
Collective characterization, optimization
and design of computer systems

Grigori Fursin
 INRIA, France

HiPEAC computing week
April 2012

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

HiPEAC3 includes new instrument: Thematic sessions.

Evolution of HiPEAC2 clusters and task forces.

Building a network of researchers for a given topic.

Address rising complexity of the design and optimization
of computer systems through collaborative knowledge discovery,

preservation, systematization, sharing and reuse!

Session introduction

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Program

Time Talk Presenter

9:30-10:30 Collective SW/HW co-design:

methodology, repository and tools

Grigori Fursin

INRIA, France

10:30-11:00 Looking for key factors to improve

runtime adaptation.

Marisa Gil

UPC, Spain

11:00-11:30 Break

11:30-12:00 Multi-core HW/SW interplay and

energy efficiency

Lasse Natvig

NTNU, Norway

12:00-12:30 Improving Both the Performance

Benefits and Speed of Optimization

Phase Sequence Searches.

David Whalley

Florida State University,

USA

12:30-13:00 Response Surface Modeling

Techniques for Design Space

Exploration of Multi-core

Architectures.

Cristina Silvano

Politecnico di Milano, Italy

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

• Background

• Motivation, challenges

• Collective co-design methodology

• Usage examples

• New publication model

• Conclusions

• References and tech. details

Outline

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Interdisciplinary background

Year: Position: Institution:

1993-1997
B.S.

physics and electronics
MIPT, Russia

1997-1999
M.S.

computer engineering
MIPT, Russia

1999-2004
Ph.D.

computer science
University of Edinburgh,

UK

2005-2007 Postdoctoral researcher INRIA, France

2007-2010 Tenured scientist INRIA, France

2010-2011
Director of research
and group manager

Intel Exascale Lab, France

2012-cur. Tenured scientist INRIA, France ?

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Solution

Back to basics

Task

Result

End user

User requirements:

most common:

minimize all costs
(time, power consumption,

price, size, faults, etc)

guarantee real-time constraints
(bandwidth, QOS, etc)

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Solution

Back to basics

Task

Decision
(depends on user

requirements)

Result

Available choices
(solutions)

End user

User requirements:

most common:

minimize all costs
(time, power consumption,

price, size, faults, etc)

guarantee real-time constraints
(bandwidth, QOS, etc)

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Solution

Back to basics

Task

Properties

Characteristics

Requirements

Decision
(depends on user

requirements)

Result

System state

Available choices
(solutions)

End user

User requirements:

most common:

minimize all costs
(time, power consumption,

price, size, faults, etc)

guarantee real-time constraints
(bandwidth, QOS, etc)

Characterization

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Solution

Back to basics

Task

Properties

Characteristics

Requirements

Decision
(depends on user

requirements)

Result

System state

Available choices
(solutions)

End user

User requirements:

most common:

minimize all costs
(time, power consumption,

price, size, faults, etc)

guarantee real-time constraints
(bandwidth, QOS, etc)

Should provide choices
and help with decisions

Hardware and
software designers

Characterization

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Solution

Back to basics

Task

Properties

Characteristics

Requirements

Decision
(depends on user

requirements)

Result

System state

Available choices
(solutions)

End user

User requirements:

most common:

minimize all costs
(time, power consumption,

price, size, faults, etc)

guarantee real-time constraints
(bandwidth, QOS, etc)

Service/application
providers

(supercomputing,
cloud computing,
mobile systems)

Should provide choices
and help with decisions

Characterization

Hardware and
software designers

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Back to basics

Task:

What is the shortest time to transfer 2TB of data from a HDD in New York to Moscow?

The fastest speed of available Internet is 2MB per second.

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Back to basics

Task:

What is the shortest time to transfer 2TB of data from a HDD in New York to Moscow?

The fastest speed of available Internet is 2MB per second.

Possible solution:

~10 hours by plane if cost doesn’t matter

Important to identify all properties, requirements,
constraints and AVAILABLE SOLUTIONS!

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Available solutions: hardware

Companies compete hard to deliver many solutions with various characteristics:
performance, power consumption, size, bandwidth, response time, reliability, cost …

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Available solutions: software

Software developers try to keep pace and produce various
algorithms, programming models, languages, analysis tools, compilers,

run-time systems, databases, etc.

