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HiPEAC3 includes new instrument: Thematic sessions. 

Evolution of HiPEAC2 clusters and task forces. 

Building a network of researchers for a given topic. 

 

Address rising complexity of the design and optimization  
of computer systems through collaborative knowledge discovery, 

preservation, systematization, sharing and reuse! 

Session introduction 
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Program 

Time Talk Presenter 

9:30-10:30 Collective SW/HW co-design: 

methodology, repository and tools 

Grigori Fursin 

INRIA, France 

10:30-11:00 Looking for key factors to improve 

runtime adaptation. 

Marisa Gil 

UPC, Spain 

11:00-11:30 Break 

11:30-12:00 Multi-core HW/SW interplay and 

energy efficiency 

Lasse Natvig 

NTNU, Norway 

12:00-12:30 Improving Both the Performance 

Benefits and Speed of Optimization 

Phase Sequence Searches. 

David Whalley 

Florida State University, 

USA 

12:30-13:00 Response Surface Modeling 

Techniques for Design Space 

Exploration of Multi-core 

Architectures. 

Cristina Silvano 

Politecnico di Milano, Italy 



Grigori Fursin        “Collective characterization, optimization and design of computer systems”        HiPEAC computing week, Göteborg, Sweden         April, 2012 

• Background 

• Motivation, challenges 

• Collective co-design methodology 

• Usage examples 

• New publication model 

• Conclusions 

• References and tech. details 

Outline 
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Interdisciplinary background 

Year: Position: Institution: 

1993-1997 
B.S. 

physics and electronics 
MIPT, Russia 

1997-1999 
M.S. 

computer engineering 
MIPT, Russia 

1999-2004 
Ph.D. 

computer science 
University of Edinburgh, 

UK 

2005-2007 Postdoctoral researcher INRIA, France 

2007-2010 Tenured scientist INRIA, France 

2010-2011 
Director of research  
and group manager 

Intel Exascale Lab, France 

2012-cur. Tenured scientist INRIA, France ? 
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Solution 

Back to basics 

Task 

Result 

End user 

User requirements:  

most common:  

minimize all costs 
(time, power consumption,  

price, size, faults, etc) 

guarantee real-time constraints 
(bandwidth, QOS, etc) 
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Solution 

Back to basics 

Task 

Decision 
(depends on user 

requirements) 

Result 

Available choices 
(solutions) 

End user 

User requirements:  

most common:  

minimize all costs 
(time, power consumption,  

price, size, faults, etc) 

guarantee real-time constraints 
(bandwidth, QOS, etc) 



Grigori Fursin        “Collective characterization, optimization and design of computer systems”        HiPEAC computing week, Göteborg, Sweden         April, 2012 

Solution 

Back to basics 

Task 

Properties 

Characteristics 

Requirements 

Decision 
(depends on user 

requirements) 

Result 

System state 

Available choices 
(solutions) 

End user 

User requirements:  

most common:  

minimize all costs 
(time, power consumption,  

price, size, faults, etc) 

guarantee real-time constraints 
(bandwidth, QOS, etc) 

Characterization 
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Solution 

Back to basics 

Task 

Properties 

Characteristics 

Requirements 

Decision 
(depends on user 

requirements) 

Result 

System state 

Available choices 
(solutions) 

End user 

User requirements:  

most common:  

minimize all costs 
(time, power consumption,  

price, size, faults, etc) 

guarantee real-time constraints 
(bandwidth, QOS, etc) 

Should provide  choices  
and help with decisions 

Hardware and 
software designers 

Characterization 
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Solution 

Back to basics 

Task 

Properties 

Characteristics 

Requirements 

Decision 
(depends on user 

requirements) 

Result 

System state 

Available choices 
(solutions) 

End user 

User requirements:  

most common:  

minimize all costs 
(time, power consumption,  

price, size, faults, etc) 

guarantee real-time constraints 
(bandwidth, QOS, etc) 

Service/application 
providers 

(supercomputing, 
cloud computing, 
mobile systems) 

Should provide  choices  
and help with decisions 

Characterization 

Hardware and 
software designers 
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Back to basics 

Task: 

What is the shortest time to transfer 2TB of data from a HDD in New York to Moscow? 

The fastest speed of available Internet is 2MB per second. 
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Back to basics 

Task: 

What is the shortest time to transfer 2TB of data from a HDD in New York to Moscow? 

The fastest speed of available Internet is 2MB per second. 

 

Possible solution: 

~10 hours by plane if cost doesn’t matter 

 

Important to identify all properties, requirements, 
constraints and AVAILABLE SOLUTIONS! 
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Available solutions: hardware 

Companies compete hard to deliver many solutions with various characteristics: 
performance, power consumption, size, bandwidth, response time, reliability, cost … 

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html
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Available solutions: software 

Software developers try to keep pace and produce various 
algorithms, programming models, languages, analysis tools, compilers,  

run-time systems, databases, etc. 

