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In the aftermath of the 15 April 
2013 Boston Marathon bombing, 
investigators found themselves 
with massive amounts of data 

from surveillance video cameras, but 
they struggled to gain useful information from the foot-
age. The primary problem was the inability to track peo-
ple across camera views, which is vital to making sense 
of footage from multiple cameras. 

The Boston incident underlines the need for more 
in-depth research on how to keep tabs on the location 
and identity of dynamic objects in a scene, which is 
foundational to automatic video analysis for appli-
cations such as surveillance, monitoring, and behav-
ioral analysis. Research into tracking people in a 
single-camera view has matured enough to produce 
reliable solutions,1 and smart camera networks are 
sparking interest in tracking across multiple-camera 
views. However, tracking in this context has many 
more challenges than in a single view. When net-
worked cameras have partially overlapping views, 
spatiotemporal constraints enable tracking, but in 
larger camera networks, overlap is often impractical, 
and appearance is the key tracking enabler.

For these nonoverlapping views, tracking across 
camera views becomes a reidentification problem gov-
erned by features such as color, shape, and soft biomet-
rics. These appearance-based features need to be reli-
able even with arbitrary camera poses, illumination 

changes, and object occlusion. These requirements raise 
two important questions for computer vision research. 
The first is 

With nonoverlappng views, how can we model 
appearance with robust features and match it accu-
rately and efficiently with database subjects?

Most methods that address overlapping views 
assume a common coordinate system in estimating 
object location. However, estimation errors and packet 
losses in neighboring camera nodes can seriously affect 
the fusion scheme that a particular camera has adopted. 
This raises the second question: 

With overlapping views, how do we fuse object 
location estimates from neighboring cam-
era nodes in a way that can resist outliers?

With or without overlapping views, any camera net-
work faces global bandwidth constraints, making it 
infeasible to transmit all the raw video data between 
every node pair. Also, individual nodes are ill equipped 
to perform large computations. Balancing the amount of 

Camera networks provide opportunities for 

practical video surveillance and monitoring, but 

tracking people across the network presents 

many computational and modeling hurdles 

that researchers have yet to surmount.
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processing at the individual node with 
the amount of data to be transferred to 
neighboring nodes is a daunting prob-
lem and at the heart of the third ques-
tion. Answering this question, which is 
more in the domain of networking and 
distributed computing, will become 
critical once computer vision research-
ers answer the first two questions.

What kind of information must 
we extract at individual cam-
era nodes, and how should we 
share it with neighboring cam-
era nodes for consistent distrib-
uted tracking in real time?

Researchers are already attempting 
to answer the first two questions, apply-
ing multicamera tracking algorithms to 
applications such as monitoring indoor 
and outdoor scenes. We have explored 
this work to highlight basic principles 
that are relevant to both nonoverlap-
ping and overlapping camera networks 
in broad areas. 

We also looked briefly at relevant 
progress in distributed computing 
that addresses big data volume. Such 
efforts will become central to scaling 
camera networks.

NONOVERLAPPING VIEWS
Environments such as offices, buildings 
with multiple floors, schools, and airports 
are not conducive to overlapping cam-
era views and thus must rely on person 
reidentification—a recognition task that 
essentially matches individuals across 
 nonoverlapping camera views. Accurate 
person reidentification is required to track 
a specific subject throughout a building 

equipped with multiple nonoverlapping 
surveillance cameras.

Person reidentification is closely 
related to classical people tracking 
and individual recognition, but it has 
important differences. Classical people 
tracking involves estimating a person’s 
trajectory from frame to frame as the 
person walks into a camera’s view. Indi-
vidual recognition involves determin-
ing the identity of a query subject by 
matching it with subjects in a database. 

Person recognition is generally 
based on biometrics such as a per-
son’s face, iris, and gait—all of which 
are extremely difficult to capture reli-
ably in a camera network, as Figure 1 
illustrates.

Person reidentification must address 
the data association problems that arise 
when video or image capture is discon-
tinuous in space and time—a daunting 
prospect because of the many factors 
that contribute to discontinuity:

 › Low resolution. Most surveillance 
cameras have hardware limita-
tions that prevent them from cap-
turing high-resolution images.

 › Arbitrary poses. Networked cam-
eras have arbitrary orientations, 
which means the same person in 
each camera view can have a dif-
ferent orientation.