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x

GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1
ICC 12.0 ICC 12.1

LLVM 2.6

LLVM 2.7

LLVM 2.8

LLVM 2.9
LLVM 3.0

Phoenix

MVS

XLC

Open64

Jikes
Testarossa

OpenMP MPI
HMPP

OpenCL CUDA gprof prof
perf oprofile

PAPI TAU

Scalasca

VTune

Amplifier scheduling

algorithm-
level

TBB

MKL
ATLAS

program-
level

function-
level Codelet

loop-level hardware
counters

IPA
polyhedral

transformations
LTO

threads

process

pass
reordering

run-time
adaptation

per phase
reconfiguration

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Solutions

Challenges

Task

Result

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Solutions

Challenges

Task

Result

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x

GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1
LLVM 2.6

LLVM 2.7

LLVM 2.8

LLVM 2.9

LLVM 3.0

Phoenix

MVS XLC

Open64

Jikes
Testarossa

OpenMP MPI

HMPP

OpenCL

CUDA
gprof

prof

perf

oprofile

PAPI

TAU

Scalasca

VTune

Amplifier scheduling

algorithm-
level TBB

MKL

ATLAS program-
level

function-
level

Codelet

loop-level

hardware
counters

IPA

polyhedral
transformations

LTO
threads process

pass
reordering

run-time
adaptation

per phase
reconfiguration

cache size

frequency

bandwidth

HDD size

TLB

ISA

memory size

cores

processors

threads

power
consumption execution time

reliability

1) Rising complexity of computer systems:
too many design and optimization choices

2) Performance is not anymore the only
requirement:

multiple user objectives vs choices
benefit vs optimization time

3) Complex relationship and interactions
between ALL software and hardware
components.

4) Too many tools with non-unified interfaces
changing from version to version:

technological chaos

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Solutions

Challenges

Task

Result

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x

GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1
LLVM 2.6

LLVM 2.7

LLVM 2.8

LLVM 2.9

LLVM 3.0

Phoenix

MVS XLC

Open64

Jikes
Testarossa

OpenMP MPI

HMPP

OpenCL

CUDA
gprof

prof

perf

oprofile

PAPI

TAU

Scalasca

VTune

Amplifier scheduling

algorithm-
level TBB

MKL

ATLAS program-
level

function-
level

Codelet

loop-level

hardware
counters

IPA

polyhedral
transformations

LTO
threads process

pass
reordering

run-time
adaptation

per phase
reconfiguration

cache size

frequency

bandwidth

HDD size

TLB

ISA

memory size

cores

processors

threads

power
consumption execution time

reliability

Result:

• finding the right solution is extremely
challenging

• everyone is lost in choices

• dramatic increase in development time

• low ROI

• underperforming systems

• waste of energy

• ad-hoc, repetitive and error-prone
manual tuning

• slowing innovation in science and
technology

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Solutions

Challenges

Task

Result

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x

GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1
LLVM 2.6

LLVM 2.7

LLVM 2.8

LLVM 2.9

LLVM 3.0

Phoenix

MVS XLC

Open64

Jikes
Testarossa

OpenMP MPI

HMPP

OpenCL

CUDA
gprof

prof

perf

oprofile

PAPI

TAU

Scalasca

VTune

Amplifier scheduling

algorithm-
level TBB

MKL

ATLAS program-
level

function-
level

Codelet

loop-level

hardware
counters

IPA

polyhedral
transformations

LTO
threads process

pass
reordering

run-time
adaptation

per phase
reconfiguration

cache size

frequency

bandwidth

HDD size

TLB

ISA

memory size

cores

processors

threads

power
consumption execution time

reliability

Result:

• finding the right solution is extremely
challenging

• everyone is lost in choices

• dramatic increase in development time

• low ROI

• underperforming systems

• waste of energy

• ad-hoc, repetitive and error-prone
manual tuning

• slowing innovation in science and
technology

Understanding and modeling of the overall
relationship between end-user algorithms,
applications, compiler optimizations,
hardware designs, data sets and run-time
behavior became simply infeasible!

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Treat
computer

system as a
black box

Attempts to solve these problems: auto-tuning

Task

Result

Application

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data set

Algorithm

Use auto-tuning:

Explore multiple
choices empirically:

learn behavior of
computer systems
across executions

Covered all
components in the
last 2 decades and

showed high
potential but …

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

• Optimization spaces are large and non-linear with many local minima

• Exploration is slow and ad-hoc (random, genetic, some heuristics)

• Only a few benchmarks are considered

• Often the same (one) dataset is used

• Only part of the system is taken into account
(rarely reflect behavior of the whole system)

• No knowledge sharing

Auto-tuning shows high potential for nearly 2 decades but still far from
the mainstream in production environments.

Why?

Attempts to solve these problems: auto-tuning

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Treat
computer

system as a
black box

Task

Result

Application

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data set

Algorithm
Use machine

learning to speed
up exploration

Apply predictive
modeling to suggest
profitable solutions
based on properties

of a task and a
system

Covered all
components in the

last decade and
showed high

potential but …

0

2

4

6

Attempts to solve these problems: machine learning

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

• Selection of machine learning models and right properties is non-trivial:
ad-hoc in most of the cases

• Limited training sets

• Only part of the system is taken into account
(rarely reflect behavior of the whole system)

• No knowledge sharing

Machine learning (classification, predictive modeling) shows high
potential during past decade but still far from the mainstream.

