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Abstract. Current machine perception techniques that typically use segmentation followed by object recognition
lack the required robustness to cope with the large variety of situations encountered in real-world navigation. Many
existing techniques are brittle in the sense that even minor changes in the expected task environment (e.g., different
lighting conditions, geometrical distortion, etc.) can severely degrade the performance of the system or even make
it fail completely. In this paper we present a system that achieves robust performance by using local reinforcement
learning to induce a highly adaptive mapping from input images to segmentation strategies for successful recognition.
This is accomplished by using the confidence level of model matching as reinforcement to drive learning. Local
reinforcement learning gives rises to better improvement in recognition performance. The system is verified through
experiments on a large set of real images of traffic signs.
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1. Introduction

Sensing and perception are of paramount importance
to any cognitive automaton. Acquiring such abilities
is a prerequisite for autonomous platforms that must
operate in a dynamic environment. This objective,
however, can be challenging in real world navigation
applications due to the presence of clutter, object oc-
clusion, data uncertainty, limited a priori model infor-
mation, and changes in the environmental conditions
that cannot be controlled in the outdoor scenarios. As
an example, suppose an autonomous platform is tasked
with a mail delivery mission to each department on a
typical university campus. For this scenario, the plat-
form must recognize traffic signs and act accordingly,
for example, stop at stop signs. Sample color images
(printed here in black and white) are shown in Fig. 1.
There exists a wide variety of real world conditions un-
der which the platform may come to a stop sign. As
such, it is difficult or even impossible to develop a per-
ception strategy with fixed parameters and algorithms
that performs reliably in dynamic environments. Real

world considerations mentioned above must be taken
into account if the platform is to act intelligently in an
autonomous fashion in a dynamic environment.

In addition to recognizing landmarks/objects in a ro-
bust manner, an autonomous platform must be capable
of estimating its 3D position and performing spatial-
temporal reasoning within its environment. The abi-
lity to provide accurate spatial information by means
of active vision, stereo/motion analysis and/or statisti-
cal techniques (Baumgartner and Skarr, 1994; Olson,
1997) allows the autonomous platform to register its
successive local contexts indefinitely in one reference
frame, whereby its state, i.e., its position and orien-
tation relative to a global reference system can be
determined. Higher-level vision and other cognitive
activities such as path planning can then be carried out
through reasoning about landmarks within a 3D model
of the environment so as to navigate effectively in the
world. It is also desired that the autonomous platform
be capable of handling tasks having immediate impor-
tance to it, such as obstacle avoidance, and taking ap-
propriate actions in a rapid and reactive manner.
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evaluating our method. These results are discussed and
analyzed. Finally, we conclude with the key aspects of
this paper.

2. Why Learning?

A typical model based object recognition system has
three key components: image segmentation, feature
extraction, and model matching. The goal of image
segmentation is to extract meaningful objects from an
input image. Image segmentation is an important and
one of the most difficult low-level image processing
and computer vision tasks. All subsequent image inter-
pretation tasks including feature extraction and model
matching, rely heavily on the quality of the image seg-
mentation process. Generally, this in turn spells out the
difference between success and failure in vision-based
autonomous navigation.

The inability to adapt the image segmentation pro-
cess to real-world changes is one of the fundamental
weaknesses of typical model-based object recognition
systems. Despite the large number of image segmen-
tation algorithms available, no general methods have
been found to process the wide diversity of images

encountered in real world applications. Typical object
recognition systems are open-loop. Segmentation and
feature extraction modules use default algorithm pa-
rameters, and generally serve as pre-processing steps
to the model matching component. These parameters
are not reliable, since when the conditions for which
they are designed are changed slightly, these algo-
rithms generally fail without any graceful degradation
in performance. As an example, Fig. 2 shows segmen-
tation of images shown in Fig. 1 obtained using the
Phoenix algorithm (Laws, 1982) with default param-
eters. From these segmentation results, no algorithm
would be able to perform model matching with suffi-
cient confidence to recognize the stop sign, i.e., the oc-
tagon. Moreover, purely geometric or physics-based in-
variant approaches, without learning, are not sufficient
to recognize objects under a wide variety of situations
encountered in real-world navigation (Forsyth et al.,
1992; Healey and Jain, 1996).

One might contemplate the idea of using color infor-
mation for detecting and recognizing objects, such as
stop signs. However, there are three major difficulties
associated with such simple, color-based techniques.
First, there are times at which color features cannot be
reliably detected. For example, the images shown in

Figure 2. Segmentations of images shown in Fig. 1 using the Phoenix algorithm with default parameters.
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Figure 3. Reinforcement learning based system for recognition.

image segmentation component extracts meaningful
objects from input images, feature extraction compo-
nent performs polygonal approximation of connected
components, and the model matching component tells
us which regions in the segmented image contain the
model object by generating a real valued matching con-
fidence indicating the degree of success. Reinforce-
ment learning module then uses this confidence value as
feedback to induce a mapping from images to segmen-
tation strategies within each local region created from
partitioning of the feature space. The goal is, there-
fore, to maximize the matching confidence by finding a
set of segmentation algorithm parameters for the given
recognition task.