 › Changing illumination. Because 
cameras capture images at dif-
ferent times and locations, the 
amount of light varies, which can 
dramatically change a person’s 
appearance.

 › Occlusion. Various dynamic or 
static objects in the scene can 

occlude a person, or the person 
might have accessories like a suit-
case or backpack that partially 
occlude parts of the body critical 
to identification.

Reidentifying a person from a large 
database requires first extracting 
robust visual features (for example, 
color, shape, and texture) for both the 
query and database subjects and then 
matching the two sources relative to 
the extracted features. In other words, 
reidentification is appearance based.

Person-reidentification methods 
aim to extract feature representations 
with low variations for the same sub-
ject (intraclass) and high variations 
among different subjects (interclass). 
However, because a person’s appear-
ance can change significantly across 
cameras, the intraclass variation is 
often larger than the interclass varia-
tion, which makes accurate classifica-
tion challenging.

To address this problem, research-
ers have devised approaches to learn 
the optimal distance metric for image 
pairs. The idea is to weight features 
according to their perceived impor-
tance in reidentification. The system 
applies machine learning techniques to 
learn a transformation of the original 
feature representation. The resulting 
feature representation is then the basis 
for minimizing intraclass distances 
and maximizing interclass ones. The 
disadvantage is that the learned trans-
formation tends to overfit to the train-
ing data. 

Research to refine metric learning 
approaches and improve the reliability 

(a) (b) (c)

FIGURE 1. Boston bombing suspects viewed in multiple cameras. Views of the same person differ markedly in three distinct camera views, 
highlighting the complexity of relying on biometrics for subject reidentification.
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of appearance-based matching has 
produced a spectrum of reidentifica-
tion schemes. Although some reiden-
tification techniques such as color 
invariants concentrate on feature rep-
resentation, the majority are metric 
learning approaches that apply a range 
of machine learning techniques.

Color invariants
Typically, color is a powerful reiden-
tification cue, usually based on histo-
grams of body parts or the entire body 
in color spaces, such as red-green-blue 
or hue-saturation-value. However, be-
cause cameras and imaging conditions 
vary, perceived color can be signifi-
cantly different across scenes.

One proposal to overcome this 
problem2 is based on invariant color 
description. Rather than depending 
on descriptions of exact color distri-
butions, the approach relies on shape 
descriptors that encode the structure of 
those distributions as clouds, each with 
a distinct color. To provide the invari-
ant description, the shape descrip-
tor codes the cloud’s shape and rela-
tive orientation. Thus, legs might have 
one cloud and the torso another. The 
authors report improved reidentifica-
tion performance relative to traditional 
histogram description.2

Mining feature importance
The metric learning approach assumes 
that the assigned feature weights are 
universally accurate, but that might not 
always be the case. Clothing color, for 
example, might receive a high weight 
because of its importance in reidenti-
fication, but in a scene in which many 
people are wearing the same color 
jeans, clothing color is less important.

One research group3 has proposed a 

method to determine person-specific fea-
ture importance without supervision. 
The method first clusters appearance fea-
tures to find representative prototypes 
from the data and then determines the 
weights for each prototype’s individual 
features by learning to classify the pro-
totypes correctly on the basis of those 
features. For a reidentification query, 
the method computes query-specific 
weights by assigning the closest proto-
type weights or by combining the query’s 
distances from all the prototypes. The 
method complements top-down super-
vised metric learning, offering a bot-
tom-up, unsupervised approach to deter-
mining feature importance.

Relative distance comparison
Traditional metric learning approaches 
to reidentification must contend with 
large intraclass variations from chang-
ing image conditions. Each person can 
have a different degree of intraclass 
variation, and learning is required 
for a large number of undersampled 
classes. When learning’s goal is to min-
imize intraclass distance while maxi-
mizing interclass distance, these lim-
itations can lead to model overfit or 
intractability. 

One proposed solution4 addresses 
these limitations by formulating 
reidentification as a relative distance 
comparison (RDC) problem. Under this 
model, the distance for a true query 
match must be smaller than that for 
wrong matches. This constraint is more 
relaxed than trying to minimize intra-
class distance for all the examples in 
some classes while maximizing the dis-
tance of all the examples in the others. 
Because the model is concerned only 
with the relative distances of query 
matches versus nonmatches, not their 

exact values, intraclass variations 
introduce less bias. 