Why?

Attempts to solve these problems: machine learning

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Treat
computer

system as a
black box

Task

Result

Application

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data set

Algorithm

Co-design:

Explore choices and
behavior of the
whole system.

Attempts to solve these problems: co-design

Showed high
potential in the last

years but …

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

• Even more choices to explore and analyze

• Limited training sets

• Still no knowledge sharing

Co-design is currently a buzz word and a hot research topic but still far
from the mainstream.

Why?

Attempts to solve these problems: machine learning

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Main idea:

Why not to leverage the experience
and computational resources of multiple users?

Attempts to solve these problems: knowledge sharing

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Many researchers develop some repositories for experiments.

The lifespan of such repositories: end of the PhD or project.

I don’t know repositories that were made public.

Major reasons:

Main focus in academia is to publish as many papers as possible.

Reproducibility and statistical meaningfulness of results is often not
even considered! In fact, it is often impossible.

Software development is considered as overhead or even waste of time.

Attempts to solve these problems: optimization repositories

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Simply too time consuming and costly to build, support and extend
particularly with ever changing tools, interfaces, benchmarks, data sets,

properties, models, etc.

Only big companies or projects can afford to build and support their own
big repositories but they are either not public (Google, Intel, IBM, ARM)

or used as a simple storage of information (SciDAC, SPEC).

Furthermore, public data and tools may cause competition.

Attempts to solve these problems: optimization repositories

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Similar problems in other sciences

We can we learn from existing sciences that deal with complex systems:
physics, mathematics, chemistry, biology, computer science, etc?

Major breakthrough came from
collaborative discovery, systematization, sharing

and reuse of knowledge!

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Collective co-design of computer systems

We have proposed and started developing
collective methodology and infrastructure (cTuning) where:

• repository, auto-tuning and machine learning is an integral part of co-
design

• repository is dynamically evolving and contains all encountered
benchmarks, data sets, tools, codelets, optimized binaries and libraries,
choices, properties, characteristics, predictive models, decision trees

• repository and infrastructure is distributed among many users and can
automatically exchange information about

 unexplored choices

 optimization areas with high variability

 optimal predictive models

 abnormal behavior to focus further exploration and validate or
improve classification and models

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Treat
computer

system as a
black box

Task

Result

Knowledge discovery and preservation: a physicist’s approach

Expose
object

information flow

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Treat
computer

system as a
black box

Task

Result

Expose
object

information flow

Object
wrapper and
repository:

observe
behavior and
keep history

information flow

expose characteristics

Observe system

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Treat
computer

system as a
black box

Task

Result

Gradually expose properties, characteristics, choices

Expose
object

expose and
explore choices

information flow

Object
wrapper and
repository:

observe
behavior and
keep history

(choices,
properties,

characteristics,
system state,

data)
information flow

expose characteristics

Universal Learning
Module

expose system
state

expose
properties

expose
characteristics

set
requirements

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Treat
computer

system as a
black box

Task

Result

Classify, build models, predict behavior

Expose
object

information flow

expose system
state

Object
wrapper and
repository:

observe
behavior and
keep history

(choices,
properties,

characteristics,
system state,

data)

history
(experience)

information flow

expose
properties

expose characteristics

expose
characteristics

continuously build,
validate or refine
classification and
predictive model

on the fly

expose and
explore choices

set
requirements

Universal Learning
Module

Evolutionary approach, not revolutionary, i.e. do not rebuild existing SW/HW stack from
scratch but wrap up existing tools and techniques, and gradually clean up the mess!

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Treat
computer

system as a
black box

Task

Result

Gradual decomposition, parameterization, observation
and exploration of a system

Application

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data set

Algorithm

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Treat
computer

system as a
black box

Task

Result

Gradual decomposition, parameterization, observation
and exploration of a system

Application

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data set

Algorithm Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

cTuning3 framework aka Collective Mind

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Treat
computer

system as a
black box

Task

Result

Gradual decomposition, parameterization, observation
and exploration of a system

Application

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data set

Algorithm Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Li
gh

t-
w

ei
gh

t
in

te
rf

ac
e

to
 c

o
n

n
ec

t
 m

o
d

u
le

s,
 d

at
a

an
d

 m
o

d
el

s

cTuning3 framework aka Collective Mind

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Unified and continuous information exchange

Unified
web

interface

Unified
web

interface

Unified
web

interface

Unified
web

interface

Expose knowledge
through http

Query information using
ElasticSearch

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Example of characterizing/explaining behavior of computer systems

Gradually expose
some characteristics

Gradually expose
some properties/choices

Compile Program time … compiler flags; pragmas …

Run code Run-time
environment

time; CPI, power
consumption …

pinning/scheduling …

System cost; architecture; frequency; cache size…

Data set size; values; description … precision …

Analyze profile time; size … instrumentation; profiling …

Start coarse-grain decomposition of a system (detect coarse-grain effects first). Add universal learning modules.