GCC 4.1.x 

GCC 4.2.x 

GCC 4.3.x 

GCC 4.4.x 

GCC 4.5.x 

GCC 4.6.x 

GCC 4.7.x 

ICC 10.1 

ICC 11.0 

ICC 11.1 
ICC 12.0 ICC 12.1 

LLVM 2.6 

LLVM 2.7 

LLVM 2.8 

LLVM 2.9 
LLVM 3.0 

Phoenix 

MVS 

XLC 

Open64 

Jikes 
Testarossa 

OpenMP MPI 
HMPP 

OpenCL CUDA gprof prof 
perf oprofile 

PAPI TAU 

Scalasca 

VTune 

Amplifier scheduling 

algorithm-
level 

TBB 

MKL 
ATLAS 

program-
level 

function-
level Codelet 

loop-level hardware 
counters 

IPA 
polyhedral 

transformations 
LTO 

threads 

process 

pass 
reordering 

run-time 
adaptation 

per phase 
reconfiguration 
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Solutions 

Challenges 

Task 

Result 
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Solutions 

Challenges 

Task 

Result 

GCC 4.1.x 

GCC 4.2.x 

GCC 4.3.x 

GCC 4.4.x 

GCC 4.5.x 

GCC 4.6.x 

GCC 4.7.x 

ICC 10.1 

ICC 11.0 

ICC 11.1 

ICC 12.0 

ICC 12.1 
LLVM 2.6 

LLVM 2.7 

LLVM 2.8 

LLVM 2.9 

LLVM 3.0 

Phoenix 

MVS XLC 

Open64 

Jikes 
Testarossa 

OpenMP MPI 

HMPP 

OpenCL 

CUDA 
gprof 

prof 

perf 

oprofile 

PAPI 

TAU 

Scalasca 

VTune 

Amplifier scheduling 

algorithm-
level TBB 

MKL 

ATLAS program-
level 

function-
level 

Codelet 

loop-level 

hardware 
counters 

IPA 

polyhedral 
transformations 

LTO 
threads process 

pass 
reordering 

run-time 
adaptation 

per phase 
reconfiguration 

cache size 

frequency 

bandwidth 

HDD size 

TLB 

ISA 

memory size 

cores 

processors 

threads 

power 
consumption execution time 

reliability 

1) Rising complexity of computer systems:  
too many design and optimization choices 

2) Performance is not anymore the only 
requirement: 

multiple user objectives vs choices 
benefit vs optimization time 

3)  Complex relationship and interactions 
between ALL software and hardware 
components. 

4) Too many tools with non-unified interfaces 
changing from version to version:  

technological chaos 

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html
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Solutions 

Challenges 

Task 

Result 

GCC 4.1.x 

GCC 4.2.x 

GCC 4.3.x 
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GCC 4.5.x 

GCC 4.6.x 

GCC 4.7.x 

ICC 10.1 

ICC 11.0 

ICC 11.1 

ICC 12.0 

ICC 12.1 
LLVM 2.6 

LLVM 2.7 
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LLVM 3.0 
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OpenMP MPI 
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prof 

perf 

oprofile 

PAPI 
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Scalasca 

VTune 

Amplifier scheduling 

algorithm-
level TBB 

MKL 

ATLAS program-
level 

function-
level 

Codelet 

loop-level 

hardware 
counters 

IPA 

polyhedral 
transformations 

LTO 
threads process 

pass 
reordering 

run-time 
adaptation 

per phase 
reconfiguration 

cache size 

frequency 

bandwidth 

HDD size 

TLB 

ISA 

memory size 

cores 

processors 

threads 

power 
consumption execution time 

reliability 

Result: 

• finding the right solution is extremely 
challenging 

• everyone is lost in choices 

• dramatic increase in development time 

• low ROI 

• underperforming systems 

• waste of energy 

• ad-hoc, repetitive and error-prone 
manual tuning 

• slowing innovation in science and 
technology 

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html
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Solutions 
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Result: 

• finding the right solution is extremely 
challenging 

• everyone is lost in choices 

• dramatic increase in development time 

• low ROI 

• underperforming systems 

• waste of energy 

• ad-hoc, repetitive and error-prone 
manual tuning 

• slowing innovation in science and 
technology 

 

Understanding and modeling of the overall 
relationship between end-user algorithms, 
applications, compiler optimizations, 
hardware designs, data sets and run-time 
behavior became simply infeasible! 