The authors report that the approach 
outperforms similar distance learn-
ing approaches,4 such as Information 
Theoretic Metric Learning, adaptive 
boosting (AdaBoost), and RankSVM, a 
method for ranking based on support 
vector machines.

Reference-based reidentification
Reference-based reidentification5 rec-
ognizes that appearance can change 
radically across camera views and 
addresses the difficulty of direct 
matching. Unlike current methods that 
directly compare the query and data-
base, the proposed solution introduces 
a novel scheme that uses an indepen-
dent reference set to indirectly match 
the query and database image. The 
method consists of two main steps: 
canonical correlation analysis (CCA) 
and the generation of learning and ref-
erence descriptors (RDs).

Canonical correlation. Using CCA to 
learn projection matrices maximizes 
the correlation between data from dif-
ferent views. CCA explores the relation-
ship between two sets of random vari-
ables from different observations of the 
same data, such as subject images from 
different views. Its optimization stage 
finds projections with a maximum cor-
relation between the two random vari-
able sets—that is, it finds a transfor-
mation that more accurately couples 
features of the same subject from dif-
ferent views.

CCA, which is performed in an 
unsupervised manner, finds candi-
date projections by solving equiva-
lent generalized eigenvalue problems. 
By choosing a certain number of basis 



  M A R C H  2 0 1 5  81

vectors, it can simultaneously reduce 
feature dimensions.

Reference descriptor generation. 
Another novel part of reference-based 
reidentification is that neither com-
plex feature representation design nor 
distance metric learning is necessary. 
Instead, a reference set becomes the 
basis for generating RDs for the query 
and database subjects. The reference 
set contains images of individuals that 
differ from the query and database sub-
jects. For each individual in a reference 
set, the system stores images from dif-
ferent views—essentially acting as an 
intermediate matching mechanism.

As Figure 2 shows, computing the 
similarity between the query subject 
and each reference set individual pro-
vides the RD for a query subject. Each 
individual in reference set has multiple 
images, but to construct an RD, the sys-
tem uses only the image most similar to 
the subject. In the figure, for example, 
the system chooses only frontal images 
for each individual in the reference 
set because the query subject is a fron-
tal image. The subject’s profile view is 
already in the database, stored as an RD 
that the system generates by compar-
ing the subject’s profile view to profile 
views of reference individuals. 

Reidentification begins by extract-
ing color and texture features for the 
query, database, and reference subjects. 

The system then applies CCA transfor-
mation to the query, database, and ref-
erence features and finally generates 
RDs for query and database subjects by 
comparing them to reference set indi-
viduals. Reidentification ends with a 
pair of matched RDs. 

The reference-based method uses 
cosine similarity to find the database 
subject most similar to the query sub-
ject. Relative to similarity and distance 
measures, such as Euclidean and chi-
square distance, cosine similarity is 
computationally more efficient, partic-
ularly for feature descriptors with many 
dimensions, and is scalable to large data-
bases. Because RDs replace original fea-
tures, there is no longer a need to com-
pare image pairs directly to find the best 
match, which streamlines computation.

Another advantage of the reference- 
based method is that RDs are more 
distinct among different subjects and 
more consistent for the same subject 
despite the large appearance variation 
in the original images. This sharper 
distinction is a direct result of maxi-
mizing correlation through CCA. 

Finally, because RD dimensions are 
independent of the original feature 
dimensions, it is possible to extract dif-
ferent features from different camera 
views for better discrimination. 

All these advantages make the 
reference- based method a promising 
new approach to people tracking. Indeed, 

in an evaluation, it outperformed other 
state-of-the-art techniques including rel-
ative distance comparison.5

Context-aware learning 
for reidentification
Like most computer vision approaches, 
reidentification uses a fixed parameter 
or feature set that the system designer 
defines through experimentation or 
training. However, as environmen-
tal conditions change, this set might 
become invalid, which can degrade 
system performance. One novel pro-
posal6 avoids this problem by mapping 
environmental conditions or context to 
reidentification parameters or features.

The method is based on the idea that 
the importance of each reidentification 
feature—for example, scene illumina-
tion, a person’s distance from the cam-
era, subject size, and image-capture 
noise—can vary with context, which 
is time dependent. The method mod-
els feature importance as time-depen-
dent weights, which are determined 
through reinforcement learning (RL),7 
a stochastic learning automaton that 
chooses actions according to some 
probability distribution. 

