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ABSTRACT

In the DARPA Strategic Computing Computer Vision
Program, we focus on demonstrating robust techniques for
target tracking and recognition from a moving robotic combat
vehicle. Our work is specifically directed towards significant
enhancements in the performance of existing target tracking
techniques under high clutter and low contrast situations in a
ground-to-ground scenario when the robotic combat vehicle is
in motion and multiple targets may appear at varying ranges.
The topics currently under investigation are: decomposition
of complex vehicle motion into its constituent parts; qualita-
tive 3-D scene modeling; target motion detection and track-
ing; landmark recognition; 3-D target model acquisition and
refinement; and use of recognition and map information in an
integrated motion detection and tracking system. The results
from our research are useful in vision controlled
navigation/guidance of a robotic combat vehicle for practical
military missions such as targeting, reconnaissance and sur-
veillance. This report summarizes the progress made during
the period from March 1987 to January 1988. We also dis-

cuss the technology transfer aspects of our work.

1. INTRODUCTION

The goal of our research in the Strategic Computing
Computer Vision Program is to demonstrate robust tech-
niques for target tracking and recognition from an
autonomously-moving robotic combat vehicle. In our experi-
ence in implementing vision controlled navigation/guidance
for reconnaissance, surveillance, search and rescue, and tar-
geting missions, we find that for spatio-temporal vision prob-
lems, purely quantitative approaches are unsuitable and
insufficient because of the inexact nature of vision. As such,
the technical basis of our work is qualitative reasoning and
modeling for dynamic scene understanding.

To achieve our goal, we are engaged in developing
efficient and reliable techniques for qualitative motion under-
standing, dynamic model matching, automatic 3-D model
acquisition, spatial reasoning, geographic knowledge
representation and its use in recognition and tracking. This
work is specifically directed towards significant enhancements
in the performance of existing target tracking techniques
under high clutter and low contrast situations in a ground-to-
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ground scenario when the robotic combat vehicle is in motion
and multiple targets may appear at varying ranges.

1.1 Qualitative Reasoning and Modeling

The choice of a suitable scheme for representing the
perceived state of the scene, observed by a moving robotic
combat vehicle, is a crucial question. It has an immediate
impact upon the efficiency, versatility, and robustness of the
reasoning processes that are attached to this representation.
It is questionable whether an accurate numerical description
of the 3-D environment is really necessary to facilitate
efficient reasoning of spatio-temporal processes. The use of
qualitative descriptions of physical properties has raised con-
siderable interest in the area of Artificial Intelligence.16:2! Lts
potential significance to the field of computer vision has been
addressed only recently.*38:41 The main argument is that
many of the error-prone, computationally expensive tech-
niques which are commonly used can be replaced by
emphasizing the qualitative effects and utilizing less precise
representations without sacrificing the usefulness of the
results.

Most previous work in motion understanding attempted
to obtain the 3-D scene structure from motion in the form of
a quantitative, numerical description of the spatial layout of
the environment relative to the camera. The problems related
to this approach are well-known and applications using real
imagery have been rare. The systems of nonlinear equations
that must be solved for this purpose are numerically unstable;
small errors in the estimate of image displacement lead to
unproportionally large errors in the estimated 3-D geometry.

Since numerical schemes are designed to converge
towards a single solution which is optimal in some sense,
there seems to be no practical mechanism that would reflect
the uncertainty of the input data on the final result. Further-
more, the necessary assumption of rigidness cannot be
guaranteed. When features are assumed to form a rigid
configuration in space but are actually moving relative to
each other, this may still result in a rigid interpretation. The
problem with this approach is how the numerical model
responds when moving features and stationary features are
inadvertently grouped. In the best case, the deviation from a
rigid configuration would be indicated by a high error value
for the feature which is actually in motion. If this is not the
case, the model may converge towards a completely different
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solution.

Following the qualitative reasoning and modeling
approach, the central building block of our DRIVE system®
for target motion detection and tracking is a Qualitative
Scene Model (QSM), which can be considered as the "mind"
of the motion understanding system. This model is a 3-D,
camera-centered representation of the scene which describes
the observed environment by using a set of simple qualitative
relationships. The set of entities in the QSM is conceptually
split into two parts, the stationary world and a set of
independently moving objects. Construction of the QSM
over time is accomplished by a reasoning process which
draws conclusions from significant configurations and
changes in the image. As the vehicle travels through the
environment, the model is continuously updated and revised
by adding or deleting hypotheses.