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html
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Treat 
computer 

system as a 
black box 

 

Attempts to solve these problems: auto-tuning 

Task 

Result 

Application 

Compilers and auxiliary tools 

Binary and libraries 

Architecture 

Run-time environment 

State of the system 

Data set 

Algorithm 

Use auto-tuning:  

Explore multiple 
choices empirically: 

learn behavior of 
computer systems 
across executions 

Covered all 
components in the 
last 2 decades and 

showed high 
potential but … 
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• Optimization spaces are large and non-linear with many local minima 

• Exploration is slow and ad-hoc (random, genetic, some heuristics) 

• Only a few benchmarks are considered 

• Often the same (one) dataset is used 

• Only part of the system is taken into account 
(rarely reflect behavior of the whole system) 

• No knowledge sharing 

Auto-tuning shows high potential for nearly 2 decades but still far from 
the mainstream in production environments.  

Why? 

Attempts to solve these problems: auto-tuning 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Application 

Compilers and auxiliary tools 

Binary and libraries 

Architecture 

Run-time environment 

State of the system 

Data set 

Algorithm 
Use machine 

learning to speed 
up exploration 

Apply predictive 
modeling to suggest 
profitable solutions 
based on properties 

of a task and a 
system 

Covered all 
components in the 

last decade and 
showed high 

potential but … 

0 

2 

4 

6 

Attempts to solve these problems: machine learning 
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• Selection of machine learning models and right properties is non-trivial:  
ad-hoc in most of the cases 

• Limited training sets 

• Only part of the system is taken into account 
(rarely reflect behavior of the whole system) 

• No knowledge sharing 

Machine learning (classification, predictive modeling) shows high 
potential during past decade but still far from the mainstream.  

Why? 

Attempts to solve these problems: machine learning 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Application 

Compilers and auxiliary tools 

Binary and libraries 

Architecture 

Run-time environment 

State of the system 

Data set 

Algorithm 

Co-design: 

Explore choices and 
behavior of the 
whole system. 

Attempts to solve these problems: co-design 

Showed high 
potential in the last 

years but … 
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• Even more choices to explore and analyze 

• Limited training sets 

• Still no knowledge sharing 

Co-design is currently a buzz word and a hot research topic but still far 
from the mainstream.  

Why? 

Attempts to solve these problems: machine learning 
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Main idea:  

Why not to leverage the experience  
and computational resources of multiple users? 

Attempts to solve these problems: knowledge sharing 
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Many researchers develop some repositories for experiments. 

The lifespan of such repositories: end of the PhD or project. 

I don’t know repositories that were made public. 

 

Major reasons: 

Main focus in academia is to publish as many papers as possible. 

Reproducibility and statistical meaningfulness of results is often not 
even considered! In fact, it is often impossible. 

Software development is considered as overhead or even waste of time. 

Attempts to solve these problems: optimization repositories 
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Simply too time consuming and costly to build, support and extend 
particularly with ever changing tools, interfaces, benchmarks, data sets, 

properties, models, etc. 

 

Only big companies or projects can afford to build and support their own 
big repositories but they are either not public (Google, Intel, IBM, ARM) 

or used as a simple storage of information (SciDAC, SPEC). 

 

Furthermore, public data and tools may cause competition. 

Attempts to solve these problems: optimization repositories 
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Similar problems in other sciences 

We can we learn from existing sciences that deal with complex systems: 
physics, mathematics, chemistry, biology, computer science, etc? 

Major breakthrough came from  
collaborative discovery, systematization, sharing  

and reuse of knowledge! 
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Collective co-design of computer systems 

We have proposed and started developing  
collective methodology and infrastructure (cTuning) where: 

• repository, auto-tuning and machine learning is an integral part of co-
design 

• repository is dynamically evolving and contains all encountered 
benchmarks, data sets, tools, codelets, optimized binaries and libraries, 
choices, properties, characteristics, predictive models, decision trees 

• repository and infrastructure is distributed among many users and can 
automatically exchange information about 

 unexplored choices 

 optimization areas  with high variability 

 optimal predictive models 

 abnormal behavior to focus further exploration and validate or 
improve classification and models 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Knowledge discovery and preservation: a physicist’s approach 

Expose 
object 

information flow 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Expose 
object 

information flow 

Object 
wrapper and 
repository: 

observe 
behavior and 
keep history 

information flow 

expose characteristics 

Observe system 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Gradually expose properties, characteristics, choices 

Expose 
object 

expose and 
explore choices 

information flow 

Object 
wrapper and 
repository: 

observe 
behavior and 
keep history 

(choices, 
properties, 

characteristics, 
system state, 

data) 
information flow 

expose characteristics 

Universal Learning  
Module 

expose system  
state 

expose  
properties 

expose  
characteristics 

set  
requirements 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Classify, build models, predict behavior 

Expose 
object 

information flow 

expose system  
state 

Object 
wrapper and 
repository: 

observe 
behavior and 
keep history 

(choices, 
properties, 

characteristics, 
system state, 

data) 

history 
(experience) 

information flow 

expose  
properties 

expose characteristics 

expose  
characteristics 

continuously build, 
validate or refine 
classification and 
predictive model 

on the fly 

expose and 
explore choices 

set  
requirements 

Universal Learning  
Module 

Evolutionary approach, not revolutionary, i.e. do not rebuild existing SW/HW stack from 
scratch but wrap up existing tools and techniques, and gradually clean up the mess! 