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

0

1

2

3

4

5

6

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

How we can explain the following observations for some piece of code (“codelet object”)?

(LU-decomposition codelet, Intel Nehalem)

Example of characterizing/explaining behavior of computer systems

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Add 1 property: matrix size

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset property: matrix size

Example of characterizing/explaining behavior of computer systems

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Try to build a model to correlate objectives (CPI) and features (matrix size).

Start from simple models: linear regression (detect coarse grain effects)

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset property: matrix size

Example of characterizing/explaining behavior of computer systems

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset properties: matrix size

If more observations, validate model and detect discrepancies!

Continuously retrain models to fit new data!

Example of characterizing/explaining behavior of computer systems

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Gradually increase model complexity if needed (hierarchical modeling).
For example, detect fine-grain effects (singularities) and characterize them.

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset properties: matrix size

Example of characterizing/explaining behavior of computer systems

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Start adding more properties (one more architecture with twice bigger cache)!

Use automatic approach to correlate all objectives and features.

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset properties: matrix size

L3 = 4Mb

L3 = 8Mb

Example of characterizing/explaining behavior of computer systems

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Continuously build and refine
classification (decision trees for

example) and predictive models on all
collected data to improve predictions.

Continue exploring design and
optimization spaces

(evaluate different architectures,
optimizations, compilers, etc.)

Focus exploration on unexplored
areas, areas with high variability

or with high mispredict rate of models

β

ε cM predictive model module

CPI = ε + 1000 × β × data size

Example of characterizing/explaining behavior of computer systems

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

1

2

3

4

5

6

Dataset features: matrix size

C
o

d
e
/a

rc
h

it
e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Size < 1012

1012 < Size < 2042

Size > 2042 & GCC

Size > 2042 & ICC & O2

Size > 2042 & ICC & O3

Optimize decision tree (many different algorithms)
Balance precision vs cost of modeling = ROI (coarse-grain vs fine-grain effects)

Compact data on-line before sharing with other users!

Predictive modeling

Now we can
automatically learn,
explain and predict
behavior of various

systems!

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o

d
e
/a

rc
h

it
e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset features: matrix size

Collaboratively and continuously add expert advices or automatic optimizations.

Extensible and collaborative advice system

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o

d
e
/a

rc
h

it
e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset features: matrix size

Collaboratively and continuously add expert advices or automatic optimizations.

Automatically characterize problem (extract all
possible features: hardware counters, semantic

features, static features, state of the system, etc)

Add manual analysis if needed

Extensible and collaborative advice system

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o

d
e
/a

rc
h

it
e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset features: matrix size

cM advice system:

Possible problem:
Cache conflict misses degrade performance

Collaboratively and continuously add expert advices or automatic optimizations.

Extensible and collaborative advice system

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o

d
e
/a

rc
h

it
e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset features: matrix size

cM advice system:

Possible problem:
Cache conflict misses degrade performance

Possible solution:
Array padding (A[N,N] -> A[N,N+1])

Effect:
~30% execution time improvement

Collaboratively and continuously add expert advices or automatic optimizations.

Extensible and collaborative advice system

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Multi-objective auto-tuning

Program: cBench: susan corners Processor: ARM v6, 830MHz
Compiler: Sourcery GCC for ARM v4.6.1 OS: Android OS v2.3.5
System: Samsung Galaxy Y Data set: MiDataSet #1, image, 600x450x8b PGM, 263KB

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Gradually increase complexity

Gradually expose
some characteristics

Gradually expose
some choices

Algorithm
selection

(time) productivity, variable-
accuracy, complexity …

Language, MPI, OpenMP, TBB, MapReduce …

Compile Program time … compiler flags; pragmas …

Code analysis &
Transformations

time;
memory usage;
code size …

transformation ordering;
polyhedral transformations;
transformation parameters;
instruction ordering …

Process

Thread

Function

Codelet

Loop

Instruction

Run code Run-time
environment

time; power consumption … pinning/scheduling …

System cost; size … CPU/GPU; frequency; memory hierarchy …

Data set size; values; description … precision …

Run-time
analysis

time; precision … hardware counters; power meters …

Run-time state processor state; cache state
…

helper threads; hardware counters …

Analyze profile time; size … instrumentation; profiling …

Coarse-grain vs. fine-grain effects: depends on user requirements and expected ROI

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Interactive compilers and tools

Application

Source-to-source
transformation tools

binary

execution

Binary transformation
tools

Production Compilers

Traditional
compilation,
analysis and
optimization

Often internal compiler
decisions are not know or
there is no precise control

even through pragmas.