Additionally, the state of the QSM is a not a single
interpretation but a set of interpretations which are all pur-
sued simultaneously. This provides a very flexible mechan-
ism for handling the inherent ambiguities encountered in
image understanding. Each interpretation is a collection of
hypotheses, called partial interpretations, which cover over-
lapping subsets of the entities in the model. The structure
and dynamic behavior of the Qualitative Scene Model are
described in more detail in the paper by Bhanu and Burger.5

Qualitative reasoning and modeling is also emphasized
in our work on landmark and target recognition from a
mobile platform.”2% Using qualitative information, we do not
have to rely on obtaining precise geometric representations of
a target. To handle continuous changes in the target’s
appearance caused by range and perspective, we use a
dynamic model matching technique,2? which combines a
camera model, 3-D target models, and predicted range and
perspective to generate multiple 2-D image models for
matching. TRIPLE’s’ machine learning approach allows for
automated 3-D model acquisition and refinement. It uses
qualitative and quantitative shape descriptions.

The research results described in this report are parti-
tioned into the following topic areas: (a) target motion detec-
tion and tracking and (b) landmark and target recognition.
We also discuss the technology transfer aspects of our appli-
cation in the discussion.

2. TARGET MOTION DETECTION AND
TRACKING

Motion becomes a natural component of visual infor-
mation processing as soon as moving objects are encountered
in some form; while following a convoy, approaching other
vehicles, or detecting threats. The presence of moving
objects and their behavior must be known to provide
appropriate counteraction. In addition, image motion provides
important clues about the spatial layout of the environment
and about the actual movements of the vehicle. As part of the
vehicle control loop, visual motion feedback is essential for
path stabilization, steering, and braking. Results from
psychophysics?4:34 show that humans rely heavily on visual
motion for motor control.

While the vehicle is moving itself, the entire camera
image is changing continuously, even if the observed part of
the environment is completely stationary. The interpretation
of complex dynamic scenes is therefore the continuous task
for the vision system of an autonomous robotic combat vehi-
cle. Previous work in motion analysis has mainly concen-
rated on numerical approaches for the reconstruction of
motion and scene structure from image sequences. Recently
Nagel28 has given a comprehensive review. While a com-
pletely stationary environment has been assumed in most pre-
vious work on the reconstruction of camera motion, the pos-
sible presence of moving objects must be accounted for in
this scenario. Similarly, one cannot rely on a fixed camera
setup to detect those moving objects. Clearly, some kind of
common reference is required against which the movement of
the vehicle as well as the movement of objects in the scene
can be related.

Extensive work has been done in determining the rela-
tive motion and rigid 3-D structure from a set of image

points and their displacements, basically following two
approaches.

In the first approach, 3-D structure and motion are
computed in one integral step by solving a system of linear
or nonlinear equations?’3 from a minimum number of
points on a rigid object. The method is reportedly sensitive
to noise.1542 Recent work!0:11.17.37.40 pha5 addressed the
problem of recovering and refining 3-D structure from motion
over extended periods of time, demonstrating that fairly
robust results can be obtained. However, these approaches
require large amounts of computation, convergence is slow
and require many distinct views of the object (the environ-
ment), which are generally not available to a moving vehicle.
In addition, it seems that the noise problem cannot be over-
come by simply increasing the time of observation.

The second approachm' 18,24,25,33.35 makes use of the
unique expansion pattern which is experienced by a moving
observer. Arbitrary observer motion can be decomposed into
translational and rotational components from the 2-D image
without computing the structure of the scene. In the case of
pure camera translation in a stationary environment, every
point in the image seems to expand from one particular
image location termed the Focus of Expansion (FOE). The
closer a point is in 3-D, the more rapidly its image expands
away from the FOE. Thus, for a stationary scene, the 3-D
structure can be obtained directly from the expansion pattern.
Certain forms of 3-D motion become apparent by local devia-
tions from the expanding displacement field and therefore can
be detected immediately. The views of the scene need not be
very distinct in this approach and there seems to be evidence

from psychophysics that the human visual system employs
similar techniques.”“

The primary goal for Dynamic Scene Understanding in
this particular context is to construct and maintain consistent
and plausible interpretations of the time-varying images
obtained from the camera on the moving vehicle by deter-
mining:




¢ How is the vehicle itself moving ?
. ,:;What_ is the approximate 3-D structure of the scene ?
®  What is moving in the scene and how does it move ?