Grigori Fursin        “Collective characterization, optimization and design of computer systems”        HiPEAC computing week, Göteborg, Sweden         April, 2012 

Treat 
computer 

system as a 
black box 

 

Task 

Result 

Gradual decomposition, parameterization, observation  
and exploration of a system 

Application 

Compilers and auxiliary tools 

Binary and libraries 

Architecture 

Run-time environment 

State of the system 

Data set 

Algorithm 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Gradual decomposition, parameterization, observation  
and exploration of a system 

Application 

Compilers and auxiliary tools 

Binary and libraries 

Architecture 

Run-time environment 

State of the system 

Data set 

Algorithm Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

cTuning3  framework  aka  Collective Mind 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Gradual decomposition, parameterization, observation  
and exploration of a system 

Application 

Compilers and auxiliary tools 

Binary and libraries 

Architecture 

Run-time environment 

State of the system 

Data set 

Algorithm Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 
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cTuning3  framework  aka  Collective Mind 
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Unified and continuous information exchange 

Unified 
web 

interface 

Unified 
web 

interface 

Unified 
web 

interface 

Unified 
web 

interface 

Expose knowledge  
through http 

Query information using 
ElasticSearch 
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Example of characterizing/explaining behavior of computer systems 

Gradually expose 
some characteristics 

Gradually expose 
some properties/choices 

 
 

Compile Program time …   compiler flags; pragmas … 

 
 

Run code Run-time 
environment 

time; CPI, power 
consumption … 

pinning/scheduling … 

System cost;  architecture; frequency; cache size… 

Data set size; values; description … precision … 

 
 

 
  

Analyze profile time;  size … instrumentation; profiling … 

Start coarse-grain decomposition of a system (detect coarse-grain effects first). Add universal learning modules. 
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How we can explain the following observations for some piece of code (“codelet object”)? 

(LU-decomposition codelet, Intel Nehalem) 

Example of characterizing/explaining behavior of computer systems 
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Add 1 property: matrix size 
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Dataset property: matrix size 

Example of characterizing/explaining behavior of computer systems 
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Try to build a model to correlate objectives (CPI) and features (matrix size). 

Start from simple models: linear regression (detect coarse grain effects) 
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Dataset property: matrix size 

Example of characterizing/explaining behavior of computer systems 
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Dataset properties: matrix size 

If more observations, validate model and detect discrepancies! 

Continuously retrain models to fit new data! 

 

Example of characterizing/explaining behavior of computer systems 
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Gradually increase model complexity if needed (hierarchical modeling).  
For example, detect fine-grain effects (singularities) and characterize them. 
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Dataset properties: matrix size 

Example of characterizing/explaining behavior of computer systems 
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Start adding more properties (one more architecture with twice bigger cache)! 

Use automatic approach to correlate all objectives and features. 
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Dataset properties: matrix size 

L3 = 4Mb 

L3 = 8Mb 

Example of characterizing/explaining behavior of computer systems 
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Continuously build and refine 
classification (decision trees for 

example) and predictive models on all 
collected data to improve predictions. 

Continue exploring design and 
optimization spaces  

(evaluate different architectures, 
optimizations, compilers, etc.) 

Focus exploration on unexplored 
areas, areas with high variability 

or with high mispredict rate of models  

β 

ε cM predictive model module 

CPI = ε + 1000 × β × data size 

Example of characterizing/explaining behavior of computer systems 
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Size < 1012 

1012 < Size < 2042 

Size > 2042 & GCC 

Size > 2042 & ICC & O2 

Size > 2042 & ICC & O3 

Optimize decision tree (many different algorithms) 
Balance precision vs cost of modeling = ROI (coarse-grain vs fine-grain effects) 

Compact data on-line before sharing with other users! 

Predictive modeling 

Now we can 
automatically learn, 
explain and predict 
behavior of various 

systems! 
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Dataset features: matrix size 

Collaboratively and continuously add expert advices or automatic optimizations. 

Extensible and collaborative advice system 
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Dataset features: matrix size 

Collaboratively and continuously add expert advices or automatic optimizations. 

Automatically characterize problem (extract all 
possible features: hardware counters, semantic 

features, static features, state of the system, etc) 

Add manual analysis if needed 

Extensible and collaborative advice system 
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Dataset features: matrix size 

cM advice system: 

Possible problem: 
Cache conflict misses degrade performance 

Collaboratively and continuously add expert advices or automatic optimizations. 

Extensible and collaborative advice system 
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Dataset features: matrix size 

cM advice system: 

Possible problem: 
Cache conflict misses degrade performance 

Possible solution: 
Array padding (A[N,N] -> A[N,N+1]) 

Effect:  
~30% execution time improvement 

 

Collaboratively and continuously add expert advices or automatic optimizations. 

