of ordered indexes r1, ... , rd (r1 < ... < rd) of true match scores in the

mn positions are unknown. The (mn − d) similarity scores can be in any of (d + 1)

categories in the sense that the index can be below r1, in between ri−1 and ri for

i = 2, ..., d, and above rd. Let pi be the probability that a similarity score falls

between two TM similarity scores indexed by ri−1 and ri for i = 2, ... , d, p1 the

probability that a similarity score falls below the TM similarity score indexed by

r1, and pd+1 the probability that a similarity score falls above the TM similarity

score indexed by rd; 0 < pi < 1 and p1 + ... + pd+1 = 1. Let Xi, i = 1, ... , d + 1,

be random variables having their realizations xi, i = 1, ... , d + 1, with probabilities

pi, i = 1, ... , d + 1. Assume the multinomial probability model

P

(
X1 = x1, ... , Xd+1 = xd+1

∣∣∣∣∣ T = d,
d+1∑
i=1

xi = (mn−d)

)
=

(mn− d)!

x1! ... xd+1!
px1

1 ... p
xd+1

d+1 .

(12)

The expectation and variance of Xi are E(Xi) = (mn − d)pi and V ar(Xi) = (mn −

d)pi(1−pi). The covariance between Xi and Xj is Cov(Xi, Xj) = −(mn−d)pipj. The

random variables Xi, i = 1, ... , d + 1 are all correlated. The natural estimators of p1,

p2, ... , pd+1 are p̂i = xi

mn−d
, i = 1, ... , d+1 (Rice (1995), page 259). If the recognition

system is perfect with probability one all the time, then x1 = x2 = ... = xd = 0 and

xd+1 = mn− d or equivalently, p̂i = 0 for i = 1, ... , d and p̂d+1 = 1.

If pi = pi(θ) for i = 1, ... , d + 1 are known functions of an unknown parameter θ,

then the maximum likelihood estimator θ̂ML of θ if it exists in the admissible set of

values of θ (Rao (1957), page 140) is

θ̂ML = argmax
θ

(
x1 log p1(θ) + ... + xd+1 log pd+1(θ)

)
. (13)
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The θ̂ML satisfies the equation obtained by setting the score function to zero:

x1

p1(θ)

dp1(θ)

dθ
+ ... +

xd+1

pd+1(θ)

dpd+1(θ)

dθ
= 0. (14)

Then the maximum likelihood estimator of pi = pi(θ) is p̂i
ML = pi

(
θ̂ML

)
for i =

1, ... , d+1. Assume the Dirichlet prior density of p1, ... , pd+1 expressed in terms

of gamma functions as

Γ

(
d+1∑
i=1

αi

)
d+1∏
i=1

Γ(αi)

d+1∏
i=1

pαi−1
i , (15)

where αi > 0 for i = 1, ... , d + 1. Denote W =
d+1∑
i=1

αi and W(−i) =
d+1∑

j=1,j 6=i

αj. The

expectation, variance and covariance of this prior density are

Epr(pi) =
αi

W
, V arpr(pi) =

αiW(−i)

W 2 (W + 1)
, Covpr(pi, pj) =

−αiαj

W 2 (W + 1)
. (16)

The posterior density is also Dirichlet with parameters (xi + αi). The posterior mean

is

Epo(pi|data) =
xi + αi

mn− d + W
. (17)

The Bayesian estimator of pi is expressed as (Lindley (1964), Good(1965))

p̂i
Bayes =

xi + αi

mn− d + W
=

W

mn− d + W
Epr(pi) +

mn− d

mn− d + W
p̂i. (18)

If (mn− d) is very large with respect to W , then p̂i
Bayes .

= p̂i.

Consider the ith ordered index ri of true match score with (ri − i) non-matched

scores below it and ((mn− d)− (ri − i)) non-matched scores above it. Denote p(i) =

p1 + ... + pi and Zi = X1 + ... + Xi. Then, for i = 1, ..., d,

P

(
Zi = (ri− i)

∣∣∣∣∣ T = d,

d+1∑
i=1

xi = (mn−d)

)
=

(
mn− d

ri − i

)
pri−i

(i)

(
1− p(i)

)(mn−d)−(ri−i)
.

(19)
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5.2 Model 2

Assume that the probability of a similarity score to be a TM score is p, the probability

of a similarity score to be a NTM score is q = 1− p, and moreover, the turning out

of similarity scores for pairs (i, j) to be TM or NTM are independent. What is the

probability of the ith match score rank to be ri? The distribution of the random

variable Ri representing the rank of the ith match score can be described by the

negative binomial model (Feller (1968))

P (Ri = ri) =

(
ri − 1

i− 1

)
piqri−i, ri = 1, 2, ..., 0 ≤ p ≤ 1, p + q = 1. (20)

The expectation and variance of Ri are

E(Ri) =
i

p
, V ar(Ri) =

iq

p2
. (21)

The maximum likelihood estimator of p is

p̂ML =
i

ri

. (22)