Obviously, these three goals are in very close interac-
tion:_ any form of motion, whether vehicle motion or actual
target motion, must be measured against some stationary
reference in the environment. ’
~--- + We have developed a new DRIVE (Dynamic Reason-
ing from Integrated Visual Evidence) approach based on a
Qualitative Scene Model to solve the motion understanding
problem. The approach addresses the key problems of the
estimation of vehicle motion from visual cues, the detection
and tracking of moving objects, and the construction and
maintenance of a global dynamic reference model. Object
recognition, world knowledge, and accumulation of evidence
over time are used to disambiguate the situation and continu-
ously refine the global reference model. The approach
departs from previous work by emphasizing a qualitative line
of reasoning 16:2! and modeling, where multiple interpreta-
tions of the scene are pursued simultaneously in a hypothesis
and test paradigm. Different sources of visual information
such as two-dimensional displacement field, spatial reasoning,
and semantics are integrated in a rule-based framework to
construct and maintain a vehicle centered three-dimensional
model of the scene. This approach offers significant advan-
tages over "hard" numerical techniques which have been pro-
posed in the motion understanding literature.26:36 These
advantages include the tracking of objects in the presence of
partial or total occlusion and use of this information for route
planning and threat handling.

Details of the qualitative reasoning concept emphasiz-

ing the motion aspects of the DRIVE system are presented in
papers by Bhanu and Burger.45-6.12.13,14

2.1 Estimation of Vehicle Motion

The problem of determining the motion parameters of a
moving camera relative to its environment from a sequence
of images is crucial for the application of computer vision to
practical military missions. In addition to translating in an
unknown direction, the vehicle also rotates about an arbitrary
axis (roll, pitch, and yaw), though not drastically. However,
due to the design of the vehicle, the direction of travel is
quite restricted, e.g., vehicle orientation does not change
rapidly and target stays within the field of view. The
observed displacement field is the addition of the vector
fields caused by vehicle translation and rotation, such that the
vehicle motion cannot be obtained from the displacement
field directly. However, the displacement field caused by the
vehicle’s motion can be decomposed into its rotational and
translational components exclusively in the 2-D image,
without any 3-D information.

In our work the computation of camera motion is per-
formed from sets of displacement vectors obtained from con-
secutive pairs of images.19 First, the decomposition of 3-D
camera motion into rotation and translation components and
their individual effects upon the image are analyzed in detail.
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Two basic approaches for computing camera motion are
evaluated. In the FOE-from-Rotation approach, the direction
of camera translation (marked by the Focus of Expansion -
FOE) is derived for a given estimate of the camera’s rotation. - 4
Alternatively, in the Rotation-from-FOE approach, the rota- -3
tional components are determined from a given estimate of
the location of the FOE. It is shown that the latter approach
is highly robust against disturbances of the displacement
field, since it works without extending the displacement vec:
tors. Instead of searching for one particular FOE, the final
algorithm computes a connected region of possible FOE loca-
tions, which accounts for noise and distortions in the image.
Finally, the absolute velocity of the vehicle towards the FOE T
is estimated from the expansion patten by knowing the 3
height of the camera above the (approximately flat) ground. %
We show the results on real image sequences in the paper by
Bhanu and Burger.5"

2.2 Estimation of Stationary 3-D Structure

The environment is modeled as a 3-D, time-varying T
configuration of rigid objects whose structures, relative posi-
tions, and motions are estimated from visual information.
The stationary part of the world is represented by a subset of
the rigid objects, which form a rigid configuration in 3-D
space. This definition, however, is not sufficient to identify
the stationary world a priori, because more than one rigid
subset of world objects may be observed. To operate in a real
environment, some description about the 3-D layout of the
scene must be available. In the DRIVE approach, a vehicle-
centered model of the scene is constructed and maintained
over time, representing the current set of feasible interpreta-
tions of the scene. In contrast to most previous approaches,
no attempt is made to obtain an accurate geometric descrip-
tion of the scene. Instead, a Qualitative Scene Model is pro-
posed which holds only a coarse qualitative representation of -
the three-dimensional environment. As part of this model,

the "stationary world" is represented by a set of image loca- i
tions, forming a rigid 3-D configuration which is believed to %
be stationary. All the motion-related processes at the inter- &
mediate level of vision use this model as a central reference. ‘%rf
The motion of the vehicle, for instance, is related to the sta- g
tionary parts of the environment, even if large parts of the lf’
image are in motion. This kind of reasoning and modeling %
appears to be sufficient and effective for this problem. %

2.3 Detection of Moving Targets

For intelligent action in the presence of potential
threats and targets, navigation in a traffic environment, etc.,
information on actual motion in the scene is indispensable.
Moving objects must be detected and isolated from the sta-
tionary environment, their current motions must be estimated
to track them, and expectations about their future behavior
must be created. Since the camera itself is moving, the sta-
tionary part of the scene cannot be assumed to be registered
in subsequent images, as in the case of a stationary sensor.
Simple frame-differencing techniques to detect and isolate
moving objects do not work in this case because image
changes, due to sensor motion, would generate too many
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false alarms. More sophisticated image-based techniques,
which apply 2-D transformations (warping) to the image to
compensate for background motion, work well only when
objects are moving in front of a relatively flat background,
such as in some air-to-ground applications. To detect actual
object motion in the complex scenario of a robotic combat
vehicle, the 3-D structure of the observed environment
together, with the vehicle’s motion, must be taken into
account.