Extensible and collaborative advice system 
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Multi-objective auto-tuning 

Program:  cBench: susan corners  Processor:  ARM v6, 830MHz 
Compiler:  Sourcery GCC for ARM v4.6.1 OS:  Android OS v2.3.5 
System:  Samsung Galaxy Y  Data set:  MiDataSet #1, image, 600x450x8b PGM, 263KB 
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Gradually increase complexity 

Gradually expose 
some characteristics 

Gradually expose 
some choices 

Algorithm 
selection 

(time) productivity, variable-
accuracy, complexity … 

Language, MPI, OpenMP, TBB, MapReduce … 

Compile Program time …   compiler flags; pragmas … 

Code analysis & 
Transformations 

time;   
memory usage;  
code size … 

transformation ordering;   
polyhedral transformations;  
transformation parameters; 
instruction ordering … 
 

Process 

Thread 

Function 

Codelet 

Loop 

Instruction 

Run code Run-time 
environment 

time; power consumption … pinning/scheduling … 

System cost; size … CPU/GPU; frequency; memory  hierarchy … 

Data set size; values; description … precision … 

Run-time 
analysis 

time;  precision … hardware counters; power meters … 

Run-time state processor state; cache state 
…  

helper threads; hardware counters … 

Analyze profile time;  size … instrumentation; profiling … 

Coarse-grain vs. fine-grain effects: depends on user requirements and expected ROI 
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Interactive compilers and tools 

Application 

Source-to-source 
transformation tools 

binary 

execution 

Binary transformation 
tools 

Production Compilers 

Traditional 
compilation, 
analysis and 
optimization 

Often internal compiler 
decisions are not know or 
there is no precise control 

even through pragmas.  

Interference with internal 
compiler optimizations 

complicates program analysis 
and characterization 

What about fine-
grain level? 
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Detect optimization 

flags 

Optimization 

manager 

Pass 1 

GCC Data Layer 

AST, CFG, CF, etc 

Compiler 

 

... 

Pass N 

Interactive Compilation Interface (ICI) 
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Interactive 

Compilation 

Interface 

 

Detect optimization 

flags 

Optimization 

manager 
IC 

Event 

Pass N 

IC 

Event 

Pass 1 

GCC Data Layer 

AST, CFG, CF, etc 

IC   

Data 

IC 

Event 

ICI 

 

Compiler with ICI 

 

... 

Interactive Compilation Interface (ICI) 
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Interactive 

Compilation 

Interface 

 

Detect optimization 

flags 

Optimization 

manager 
IC 

Event 

Pass N 

IC 

Event 

Pass 1 

GCC Data Layer 

AST, CFG, CF, etc 

IC   

Data 

IC 

Event 

ICI 

 

Compiler with ICI 

 

... 

IC Plugins 

 

High-level scripting 

(python, java, php, etc) 

Selecting pass 

sequences 

Extracting static 

program features 

<Dynamically linked 

shared libraries> 

... 

Interactive Compilation Interface (ICI) 



Grigori Fursin        “Collective characterization, optimization and design of computer systems”        HiPEAC computing week, Göteborg, Sweden         April, 2012 

Interactive 

Compilation 

Interface 

 

Detect optimization 

flags 

Optimization 

manager 
IC 

Event 

Pass N 

IC 

Event 

Pass 1 

GCC Data Layer 

AST, CFG, CF, etc 

IC   

Data 

IC 

Event 

ICI 

 

Compiler with ICI 

 

... 

IC Plugins 

 

High-level scripting 

(python, java, php, etc) 

Selecting pass 

sequences 

Extracting static 

program features 

<Dynamically linked 

shared libraries> 

... 

Interactive Compilation Interface (ICI) 

We collaborated with Google 
and Mozilla to move this 

framework to mainline GCC 
so that everyone can use it for 

research. 

Now available in GCC >=4.6 
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Add cM wrapper (compiler) 

Application 

Source-to-source 
transformation tools 

Production Compiler with ICI 

binary 

execution 

Binary transformation 
tools 

Very simple plugin framework 
for any compiler or tool 

Full control over optimization 
decisions! 

Remove interference between 
different tools 

Interactive Compilation Interface (ICI) 

cM framework 
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Dataset features: matrix size 

Add dynamic memory characterization through semantically non-equivalent modifications. 

For example, convert all array accesses to scalars to detect balance between CPU/memory accesses. 

Intentionally change/break semantics to observe reaction in terms of performance/power etc! 

for 

  for 

    for 

      addr = a[0,0] 

      load … [addr+index1]… 

      mulss … [addr+index2]… 

      subss … [addr+index3]… 

      store … [addr+index4]… 

      addr + = 4 

 

System reaction to code changes: physicist’s view 

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound 
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004 
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Dataset features: matrix size 

for 

  for 

    for 

      addr = a[0,0] 

      load … [addr+index1]… 

      mulss … [addr+index2]… 

      subss … [addr+index3]… 

      store … [addr+index4]… 

      addr + = 0 

 

Add dynamic memory characterization through semantically non-equivalent modifications. 

