Table 3 Growth yields, basal respiratory activity and calculated ATP turnover rate of yeast cells during lactate-limited growth^a | | Growth phase | | | |---|-------------------|------------------|-------------| | | Early exponential | Late exponential | Stationary | | Y _{X/S} (g dry weight/g lactate) | 0.25 ± 0.01 | 0.28 ± 0.02 | _ | | Enthalpic growth yield (%) | 32 ± 2 | 37 ± 3 | _ | | JO basal (nat.O/min/mg dry wt) | 318 ± 22 | 223 ± 39 | 63 ± 14 | | JATP (nmol ATP/min/mg dry wt) | 366 ± 31 | 234 ± 38 | 54 ± 12 | ^aGrowth yields were determined by calculating the part of enthalpy equivalent of lactate input conserved as biomass (enthalpic growth yield) (see Fig. 2 and Section 3) or by plotting cumulative biomass production versus cumulative lactate consumption ($Y_{X/S}$) (see Fig. 2A). The respiratory rates were measured in the growth medium as described in Section 2. The ATP turnover rate, J_{ATP} , was calculated from the basal respiratory rate multiplied by effective ATP/O ratio values of 1.15, 1.05 and 0.85 for early, late exponential and stationary phase, respectively, as described in the text.