In RL, the environment evaluates 
the actions and provides the machine 
with feedback or reinforcement. On 
the basis of this reinforcement, the 
machine updates its probability distri-
bution so that the expected evaluation 
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FIGURE 2. Generating a reference descriptor (RD). The system builds an RD  from images in the reference set that most closely match the 
query image. For example, all the images in the red box are mostly frontal subject views because the query image has a frontal view. The 
database already holds the subject’s profile view, which is represented by an RD of mostly profile views (images in the blue box). Bar heights 
indicate the degree of similarity between the images being described (query or database) and the reference set. The red and blue bars 
match closely for the query and database, which implies that RD-based reidentification is reliable.
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will be more favorable. Reinforce, a class 
of RL algorithms, can immediately eval-
uate the correctness of each identifica-
tion decision. However, because these 
algorithms have binary output, the sto-
chastic real-valued (SRV) algorithm is a 
better choice, since it allows real-valued 
outputs and associative learning. The 
real-valued outputs enable direct learn-
ing of feature importance, while the 
associative learning ability adds con-
text awareness.

Figure 3a shows the structure of a 
reidentification system with context 
awareness. The system’s database (B = 
{e1, e2 ,.. .,eL}) holds L examples of K dif-
ferent individuals from different cam-
eras, where L ≥ K, since the database 
can hold multiple examples of the same 
person. The lth example, el, is a pair of 
features and corresponding person (Fl, 
IDl). When queried with Qi, the database 
returns a ranked list of identities (out-
put) Oi =oi

1 ,oi
2 ,…oi

K . 
The list is ranked according to 

decreasing similarity or increasing dis-
tance. The distance D between query Qi 
and example el is given by

D(Qi ,el )= w m(t)d(f mm=1

M∑ , ′f m),

where wm(t) is the time-dependent 
weight for each feature, fm is the feature 

from the query,  ′f m  is the feature from 
the example, and d(•) is the appropriate 
distance measure.

The context-aware method uses the 
SRV algorithm to learn the mapping 
between context and weights. As the 
user presents a query to the database, 
the method first estimates context and 
then uses the SRV algorithm to com-
pute the weights, which it then supplies 
to the database. With updated weights, 
the database provides the ranked list Oi 
for the query, and the algorithm uses 
the true identity’s rank Otrue from the 
list to compute the reinforcement for 
the SRV units. A reinforcement of 1 sig-
nifies correct identification; 0 signifies 
incorrect identification. As Figure 3b 
shows, context-aware weighting sig-
nificantly outperforms fixed weights.

OVERLAPPING VIEWS
Many researchers have investigated 
tracking across multiple cameras in 
the presence of ground planes, such as 
a road or floor—basically any plane in 
which human activity can take place. 
In most methods, a homographic trans-
formation captures the relationship 
between the camera image plane and 
ground plane and represents the results 
as a 3 × 3 matrix (Hπ). Computing this 
matrix requires identifying parallel 

and perpendicular lines, which can be 
challenging. Urban scenes, for exam-
ple, generally have roads, parking lots, 
and many buildings, which involve 
many such lines. 

Multicamera person tracking requires 
estimating the posterior—a fusion of 
the individual’s location estimates on 
the ground plane. One research group8 
has published a detailed comparison of 
decentralized and distributed tracking 
methods, focusing on the algorithms’ 
energy and computational efficiencies. 

Other work examines the problem 
from a computer vision perspective 
with the goal of building robust appear-
ance and motion models. Research in 
this category uses probabilistic meth-
ods to promote collaboration between 
ground plane and image plane track-
ers. Most use either distributed Kal-
man filters or particle filters to estimate 
the posterior distribution of a subject’s 
location on both the image and global 
ground planes, which yields the poste-
rior density. Figure 4a illustrates how 
object location estimates from multiple 
cameras can be the basis for estimating 
posterior density on the global ground 
plane. (Posterior distribution is a prob-
ability distribution that represents 
updated beliefs about the parameter 
after seeing the data.)
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FIGURE 3. Context-aware learning. (a) Context-aware reidentification system and (b) comparison of cumulative accuracy with con-
text-aware (blue) and constant (red) feature weighting with an average of 20 runs. Green lines represent the ±3 standard deviations of 
uncertainty for the 20 runs. Context-aware reidentification consistently performed higher than reidentification with fixed feature parame-
ters. RL: reinforcement learning.
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Kalman consensus filtering
Multicamera person tracking on the 
ground plane is essentially a consen-
sus problem, since cameras use node-
to-node communication to reach agree-
ment about an individual’s location. 
One solution9 involves using Kalman 
consensus filtering based on distrib-
uted state estimation, assuming a lin-
ear dynamic system for state-space 
modeling. At every time step t, each 
camera finds its neighboring nodes and 
transmits the location estimate from 
time (t – 1) along with the correspond-
ing information matrix. It also receives 
messages from neighboring cameras 
and fuses the information to compute 
the object’s posterior state and error 
covariance matrix. 