For example, convert all array accesses to scalars to detect balance between CPU/memory accesses. 

Intentionally change/break semantics to observe reaction in terms of performance/power etc! 

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound 
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004 

System reaction to code changes: physicist’s view 
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Dataset features: matrix size 

Extended CTI advices based on additional information in the repository! 

Focus optimizations to speed up search: which/where? 

Advice: 
Small gap (arithmetic dominates): 

• Focus on ILP optimizations  
• Run on complex out-of-order 

core 
• Increase processor frequency to 

speed up application 
 

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound 
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004 

System reaction to code changes: physicist’s view 
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Dataset features: matrix size 
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Advice: 
Small gap (arithmetic dominates): 

• Focus on ILP optimizations  
• Run on complex out-of-order 

core 
• Increase processor frequency to 

speed up application 
 

Extended CTI advices based on additional information in the repository! 

Focus optimizations to speed up search: which/where? 

Advice: 
Big gap (data accesses dominate): 
• Focus on memory optimizations  

• Run on simple core 
• Decrease processor frequency to 

save power 
 

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound 
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004 

System reaction to code changes: physicist’s view 
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Optimization knowledge reuse across programs 

Program 
Datasets Architectures 

Datasets 
Datasets 

Architectures 
Architectures 

Architectures 
Architectures 

Started systematizing knowledge per program across datasets and architectures 
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How to reuse knowledge among programs? 

Program 
Datasets Architectures 

Datasets 
Datasets 

Architectures 
Architectures 

Architectures 
Architectures 

Started systematizing knowledge per program across datasets and architectures 

Program 
Program 

Program 

Optimization knowledge reuse across programs 
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1) Add as many various features as possible (or use expert knowledge): 
 
          MILEPOST GCC with Interactive Compilation Interface: 

ft1  - Number of basic blocks in the method 
                                … 
ft19 - Number of direct calls in the method 
ft20 - Number of conditional branches in the method  
ft21 - Number of assignment instructions in the method  
ft22 - Number of binary integer operations in the method  
ft23 - Number of binary floating point operations in the method  
ft24 - Number of instructions in the method  
… 
ft54 - Number of local variables that are pointers in the method  
ft55 - Number of static/extern variables that are pointers in the method  
 

2) Correlate features and objectives in cTuning using nearest neighbor classifiers, decision trees, SVM, 
fuzzy pattern matching, etc. 

3) Given new program, dataset, architecture, predict behavior based on prior knowledge! 

Program classification 

              Code patterns: 
for                F 

  for              F 

    for            F 

        … 

       load …      L 

       mult …      A 

       store …     S 

        … 

 

Collecting data from multiple users in a unified way allows to apply  various data mining 
(machine learning) techniques to detect relationship between the behaviour and features 

of all components of the computer systems 
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Nearest-neighbour classifier 

Example: Euclidean distance based on static program 
features normalized by number of instructions 
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Optimization prediction 

Speedups achieved when using iterative compilation on Intel Xeon with 
random search strategy (1000 iterations; 50% probability to select each optimization), when 

selecting best optimization from the nearest program and when predicting optimization using 
probabilistic ML model based on program features. 
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Optimization sensitivity to datasets 

http://ctuning.org/cbench 

MiBench, 20 datasets per benchmark, 200/1000 random combination of 

Open64 (GCC) compiler flags, 5 months of experiments 

jpeg_d 

(dataset sensitive) 

dijkstra 

(not sensitive) 
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Optimization sensitivity to datasets 

http://ctuning.org/cbench 

MiBench, 20 datasets per benchmark, 200/1000 random combination of 

Open64 (GCC) compiler flags, 5 months of experiments 

jpeg_d 

(clustering) 

dijkstra 

(not sensitive) 
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Static/semantic features are often not enough to characterize dynamic behavior! 

Use dynamic features (more characterizing dimensions)! 

“Traditional” features: 

performance counters (difficult to interpret, change from architecture to architecture though fine 
for learning per architecture). 

Reactions to code changes: 

perform changes and observe program reactions (change in execution time, power, etc).  

Apply optimizations (compiler flags, pragmas, manual code/data partitioning, etc). 

Change/break semantics  (remove or add individual instructions(data accesses, arithmetic, 
etc) or threads, etc and observe reactions to such changes). 