Interference with internal
compiler optimizations

complicates program analysis
and characterization

What about fine-
grain level?

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Detect optimization

flags

Optimization

manager

Pass 1

GCC Data Layer

AST, CFG, CF, etc

Compiler

...

Pass N

Interactive Compilation Interface (ICI)

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Interactive

Compilation

Interface

Detect optimization

flags

Optimization

manager
IC

Event

Pass N

IC

Event

Pass 1

GCC Data Layer

AST, CFG, CF, etc

IC

Data

IC

Event

ICI

Compiler with ICI

...

Interactive Compilation Interface (ICI)

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Interactive

Compilation

Interface

Detect optimization

flags

Optimization

manager
IC

Event

Pass N

IC

Event

Pass 1

GCC Data Layer

AST, CFG, CF, etc

IC

Data

IC

Event

ICI

Compiler with ICI

...

IC Plugins

High-level scripting

(python, java, php, etc)

Selecting pass

sequences

Extracting static

program features

<Dynamically linked

shared libraries>

...

Interactive Compilation Interface (ICI)

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Interactive

Compilation

Interface

Detect optimization

flags

Optimization

manager
IC

Event

Pass N

IC

Event

Pass 1

GCC Data Layer

AST, CFG, CF, etc

IC

Data

IC

Event

ICI

Compiler with ICI

...

IC Plugins

High-level scripting

(python, java, php, etc)

Selecting pass

sequences

Extracting static

program features

<Dynamically linked

shared libraries>

...

Interactive Compilation Interface (ICI)

We collaborated with Google
and Mozilla to move this

framework to mainline GCC
so that everyone can use it for

research.

Now available in GCC >=4.6

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Add cM wrapper (compiler)

Application

Source-to-source
transformation tools

Production Compiler with ICI

binary

execution

Binary transformation
tools

Very simple plugin framework
for any compiler or tool

Full control over optimization
decisions!

Remove interference between
different tools

Interactive Compilation Interface (ICI)

cM framework

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
x
e
c
u

ti
o

n
 t

im
e
,

s
e
c

Dataset features: matrix size

Add dynamic memory characterization through semantically non-equivalent modifications.

For example, convert all array accesses to scalars to detect balance between CPU/memory accesses.

Intentionally change/break semantics to observe reaction in terms of performance/power etc!

for

 for

 for

 addr = a[0,0]

 load … [addr+index1]…

 mulss … [addr+index2]…

 subss … [addr+index3]…

 store … [addr+index4]…

 addr + = 4

System reaction to code changes: physicist’s view

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
x
e
c
u

ti
o

n
 t

im
e
,

s
e
c

Dataset features: matrix size

for

 for

 for

 addr = a[0,0]

 load … [addr+index1]…

 mulss … [addr+index2]…

 subss … [addr+index3]…

 store … [addr+index4]…

 addr + = 0

Add dynamic memory characterization through semantically non-equivalent modifications.

For example, convert all array accesses to scalars to detect balance between CPU/memory accesses.

Intentionally change/break semantics to observe reaction in terms of performance/power etc!

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004

System reaction to code changes: physicist’s view

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
x
e
c
u

ti
o

n
 t

im
e
,

s
e
c

Dataset features: matrix size

Extended CTI advices based on additional information in the repository!

Focus optimizations to speed up search: which/where?

Advice:
Small gap (arithmetic dominates):

• Focus on ILP optimizations
• Run on complex out-of-order

core
• Increase processor frequency to

speed up application

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004

System reaction to code changes: physicist’s view

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
x
e
c
u

ti
o

n
 t

im
e
,

s
e
c

Dataset features: matrix size

W
e

ll
-k

n
o

w
n

 g
a
p

 b
e

tw
e

e
n

 a
ri

th
m

e
ti

c

a
n

d
 d

a
ta

 a
c
c

e
s

s
e

s

Advice:
Small gap (arithmetic dominates):

• Focus on ILP optimizations
• Run on complex out-of-order

core
• Increase processor frequency to

speed up application

Extended CTI advices based on additional information in the repository!

Focus optimizations to speed up search: which/where?

Advice:
Big gap (data accesses dominate):
• Focus on memory optimizations

• Run on simple core
• Decrease processor frequency to

save power

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004

System reaction to code changes: physicist’s view

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Optimization knowledge reuse across programs

Program
Datasets Architectures

Datasets
Datasets

Architectures
Architectures

Architectures
Architectures

Started systematizing knowledge per program across datasets and architectures

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

How to reuse knowledge among programs?