There are good reasons for using reinforcement
learning in our object recognition system. First, rein-
forcement learning requires knowing only the goodness
of the system performance rather than the details of al-
gorithms that produce the results. In the object recog-
nition system, model matching confidence indirectly
evaluates the performance of image segmentation and
feature extraction processes. It is a natural choice to
select matching confidence as a reinforcement signal.
Second, convergence is guaranteed for several rein-
forcement learning algorithms. Third, reinforcement
learning performs efficient hill-climbing in a statisti-
cal sense without excessive demand for computational
resources. Furthermore, it can generalize over unseen
images. Fourth, it is feasible to construct fast, paral-
lel devices to implement this technique for real-time ap-
plications. Thus, it fits our goal nicely here. Likewise,

local learning has the advantage of avoiding negative
spatial cross-talk typically associated with global learn-
ing techniques, because mappings are constructed sep-
arately within each local region in the feature space.
Furthermore, local reinforcement learning often gives
rise to better improvement in recognition performance,
as we shall see later. Note that the integration of local
learning and reinforcement learning at the algorithmic
level makes it possible to take advantage of some of
the best features of each of the paradigms.

3.1. Related Work

Robot learning and landmark recognition are active ar-
eas of research (Connell and Mahadevan, 1993; Nasr
and Bhanu, 1988; Trahanias et al., 1997; Zheng et al.,
1994). The challenge is to extend operating conditions
of a mobile robot. Adaptation and learning play an im-
portant role for achieving the robustness of algorithms.
The work presented in this paper is most closely related
to earlier work by the authors (Peng and Bhanu, 1996),
in which they describe a reinforcement learning system
that uses recognition output as feedback to guide the
segmentation process. However, their method is global
in that only a single mapping is induced over the entire
input space. In addition, their system was evaluated
only on a small number of images. In this work, we
use simulated images with controlled statistics to show
that our method can indeed learn correct segmentation
strategies for recognition of objects. Further, we show
that local learning, when combined with reinforcement
learning, can outperform the global learning method
using empirical results based on a large set of real im-
ages of traffic signs.

An adaptive approach to image segmentation is pro-
posed by Bhanu and Lee (1994). Their system uses
genetic and hybrid algorithms for learning segmenta-
tion parameters. However, the recognition algorithm is
not part of the evaluation function for segmentation in
their system. The genetic or hybrid algorithms simply
search for a set of parameters that optimize a prespec-
ified evaluation function (based on global and local
segmentation evaluation) that may not best serve the
overall goal of robust object recognition. Furthermore,
their work assumes that the location of the object in the
image is known for specific photointerpretation appli-
cation. In our work, we do not make such an assump-
tion. We use explicit geometric model of an object,
represented by its polygonal approximation, to recog-
nize it in the image.
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4.2. Connectionist Reinforcement Learning

The particular class of reinforcement learning algo-
rithms employed in each local region for our object
recognition system is the connectionist REINFORCE
algorithm (Williams, 1992), where units in such a net-
work are Bernoulli semilinear units, in that the output
of such a unit, i, is either O or 1, determined stochas-
tically using the Bernoulli distribution with parameter
pi = f(si), where f is the logistic function

f(si) =1/(1 + exp(—s)) “

ands; = ) ; w;;x; is the usual weighted summation of
input values to that unit. For such a unit, p; represents
its probability of choosing 1 as its output value. The left
graph in Fig. 4 depicts a connectionist reinforcement
learning system and the right graph shows a Bernoulli
semilinear unit in such a system.

In the general reinforcement learning paradigm, the
network generates an output pattern and the environ-
ment responds by providing the reinforcement r as its
evaluation of that output pattern, which is then used
to drive the weight changes according to the partic-
ular reinforcement learning algorithm being used by
the network. REINFORCE has the following generic
update rule

d
Aw;j = oy (r — bij)_awij In(g;) 5)

where «;; is a learning rate factor, r the immediate re-
inforcement, b;; a baseline, and g; is the density func-
tion for randomly generating output patterns. For the
Bernoulli semilinear units used in this research, Eq. (5)
reduces to

Aw;j = a(r — bij)(yi — pi)x; ©)

y={1wm1;:||
[ EnvironmENT ] 1=Lo wit1'p,
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Figure 4. Left: Connectionist reinforcement learning system.
Right: Bernoulli semilinear unit.

xj is the input to each Bernoulli unit, y; is the output of
the ith Bernoulli unit, and p; is an internal parameter
to a Bernoulli random number generator.