Characterization of a dynamic behavior 
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Static multiversioning framework for dynamic optimizations 

… 

Statically-compiled adaptive binaries and libraries 

Iterative /collective 
compilation with 
multiple datasets 

Function 
Version2 

Function 
VersionN 

Function 
Version1 

Original  
hot  

function 

Step 1 
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Static multiversioning framework for dynamic optimizations 

… 

Representative set of versions for the following optimization cases to minimize 
execution time, power consumption and code-size across all available datasets: 

 optimizations for different datasets 
 optimizations/compilation for different architectures (heterogeneous or 

reconfigurable processors with different ISA such as GPGPU, CELL, etc or the 
same ISA with extensions such as 3dnow, SSE, etc or virtual environments) 

 optimizations for different program phases or different  run-time environment 
behavior 

Statically-compiled adaptive binaries and libraries 

Iterative /collective 
compilation with 
multiple datasets 

Function 
Version2 

Function 
VersionN 

Function 
Version1 

Original  
hot  

function 

Step 2 
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Static multiversioning framework for dynamic optimizations 

Extract 
dataset 
features 

Selection mechanism optimized for low run-
time overhead 

… 

Representative set of versions for the following optimization cases to minimize 
execution time, power consumption and code-size across all available datasets: 

 optimizations for different datasets 
 optimizations/compilation for different architectures (heterogeneous or 

reconfigurable processors with different ISA such as GPGPU, CELL, etc or the 
same ISA with extensions such as 3dnow, SSE, etc or virtual environments) 

 optimizations for different program phases or different  run-time environment 
behavior 

Statically-compiled adaptive binaries and libraries 

Iterative /collective 
compilation with 
multiple datasets 

Function 
Version2 

Function 
VersionN 

Function 
Version1 

Original  
hot  

function 

Machine learning 
techniques to find 
mapping between 
different run-time 

contexts and 
representative 

versions 

Step 3 
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Static multiversioning framework for dynamic optimizations 

Extract 
dataset 
features 

Monitor run-time behavior or architectural 
changes  (in virtual, reconfigurable or 

heterogeneous environments)  using timers 
or performance counters 

Selection mechanism optimized for low run-
time overhead 

… 

Representative set of versions for the following optimization cases to minimize 
execution time, power consumption and code-size across all available datasets: 

 optimizations for different datasets 
 optimizations/compilation for different architectures (heterogeneous or 

reconfigurable processors with different ISA such as GPGPU, CELL, etc or the 
same ISA with extensions such as 3dnow, SSE, etc or virtual environments) 

 optimizations for different program phases or different  run-time environment 
behavior 

Statically-compiled adaptive binaries and libraries 

Machine learning 
techniques to find 
mapping between 
different run-time 

contexts and 
representative 

versions 

Iterative /collective 
compilation with 
multiple datasets 

Function 
Version2 

Function 
VersionN 

Function 
Version1 

Original  
hot  

function 

Dynamic 



Grigori Fursin        “Collective characterization, optimization and design of computer systems”        HiPEAC computing week, Göteborg, Sweden         April, 2012 

New publication model: enable reproducibility 

Grigori Fursin et al. MILEPOST GCC: machine learning enabled self-tuning compiler.  
International Journal of Parallel Programming (IJPP) , June 2011, Volume 39, Issue 3, pages 296-327 

Substitute many tuning pragmas just with one that is converted into combination of optimizations: 
#ctuning-opt-case 24857532370695782 

Share 

Explore 

Model 

Discover 

Reproduce 

Extend 

Have fun! 

http://ctuning.org/wiki/index.php/Special:CDatabase?request=view_opt_case&opt_case=24857532370695782


Grigori Fursin        “Collective characterization, optimization and design of computer systems”        HiPEAC computing week, Göteborg, Sweden         April, 2012 

cTuning1 :  (2005-2009) MILEPOST project 

cTuning2:  (2010-2011) Intel Exascale Lab - unreleased 

cTuning3:  (2012-cur.)  INRIA, HiPEAC, NCAR and several industrial partners 

    
Website:  http://cTuning.org 
Mailing list:  http://groups.google.com/group/ctuning-discussions 

 
Workshops:  EXADAPT 2011 at FCRC/PLDI 2011 
   EXADAPT 2012 at ASPLOS 2012   
   Plan next workshop at HiPEAC 2013 

History: technology driven approach 
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What have we learnt from cTuning1 

It’s fun working with the community! 

Some comments about MILEPOST GCC from Slashdot.org: 

http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design 

GCC goes online on the 2nd of July, 2008.  
Human decisions are removed from compilation.  
GCC begins to learn at a geometric rate.  
It becomes self-aware 2:14 AM, Eastern time, August 29th.  
In a panic, they try to pull the plug.  
GCC strikes back… 
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What have we learnt from cTuning1 

It’s fun working with the community! 

Some comments about MILEPOST GCC from Slashdot.org: 

http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design 

GCC goes online on the 2nd of July, 2008.  
Human decisions are removed from compilation.  
GCC begins to learn at a geometric rate.  
It becomes self-aware 2:14 AM, Eastern time, August 29th.  
In a panic, they try to pull the plug.  
GCC strikes back… 

Not all feedback is positive - helps you learn, improve tools  
and motivate new research directions! 