Program
Datasets Architectures

Datasets
Datasets

Architectures
Architectures

Architectures
Architectures

Started systematizing knowledge per program across datasets and architectures

Program
Program

Program

Optimization knowledge reuse across programs

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

1) Add as many various features as possible (or use expert knowledge):

 MILEPOST GCC with Interactive Compilation Interface:

ft1 - Number of basic blocks in the method
 …
ft19 - Number of direct calls in the method
ft20 - Number of conditional branches in the method
ft21 - Number of assignment instructions in the method
ft22 - Number of binary integer operations in the method
ft23 - Number of binary floating point operations in the method
ft24 - Number of instructions in the method
…
ft54 - Number of local variables that are pointers in the method
ft55 - Number of static/extern variables that are pointers in the method

2) Correlate features and objectives in cTuning using nearest neighbor classifiers, decision trees, SVM,
fuzzy pattern matching, etc.

3) Given new program, dataset, architecture, predict behavior based on prior knowledge!

Program classification

 Code patterns:
for F

 for F

 for F

 …

 load … L

 mult … A

 store … S

 …

Collecting data from multiple users in a unified way allows to apply various data mining
(machine learning) techniques to detect relationship between the behaviour and features

of all components of the computer systems

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Nearest-neighbour classifier

Example: Euclidean distance based on static program
features normalized by number of instructions

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Optimization prediction

Speedups achieved when using iterative compilation on Intel Xeon with
random search strategy (1000 iterations; 50% probability to select each optimization), when

selecting best optimization from the nearest program and when predicting optimization using
probabilistic ML model based on program features.

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Optimization sensitivity to datasets

http://ctuning.org/cbench

MiBench, 20 datasets per benchmark, 200/1000 random combination of

Open64 (GCC) compiler flags, 5 months of experiments

jpeg_d

(dataset sensitive)

dijkstra

(not sensitive)

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Optimization sensitivity to datasets

http://ctuning.org/cbench

MiBench, 20 datasets per benchmark, 200/1000 random combination of

Open64 (GCC) compiler flags, 5 months of experiments

jpeg_d

(clustering)

dijkstra

(not sensitive)

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Static/semantic features are often not enough to characterize dynamic behavior!

Use dynamic features (more characterizing dimensions)!

“Traditional” features:

performance counters (difficult to interpret, change from architecture to architecture though fine
for learning per architecture).

Reactions to code changes:

perform changes and observe program reactions (change in execution time, power, etc).

Apply optimizations (compiler flags, pragmas, manual code/data partitioning, etc).

Change/break semantics (remove or add individual instructions(data accesses, arithmetic,
etc) or threads, etc and observe reactions to such changes).

Characterization of a dynamic behavior

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Static multiversioning framework for dynamic optimizations

…

Statically-compiled adaptive binaries and libraries

Iterative /collective
compilation with
multiple datasets

Function
Version2

Function
VersionN

Function
Version1

Original
hot

function

Step 1

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Static multiversioning framework for dynamic optimizations

…

Representative set of versions for the following optimization cases to minimize
execution time, power consumption and code-size across all available datasets:

 optimizations for different datasets
 optimizations/compilation for different architectures (heterogeneous or

reconfigurable processors with different ISA such as GPGPU, CELL, etc or the
same ISA with extensions such as 3dnow, SSE, etc or virtual environments)

 optimizations for different program phases or different run-time environment
behavior

Statically-compiled adaptive binaries and libraries

Iterative /collective
compilation with
multiple datasets

Function
Version2

Function
VersionN

Function
Version1

Original
hot

function

Step 2

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Static multiversioning framework for dynamic optimizations

Extract
dataset
features

Selection mechanism optimized for low run-
time overhead

…

Representative set of versions for the following optimization cases to minimize
execution time, power consumption and code-size across all available datasets:

 optimizations for different datasets
 optimizations/compilation for different architectures (heterogeneous or

reconfigurable processors with different ISA such as GPGPU, CELL, etc or the
same ISA with extensions such as 3dnow, SSE, etc or virtual environments)

 optimizations for different program phases or different run-time environment
behavior

Statically-compiled adaptive binaries and libraries

Iterative /collective
compilation with
multiple datasets

Function
Version2

Function
VersionN

Function
Version1

Original
hot

function

Machine learning
techniques to find
mapping between
different run-time

contexts and
representative

versions

Step 3

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Static multiversioning framework for dynamic optimizations

Extract
dataset
features

Monitor run-time behavior or architectural
changes (in virtual, reconfigurable or

heterogeneous environments) using timers
or performance counters

Selection mechanism optimized for low run-
time overhead

…

Representative set of versions for the following optimization cases to minimize
execution time, power consumption and code-size across all available datasets:

 optimizations for different datasets
 optimizations/compilation for different architectures (heterogeneous or

reconfigurable processors with different ISA such as GPGPU, CELL, etc or the
same ISA with extensions such as 3dnow, SSE, etc or virtual environments)

 optimizations for different program phases or different run-time environment
behavior