Assume the beta prior density of p as

Γ(α1 + α2)

Γ(α1) + Γ(α2)
pα1−1qα2−1, α1 > 0, α2 > 0. (23)

The posterior distribution of p given Ri = ri is the beta distribution with parameters

α1+i and α2+ri−i. The mean of this posterior distribution is the Bayesian estimator

of p and is given by

p̂Bayes =
α1 + i

α1 + α2 + ri

=
α1 + α2

α1 + α2 + ri

Epr(p̂) +
ri

α1 + α2 + ri

p̂ML. (24)

A question of importance: How many NTM scores would precede the first TM

score? This can be answered by examining the random variable R1 with the geometric

distribution, a special case of the negative binomial distribution when i = 1. The

expectation and variance of R1 are E(R1) = 1/p and V ar(R1) = q/p2.
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6 Performance Evaluation-Analytical

The concentration inequality measures are used for assessing the performance un-

certainties. The celebrated McDiarmid-Hoeffding-Azuma (MHA) inequality (McDi-

armid (1989), Azuma (1967), Hoeffding (1963)) is stated below.

McDiarmid-Hoeffding-Azuma (MHA) Inequality

Let X1, ... , Xn be independent random variables, with Xi taking values in some set

Ai and f : A1 × ... × An → R (the real line) be such that there exist c1, ..., cn > 0

satisfying

sup
x1,...,xn,xi′

∣∣∣∣f(x1, ..., xi, ..., xn)− f(x1, ..., xi′ , ..., xn)

∣∣∣∣ ≤ ci.

Then for any ε > 0

P

(
f(x1, ..., xi, ..., xn)− E [f(x1, ..., xi, ..., xn)] ≥ ε

)
≤ e

−2ε2/
nP

i=1
ci

2

,

and

P

(
f(x1, ..., xi, ..., xn)− E [f(x1, ..., xi, ..., xn)] ≤ −ε

)
≤ e

−2ε2/
nP

i=1
ci

2

. (25)

As a special case of the MHA inequality, the Hoeffding inequality (Hoeffding (1963))

follows.

Hoeffding (H) Inequality

For Xi ∈ [ai, bi], f = 1
n

n∑
i=1

Xi , ci = bi − ai,

P

(
f(x1, ..., xi, ..., xn)− E [f(x1, ..., xi, ..., xn)] ≥ ε

)
≤ e

−2ε2/
nP

i=1
(bi−ai)

2

. (26)

For Model 1 in modeling uncertainties from Data-II, X1, ... ,Xd+1 are not independent

and therefore the MHA and H inequality measures are not applicable. However, the

simple Chebyshev inequality measure is applicable
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Chebyshev Inequality

For a random variable X with finite variance

P (|X − E(X)| ≥ c) ≤ V ar(X)

c2
, for c > 0. (27)

How good are the proposed models to describe the two kinds of data in Data-I

and Data-II to recognize correctly the probe objects in the gallery? The models are

based on assumptions on the distribution of a response variable or its parameters in

the Bayesian paradigm. Even the the concentration inequality measures are based on

some distributional assumptions like the independence in the MHA and H inequality

measures. Although a lot of research has already been done in developing robust

non-parametric, semi-parametric, and Bayesian methods, the real world recognition

problems with the advancement in methods, the real world recognition problems

continue to remain challenging (Pinto, Cox, and DiCarlo (2008)).

7 Performance Evaluation-Experimental

An extensive performance evaluation was executed at different noise levels by Suresh

Kumar under the guidance of Professor Bir Bhanu and with the assistance of Dr.

Ninad Thakoor (Kumar et al. (2011)). Several of the models discussed were used

for the evaluation. The equal values of n and m were taken within the range 100 to

50,000. For the size 50,000, the average success of finding the exact matching object

for searching the top 194 objects was 91.11% with a variance of 0.58 demonstrating

the strength of the prediction model.

The use of existing NIST-4 fingerprint database was also used to obtain the probe

and gallery objects with n = m = 2, 000. This dataset was divided randomly into
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two equal parts for model building with one part and the other part for validating the

model. With the prediction for the need of 215 match scores for achieving the true

match 95% of the time, the observed success rate was 93.8% after evaluating the top

215 scores. The different gallery sizes 100, 200, 500, and 1,000 were also constructed

from the NIST-4 dataset to perform 1,000 trials with each of them (Kumar et al.

(2011)).

The performance evaluation is based on achieving a trade off between (correct

match, false match) and (correct non-match, false non-match) in the confusion ma-

trix and in the Receiver Operating Characteristics (ROC) curve.

8 Future Direction

Considerable research progress has already been made for probability modeling of

the recognition data when the random variables are independent. This paper opens

up a new direction of probability modeling when the random variables are not inde-

pendent. The popular concentration measure McDiarmid-Hoeffding-Azuma (MHA)

Inequality is no longer applicable when the random variables are dependent. This pa-

per sets the stage for the possibility of developing new concentration measures for UQ.
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