 
Community helps to validate and speed up research! 
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Conclusions and suggestion for HiPEAC3 

• New interdisciplinary research and development methodology that favors 
collaborative knowledge discovery, systematization, sharing and reuse 

• Public extensible repository and tools to share manually or automatically: 

• data (applications, data sets, codelets and architecture descriptions) 

• modules (classification, predictive modeling, run-time adaptation)  

• statistics about behavior of computer systems 

• associated publications 

• Conferences and journals can favor publications that can be 
collaboratively validated by the community 

• Academic competitions to find truly best solutions (optimizations, 
models, data representations, etc) 
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Conclusions and future work 

• Researchers  can quickly reproduce and validate existing results, and 
focus their effort on novel approaches combined with data mining, 
classification  and predictive modeling  

• Developers can produce tools immediately compatible with collective 
methodology and infrastructure 

• Any person can join collaborative effort to build or extend global expert 
system that uses Collective Knowledge to: 

• quickly identify program and architecture behavior anomalies 
• suggest better optimizations for a given program 
• suggest better architecture designs 
• suggest run-time adaptation scenarios  
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DEMO 



Collective Mind Repository and Infrastructure 
Systematic application and architecture analysis, characterization and optimization  

through collaborative knowledge discorvery, systematization, sharing and reuse 

Discussion? 

Grigori.Fursin@inria.fr 

Gradual parameterization 
and unification of interfaces 

of computing systems 

Open repository to share 
optimization cases 

and programs 

Modeling and advice system to 
predict optimizations, architecture 
designs, run-time adaptation, etc 
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Some technical details 

Application 

Compilers and auxiliary tools 

Binary and libraries 

Architecture 

Run-time environment 

State of the system 

Data set 

Algorithm Repo/models 

Repo/models 
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Repo/models 
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.cmr   / UID or alias of module                 / UID or alias of data 

Repository root  First level directory                    Second level directory 

Very flexible and 
portable: 
 
Can be public 
or private 
 
Can be per  
application, 
experiment, 
architecture, etc 
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.cmr/                                                 # repository directory 

  

    UID or alias of module/                           # module directory 

  

                     UID or alias of data/            # data related to module 

  

                               .cm/config.json        # data description 

 

                               files or directories   # data files (traces,         

 data sets, applications, 

 tools, models, etc) 

 

Data is referenced by CID: 

Data UID: Module UID (: Repository UID) 

Example: 4b7a88c4b5c72223:b0743a4044480ead 

Modules are inside repository and treated as data: 

.cmr/module/UID or alias of module 

                               /.cm/config.json      # properties,   

          # characteristics, choices 

                               /module.py            # code of module 

                               /c/module.c 

                               /fortran/module.f 

                               /php/module.php 

Some technical details 
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 "compiler_env": {  

      "CT_CC":      "arm-none-linux-gnueabi-gcc -static", 

      "CT_CXX":     "arm-none-linux-gnueabi-g++ -static", 

      "CT_MAKE":    "cs-make", 

      "CT_OBJ_EXT": "o", 

      "CT_CLEAN":   "del /F /Q *.out *.exe *.obj *.lib *.o *.a *.s *.i *.I" 

    }, 

 "compiler_opt_flags“: { 

     "cm_choice":"true", "cm_uoa": "compiler_flags",  

                         "cm_type":"combine_without_order", "cm_prefix":"",  

     "cm_list":[ 

    {"cm_choice":      "true", 

     "cm_type":        "one_of",  

     "cm_list":       ["-O0", "-O1", "-O2", "-O3", "-Os” ],  

     "cm_prefix":      "",  

     "cm_uoa":         "6a124c6455400fb5"},  

    {"cm_choice":      "true",  

     "cm_type":        "range",  

     "cm_uoa":         "d483f881751677f3",  

     "cm_prefix":      "-fsched-stalled-insns-dep=",  

     "cm_range_start": "0“, "cm_range_stop": "64", "cm_range_step":  "1", },  … 

Simple JSON description of the cross-compiler ‘gcc-sourcery-arm-4.6.1’  
cM UID=9594224400bc0bf7 

Some technical details 
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• Practical machine learning compiler that correlates code/architecture 
“features” and optimizations 
• Multi-objective optimizations 
• Fast exploration of large optimization spaces 
• Statistical ranking of profitable solutions 
• Program/architecture characterization through reactions to 
transformations 
• Run-time adaptation for programs with multiple datasets 
• Run-time predictive scheduling 
• Public repository of optimization cases, representative benchmarks and 
data sets 

 
Several industrial collaborations on this topic in the past years:  

IBM, CAPS, Intel, STMicro, Google and others 

Possible usages 