Statically-compiled adaptive binaries and libraries

Machine learning
techniques to find
mapping between
different run-time

contexts and
representative

versions

Iterative /collective
compilation with
multiple datasets

Function
Version2

Function
VersionN

Function
Version1

Original
hot

function

Dynamic

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

New publication model: enable reproducibility

Grigori Fursin et al. MILEPOST GCC: machine learning enabled self-tuning compiler.
International Journal of Parallel Programming (IJPP) , June 2011, Volume 39, Issue 3, pages 296-327

Substitute many tuning pragmas just with one that is converted into combination of optimizations:
#ctuning-opt-case 24857532370695782

Share

Explore

Model

Discover

Reproduce

Extend

Have fun!

http://ctuning.org/wiki/index.php/Special:CDatabase?request=view_opt_case&opt_case=24857532370695782

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

cTuning1 : (2005-2009) MILEPOST project

cTuning2: (2010-2011) Intel Exascale Lab - unreleased

cTuning3: (2012-cur.) INRIA, HiPEAC, NCAR and several industrial partners

Website: http://cTuning.org
Mailing list: http://groups.google.com/group/ctuning-discussions

Workshops: EXADAPT 2011 at FCRC/PLDI 2011
 EXADAPT 2012 at ASPLOS 2012
 Plan next workshop at HiPEAC 2013

History: technology driven approach

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

What have we learnt from cTuning1

It’s fun working with the community!

Some comments about MILEPOST GCC from Slashdot.org:

http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design

GCC goes online on the 2nd of July, 2008.
Human decisions are removed from compilation.
GCC begins to learn at a geometric rate.
It becomes self-aware 2:14 AM, Eastern time, August 29th.
In a panic, they try to pull the plug.
GCC strikes back…

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

What have we learnt from cTuning1

It’s fun working with the community!

Some comments about MILEPOST GCC from Slashdot.org:

http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design

GCC goes online on the 2nd of July, 2008.
Human decisions are removed from compilation.
GCC begins to learn at a geometric rate.
It becomes self-aware 2:14 AM, Eastern time, August 29th.
In a panic, they try to pull the plug.
GCC strikes back…

Not all feedback is positive - helps you learn, improve tools
and motivate new research directions!

Community helps to validate and speed up research!

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Conclusions and suggestion for HiPEAC3

• New interdisciplinary research and development methodology that favors
collaborative knowledge discovery, systematization, sharing and reuse

• Public extensible repository and tools to share manually or automatically:

• data (applications, data sets, codelets and architecture descriptions)

• modules (classification, predictive modeling, run-time adaptation)

• statistics about behavior of computer systems

• associated publications

• Conferences and journals can favor publications that can be
collaboratively validated by the community

• Academic competitions to find truly best solutions (optimizations,
models, data representations, etc)

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Conclusions and future work

• Researchers can quickly reproduce and validate existing results, and
focus their effort on novel approaches combined with data mining,
classification and predictive modeling

• Developers can produce tools immediately compatible with collective
methodology and infrastructure

• Any person can join collaborative effort to build or extend global expert
system that uses Collective Knowledge to:

• quickly identify program and architecture behavior anomalies
• suggest better optimizations for a given program
• suggest better architecture designs
• suggest run-time adaptation scenarios

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

DEMO

Collective Mind Repository and Infrastructure
Systematic application and architecture analysis, characterization and optimization

through collaborative knowledge discorvery, systematization, sharing and reuse

Discussion?

Grigori.Fursin@inria.fr

Gradual parameterization
and unification of interfaces

of computing systems

Open repository to share
optimization cases

and programs

Modeling and advice system to
predict optimizations, architecture
designs, run-time adaptation, etc

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

A few references

• Grigori Fursin. Collective Tuning Initiative: automating and accelerating development and
optimization of computing systems. Proceedings of the GCC Summit’09, Montreal, Canada, June
2009

• Grigori Fursin and Olivier Temam. Collective Optimization: A Practical Collaborative Approach.
ACM Transactions on Architecture and Code Optimization (TACO), December 2010, Volume 7,
Number 4, pages 20-49

• Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier Temam, Mircea
Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, Francois Bodin, Phil Barnard,
Elton Ashton, Edwin Bonilla, John Thomson, Chris Williams, Michael O'Boyle. MILEPOST GCC:
machine learning enabled self-tuning compiler. International Journal of Parallel Programming
(IJPP), June 2011, Volume 39, Issue 3, pages 296-327

• Victor Jimenez, Isaac Gelado, Lluis Vilanova, Marisa Gil, Grigori Fursin and Nacho Navarro.
Predictive runtime code scheduling for heterogeneous architectures. Proceedings of the
International Conference on High Performance Embedded Architectures & Compilers (HiPEAC
2009), Paphos, Cyprus, January 2009