It can be shown (Williams, 1992) that, regardless of
how b;; is computed!, whenever it does not depend on
the immediately received reinforcement value r, and
when r is sent to all the units in the network, such an
algorithm satisfies

E{AW | W} = aVwE{r | W} )

where E denotes the expectation operator, W repre-
sents the weight matrix of the network, and AW is the
change of the weight matrix. A reinforcement learning
algorithm satisfying the above equation has the conver-
gence property that the algorithm statistically climbs
the gradient of expected reinforcement in weight space.
For adapting parameters of the segmentation algorithm,
it means that the segmentation parameters change in
the direction along which the expected matching con-
fidence increases.

The specific algorithm we use here has the following
form: At the rth time step, after generating output y(¢)
and receiving reinforcement r(¢), i.e., the confidence
level indicating the matching result, increment each
weight w;; by

Aw;;()=a(r @) —7( —1))
X (yi (1) =y;(t — D)xj — dw;; (¢) ®)

where «, the learning rate, and 8§, the weight de-
cay rate, are parameters of the algorithm. The term
(r(t)— r(t — 1)) is called the reinforcement factor
and (y; () — y; (¢ — 1)) the eligibility of the weight w;;
(Williams, 1992). Generally, the eligibility of a weight
indicates the extent to which the activity at the input of
the weight was connected in the past with unit output
activity. Note that this algorithm is a variant of the one
described in Eq. (6), where b is replaced by 7 and p;
by y;.

7 (¢) is the exponentially weighted average, or trace,
of prior reinforcement values

F@)=yr@¢—D+0A—-y)r@) ®

with 7(0) = 0. The trace parameter y was set equal
to 0.9 for all the experiments reported here. Similarly
¥;(t) is an average of past values of y; computed by
the same exponential weighting scheme used for 7.
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(a)

Figure 6. (a) A noisy simulated image (SNR = 10). (b) Learned segmentation. (c) Theoretical segmentation.
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Figure 7. (a) Histogram of image in Fig. 6(a). (b) Recognition confidence as a function of threshold. (c) Recognition confidence (reward)

received over time.

to an input image: For each pixel, if its value is greater
than or equal to T, it is set to 1, otherwise to 0. It is
the parameter T that has to be learned by the system.
The “recognition algorithm” we use in this subsection
computes a confidence value according to

, D)~ ((n(G) —n(GNR) + (n(R) —n(RN G)))
n(I)

13)

where G is the region of the ground truth (target), R the
region of pixels having a value of 1 and [ is the input
image. Function n(-) returns the number of pixels of its
argument. r is then used as reinforcement to drive learn-
ing. Note that Eq. (13) happens to be one (pixel clas-
sification) of possible criteria for image segmentation
evaluation (Bhanu and Lee, 1994). Figure 7(b) plots
r (Eq. (13)) against the threshold. A local maximum
is added to make the problem more interesting. That is,
when T € [35, 85], r follows a simple quadratic func-
tionof T.

A team of 8 Bernoulli units is used to represent the
threshold (77) to be learned. It took on average (over
50 runs) less than 100 iterations (¢ = 0.2) to learn a
threshold (166) that achieves the optimal “recognition
confidence” of 0.92 (Eq. (13)). Figure 6(b) shows the
segmentation result and Fig. 7(c) the average r value

received over time. As a comparison, Fig. 6(c) shows
the segmentation using the theoretical threshold (136)
that achieves a confidence value of 0.82, which is far
from the optimal one. When the Gaussian random noise
is removed, the learned threshold and the theoretical
one are identical for the image in Fig. 6(a).

Experiment 2: To further evaluate our technique, 100
images were randomly generated as training data. The
first 50 images have the following statistics: u, was
set to 130, p, varied uniformly from 145 to 155, with
op =0; =2, the size of the square target varied from
25 x 25 to 35 x 35 and the SNR from 10 to 15, while
the statistics for the rest are: w; was set to 190, u; var-
ied uniformly from 205 to 215, with o, =0; =3, the
target size varied from 40 x 40 to 50 x 50 and the SNR
from 5 to 10. An additional set of 1000 images was gen-
erated randomly independently as testing data, whose
statistics are as follows. For the first 500 images, up
was set to 130, u, varied from 140 to 160 uniformly, the
size of the target from 20 x 20 to 40 x 40 and the SNR
from 3 to 20, while for the remaining images, w, was
set to 190, u, varied from 200 to 220, the target size
from 35 x 35t0 55 x 55 and the SNR from 2 to 18. The
best achievable average r value (experimentally deter-
mined) on the training data is 0.85, whereas this value
is 0.83 on the testing data. The images are represented
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Table 1. Sample ranges for selected Phoenix parameters.