The approach assumes a Gaussian 
posterior, but in real-world scenar-
ios, people exhibit complex motion 
patterns that are generally non- 
Gaussian. Others have shown that 
methods based on the Markov Chain 
Monte Carlo (MCMC) technique gener-
alize well for arbitrary distributions 
in posterior estimation and can also 
model nonlinear object dynamics.10

Particle filtering
Methods based on particle filtering rep-
resent the posterior distribution as a set 

of weighted particles. Particle filters 
based on sequential importance sam-
pling (SIS) evaluate how well each par-
ticle conforms to the assumed dynamic 
model and interpret the observations. 
Using this assessment, an algorithm 
generates a weighted particle approxi-
mation to the filtering distribution and 
computes posterior state estimates. 

The goal of object tracking is to find 
the best object configuration Xt = [xt,yt] 
given observations up to time t where xt 
and yt are the coordinates of the object 
on the image or ground plane. The algo-
rithm obtains the optimal object con-
figuration using maximum a posteriori 
(MAP) estimation:

X̂t =arg max
Xt

 p(Xt | Y
1:t )

A set of weighted particles in the 
sequential importance resampling 
(SIR) filters approximates the posterior 
at time t – 1:

p(Xt−1
| Yt−1

)≈{Xt−1
( p) ,πt−1

( p) }P
p=1

where p is the particle index and P is the 
number of particles. The weight of the 
pth particle is given by πt

( p)= p(Yt |Xt
( p)). 

Particle weights tend to accumulate in 
a few particles, a trend often referred 
to as particle degeneracy. SIR particle 

filters introduce a step to heuristically 
resample particles with larger weights 
before propagating state space. Figure 
4b illustrates this process.

Distributed particle filtering 
approaches are computationally inten-
sive relative to their parametric coun-
terparts, and the information that a 
collaboration algorithm needs is not 
obvious. One approach to multicam-
era object tracking on the ground plane 
uses collaborative particle filters.11 For 
every object, a pair of particle filters col-
laborate: one on the image and another 
on the ground plane. First, the image 
plane particle filters pass messages 
about the target location to the ground 
plane particle filter, which integrates 
information from multiple cameras on 
the basis of where the target’s principal 
axis intersects. The ground plane parti-
cle filter then fuses multicamera infor-
mation, and the image plane particle 
filter incorporates the fused results. 

Compared to fusion frameworks that 
rely on precise feet positions, the use of 
the objects’ principal axis during fusion 
produced significantly more accurate 
results. However, the proposed algo-
rithm operates in an open-loop fash-
ion; that is, it does not use ground plane 
tracking results to learn a better image 
plane tracking model. 
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FIGURE 4. Estimating ground plane posterior density for object tracking. (a) Object location estimates obtained by homographic transfor-
mation from different views are fused to estimate the object’s global ground plane location. Hπ

A, H
π
B , and H

π
C  represent the homography trans-

formation between the ground plane π and Cameras A, B, and C, respectively. (b) Estimation with sequential importance resampling (SIR) 
particle filters, which add a resampling step; and (c) estimation with particle filters based on Markov Chain Monte Carlo (MCMC) sampling.
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Closed-loop interaction 
with active collaboration
An alternative proposal introduces 
closed-loop interaction with an active 
collaboration mechanism based on dis-
tributed particle filter algorithms.12 
Figure 5 illustrates the active collab-
oration mechanism. The algorithm 
directly addresses the closed-loop 
interaction problem between image 
plane and ground plane tracking by 
using multiple instance learning to 
model object appearance in the image 
plane and generating training sam-
ples from particle locations. 