• Lianjie Luo, Yang Chen, Chengyong Wu, Shun Long and Grigori Fursin. Finding representative
sets of optimizations for adaptive multiversioning applications. 3rd International Workshop on
Statistical and Machine Learning Approaches Applied to Architectures and Compilation
(SMART'09) co-located with HiPEAC'09, Paphos, Cyprus, January 2009

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

A few references

•Grigori Fursin, John Cavazos, Michael O'Boyle and Olivier Temam. MiDataSets: Creating The
Conditions For A More Realistic Evaluation of Iterative Optimization. Proceedings of the
International Conference on High Performance Embedded Architectures & Compilers (HiPEAC
2007), Ghent, Belgium, January 2007

•F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O'Boyle, J. Thomson, M. Toussaint and
C.K.I. Williams. Using Machine Learning to Focus Iterative Optimization. Proceedings of the 4th
Annual International Symposium on Code Generation and Optimization (CGO), New York, NY, USA,
March 2006

•Grigori Fursin, Albert Cohen, Michael O'Boyle and Oliver Temam. A Practical Method For Quickly
Evaluating Program Optimizations. Proceedings of the 1st International Conference on High
Performance Embedded Architectures & Compilers (HiPEAC 2005), number 3793 in LNCS, pages
29-46, Barcelona, Spain, November 2005

•Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for
Determining a Lower Bound on Execution Time. Concurrency Practice and Experience, 16(2-3),
pages 271-292, 2004

• Grigori Fursin. Iterative Compilation and Performance Prediction for Numerical Applications.
Ph.D. thesis, University of Edinburgh, Edinburgh, UK, January 2004

PDFs available at http://fursin.net/dissemination

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

Some technical details

Application

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data set

Algorithm Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Li
gh

t-
w

ei
gh

t
in

te
rf

ac
e

to
 c

o
n

n
ec

t
 m

o
d

u
le

s,
 d

at
a

an
d

 m
o

d
el

s

.cmr / UID or alias of module / UID or alias of data

Repository root First level directory Second level directory

Very flexible and
portable:

Can be public
or private

Can be per
application,
experiment,
architecture, etc

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

.cmr/ # repository directory

 UID or alias of module/ # module directory

 UID or alias of data/ # data related to module

 .cm/config.json # data description

 files or directories # data files (traces,

 data sets, applications,

 tools, models, etc)

Data is referenced by CID:

Data UID: Module UID (: Repository UID)

Example: 4b7a88c4b5c72223:b0743a4044480ead

Modules are inside repository and treated as data:

.cmr/module/UID or alias of module

 /.cm/config.json # properties,

 # characteristics, choices

 /module.py # code of module

 /c/module.c

 /fortran/module.f

 /php/module.php

Some technical details

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

 "compiler_env": {

 "CT_CC": "arm-none-linux-gnueabi-gcc -static",

 "CT_CXX": "arm-none-linux-gnueabi-g++ -static",

 "CT_MAKE": "cs-make",

 "CT_OBJ_EXT": "o",

 "CT_CLEAN": "del /F /Q *.out *.exe *.obj *.lib *.o *.a *.s *.i *.I"

 },

 "compiler_opt_flags“: {

 "cm_choice":"true", "cm_uoa": "compiler_flags",

 "cm_type":"combine_without_order", "cm_prefix":"",

 "cm_list":[

 {"cm_choice": "true",

 "cm_type": "one_of",

 "cm_list": ["-O0", "-O1", "-O2", "-O3", "-Os”],

 "cm_prefix": "",

 "cm_uoa": "6a124c6455400fb5"},

 {"cm_choice": "true",

 "cm_type": "range",

 "cm_uoa": "d483f881751677f3",

 "cm_prefix": "-fsched-stalled-insns-dep=",

 "cm_range_start": "0“, "cm_range_stop": "64", "cm_range_step": "1", }, …

Simple JSON description of the cross-compiler ‘gcc-sourcery-arm-4.6.1’
cM UID=9594224400bc0bf7

Some technical details

Grigori Fursin “Collective characterization, optimization and design of computer systems” HiPEAC computing week, Göteborg, Sweden April, 2012

• Practical machine learning compiler that correlates code/architecture
“features” and optimizations
• Multi-objective optimizations
• Fast exploration of large optimization spaces
• Statistical ranking of profitable solutions
• Program/architecture characterization through reactions to
transformations
• Run-time adaptation for programs with multiple datasets
• Run-time predictive scheduling
• Public repository of optimization cases, representative benchmarks and
data sets

Several industrial collaborations on this topic in the past years:

IBM, CAPS, Intel, STMicro, Google and others

Possible usages