Parameter Sampling formula Test range

Hsmooth: hsmooth = 1 + 2 * hsindex 1-63
hsindex € [0 : 31]

Maxmin: ep= In(100) 4+ 0.05 * mmindex 100-471

mmindex € [0: 31] maxmin = exp(ep) + 0.5

Splitmin: splitmin =9 + 2 * smindex 9-71
smindex € [0 : 31]
Height: height =142 * htindex 1-63

htindex € [0: 31]

highest peak. Table 1 shows sample ranges for each of
these parameters. The resulting search space is about
one million sample points. Each of the Phoenix para-
meters is represented using 5 bit binary code, with each
bit represented by one Bernoulli unit. To represent 4
parameters, we need a total of 20 Bernoulli units.

The feature extraction consists of finding polygon
approximation tokens for each of the regions obtained
after image segmentation. The polygon approximation
is obtained using a split and merge technique (Bhanu
and Ming, 1987) that has a fixed set of parameters. Ob-
ject recognition employs a cluster-structure matching
algorithm (Bhanu and Ming,1987) that is based on the
clustering of translational and rotational transforma-
tions between the object and the model for recognizing
2D and 3D objects. It outputs a real number indicating
the confidence level of the matching process. This con-
fidence level is then used as a reinforcement signal to
drive learning. These algorithms were chosen simply
because they are available in house.

5.2.1. Experimental Results on Real Data. The ex-
periment described here consists of 500 images, some
of which are shown in Fig. 1. These images are
collected in late afternoon over several days (includ-
ing a rainy day) using a Canon PowerShot 600 dig-
ital camera. They are taken in a variety of locations
in Southern California. These images simulate an au-
tonomous navigation scenario in which an autonomous
vehicle must be able to recognize the stop sign. The
size of the images is 78 by 104 pixels.

Eighty images are randomly selected as training
data, and the rest (420) as testing data. A principal
component analysis is carried out using the red color
component. Red component of each image is projected
onto the subspace spanned by the first 4 eigen vectors
corresponding to four largest eigen values. These in-
puts are normalized to lie between 0 and 1.

Local Reinforcement Learning. The training data are
first clustered using the K-means algorithm based on
the eigen inputs. The K-means algorithm was repeat-
edly applied to the training data with varying K . The K
value that attained the largest Calinski-Harabasz Index
(Eq. (1)) was selected as the final cluster number (4 in
this experiment). The resulting clusters contain 25, 26,
13, and 16 training images, respectively. Within each
cluster, a network having 3 hidden Bernoulli units and
20 output Bernoulli units that encode the four Phoenix
parameters was trained using the local reinforcement
learning algorithm described in Fig. 5. Each hidden
unit takes four eigen inputs and there are no connec-
tions from inputs to output units. Because of the in-
dependence of the output units, the effective number
of weights in the network is 19 (4 (input weights) x
3 (hidden units) + 3 (hidden to output weights) + 4
(biases)). Figure 9 depicts such a network.

Global Reinforcement Learning. A global network,
similar to the one shown in Fig. 9, is trained on the
entire training data to construct a single mapping. The
network has 8 hidden Bernoulli units, and 20 output
units. The number of hidden units is determined ex-
perimentally that achieves the best performance among
several trials. In comparison with local reinforcement
learning, the effective number of free parameters in the
global network is 49 (4 (input weights) x 8 (hidden
units) + 8 (hidden to output weights) + 9 (biases)).

Simple Case-Based Learning. Instead of construct-
ing a local mapping within each cluster, as is done in
the local reinforcement learning method, the simple
CBL method first learns, for each cluster, a set of seg-
mentation parameters achieving the best performance

Output Bernoulli Units

O

Hidden Units

Inputs

Figure 9. A connectionist reinforcement learning network.
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Figure 11.  Segmentation of images shown in Fig. 1 using the Phoenix algorithm with learned parameters.

(®) : (n)

Figure 12. Row one: Sample images in which the stop sign does not take the center stage. Row two: Corresponding segmentations using the

technique presented here.

take the center stage. These images represent far more
difficult scenarios than those shown in Fig. 1. The sec-
ond row of Fig. 12 shows the corresponding segmenta-
tions via local reinforcement learning introduced here.
While the system succeeded in recognizing the stop

signs in the images shown in Figs. 12(a) and (d), it failed
to do so for the images shown in Figs. 12(b) and (c).
These results are representative of the capabilities
of the segmentation/recognition algorithms employed
here.
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