Multiple-instance learning is a vari-
ation of supervised learning, in which 
the system provides labels for instance 
sets, or bags, instead of for individ-
ual instances and trains the classi-
fier with a label ambiguity. At every 
time instance, t, the algorithm uses 
the appearance classifier to weight 
image plane particles and then 
shares particles with neighboring 
camera views. With the particles 
from neighboring camera views, 
each camera learns a Gaussian mix-
ture model (GMM) to represent the pos-
terior distribution on the ground plane. 

The method is based on the assumption 
that the entire network is time synchro-
nized and that precomputed ground 
plane homography is available.

With the learned GMM, the sys-
tem reweights image plane particles 
according to the ground plane poste-
rior distribution. The reweighted par-
ticles define the positive samples for 
training the discriminative appear-
ance model. The system randomly 
generates negative samples for train-
ing from the area outside of positive 
samples. By doing this, it effectively 
feeds back the ground plane fusion 
results to the image plane tracker 
and learns a robust appearance model 
from the samples computed using 
particle locations on the image plane. 

The fusion mechanism is not resis-
tant to outliers. For example, the over-
all tracking algorithm could still fail 
if most of the nodes fail. Although the 
method requires no raw image data 
transfer between camera views, trans-
ferring particles back and forth imposes 
a serious communication burden.

One solution to this problem uses 
prior knowledge about the scene to 
improve tracking.13 The distributed 

tracking algorithm, which is based on 
MCMC sampling, uses a set of particle 
filters for every object. The local par-
ticle filter models object motion in the 
image plane. The global particle filter 
models object motion in the ground 
plane and takes prior scene knowledge 
into account to make results robust to 
outliers. 

It is not straightforward to mix local 
and global particle filters. More import-
ant, the algorithm represents poste-
rior distribution as a set of weighted 
particles, so it suffers from particle 
degeneracy. 

The Metropolis-Hastings sampling 
algorithm14 defines a Markov chain 
over configuration space Xt, and the 
chain’s stationary distribution equals 
the posterior distribution p(X|Y). As 
Figure 4c shows, the algorithm uses a 
set of unweighted samples

p(Xt | Yt )≈{Xt
( p)}p=1

P

to represent the posterior in MCMC-
based particle filters and employs an 
interactive MCMC algorithm to com-
bine local and global particle filters. 
MCMC method complexity varies lin-
early with object number, unlike the 
complexity of SIR particle filters, which 
varies exponentially.

An ensemble learner models local 
and global appearances. It explicitly 
models global appearance using Grass-
mann manifolds to account for view-
point changes. The Grassmann man-
ifold is the space of d dimensional 
subspace in Rn, and a point on the Grass-
mann manifold represents a subspace. 

The sampling algorithm uses prin-
cipal component analysis to project 
training samples from two views onto a 
lower dimensional subspace. It uses the 
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FIGURE 5. Active collaboration between image plane and ground plane trackers. The algo-
rithm uses ground plane fusion results to learn a better appearance model for image plane 
tracking and generates training samples.
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geodesic paths that are constant veloc-
ity curves on a manifold to obtain inter-
mediate subspaces between two views. 
Finally, it uses intermediate subspaces 
that account for viewpoint changes to 
generate training samples for learning 
the global appearance model. 

Serious issues remain in tracking 
people with multiple cameras. 
Researchers continue to con-

front computational and communica-
tion bottlenecks, as well as inaccurate 
appearance matching. Unfortunately, 
there are no ready answers to the open 
questions we pose, although work is in 
progress to address them.

For tracking with nonoverlapping 
camera views, reidentification is cen-
tral, and most approaches try to tackle 
it as an image-matching problem with-
out context awareness. However, recent 
work shows that context information 
can improve reidentification accuracy. 
Exploring a variety of contexts—both 
image and nonimage based—remains 
an active research direction.

For tracking with overlapping views, 
methods based on distributed filter-
ing with Kalman and particle filters 
have weaknesses, but incorporating 
prior contextual information into the 
distributed particle filter framework 
shows promise. Algorithms can be used 
to leverage a variety of information on 
crowd flow, entry and exit points, and 
obstacles as input into filtering-based 
methods. Other algorithms are 
attempting to discriminate among peo-
ple with a similar appearance who cross 
each other or form a group and then 
disperse either within a single view or 
across multiple views (co-occurence), 
with the goal of deriving more robust 

appearance models. Future research 
work should focus on exploiting these 
contextual priors to improve Bayesian 
MAP estimation. 
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