In our DRIVE approach, 3-D motion is detected in two
ways:

»  First, some forms of motion are concluded directly from
the 2-D displacement vectors without any knowledge
about the underlying 3-D structure.

®  Second, motion is detected by discovering inconsisten-
cies between the current state of the internal 3-D scene
model and the changes actually observed in the image.

2.4 Interpretation of Terrain

An autonomous robotic combat vehicle must be able to
navigate not only on the roads, but also through terrain in
order to execute its missions of surveillance, search and
rescue, and munitions deployment. To do this the vehicle
must categorize the terrain regions it encounters as to the
trafficability of the regions, the land cover of the regions, and
region-to-map correspondence. Our approach for terrain
interpretation employs a robust texture-based algorithm and a
hierarchical region labeling scheme for ERIM 12 channel
Multi-Spectral Scanner data. The technique, called HSGM
(Hierarchical Symbolic Grouping for Multi-spectral data), is
specifically designed for multi-spectral imagery, but is
appropriate for other categories of imagery as well. For this
approach, features used for segmentation vary from macro-
scale features at the first level of the hierarchy to micro-scale
features at the lowest level. Examples of labels at the
macro-level are sky, forest, field, mountain, road, etc. For
each succeeding level of the hierarchy, the identified regions
from the previous stage are further subdivided, if appropriate,
and each region’s labeling is made more precise. The pro-
cess continues until the last stage is reached and no further
subdivision of regions from the preceding stage appears to be
necessary. Examples of region labels for this level of the
hierarchy are gravel road, snowberry shrub, gambel oak tree,
rocky ledge, etc.

Details of the HSGM technique with results and exam-
ples from real imagery are given in papers by Bhanu and
Symosek.8.9

2.5 Map Integrated Motion Detection and Tracking

A priori information for scene content, in the form of
digital map data, is an invaluable resource for tracking algo-
rithms. Contextual information, derivable from digital maps,
is especially critical to high-level reasoning paradigms which
carry out the mission tasks such as estimation of vehicle
location, condition monitoring, target acquisition, target
classification, target tracking, target engagement, and sensing
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of vehicle orientation.

Using techniques developed at Honeywell, digital map
databases can be transformed into digital visibility maps,
from which intervisibility predictions can be computed.20 We
are in the process of implementing a map reasoning system
that will be able to identify the world position of moving and
tracked targets. The system will incorporate mapj/terrain and
cartographic data bases and will be integrated with the
DRIVE system. DRIVE will select moving targets in the
image, give their 2-D image location, velocity vector, and
approximate range. Given this information from DRIVE, the
vehicle geodetic location, and a camera model, the system
will establish an image-to-map registration and search in the
map data base for possible roads/terrain on which the targets
may be moving. The system will also provide information
about neighboring landmarks to the target and possible occlu-
sion information.

3. Landmark and Target Recognition

A few of the desirable features to be incorporated in an
advanced target recognition system? are: (a) The models used
by the system to represent targets, contexts, and other system
knowledge should be dynamic data structures; (b) Most data
should be of a symbolic, qualitative nature, thus avoiding the
problems encountered in dealing with quantitative informa-
tion. Using qualitative information, we do not have to rely
on obtaining precise geometric representations of target; (c)
The system has to be able to handle problems such as impre-
cise segmentation, occlusion, noise, etc. and ; (d) The system
should exhibit improved performance over time. This
improvement may come in the form of faster recognition
times, improved recognition accuracy, and higher confidence
in system results.

Our work on landmark and target recognition is
directed towards emphasizing the above features in a
dynamic scenario. Target recognition from a mobile platform
requires the ability to recognize targets from varying range
and perspectives under changing environmental conditions.

3.1 Landmark Recognition

Landmark recognition is used to update the land navi-
gation system which accumulates a significant amount of
error after the vehicle traverses long distances, which is typi-
cally the case in surveillance and targeting missions. The
vision system of the autonomous vehicle is required to recog-
nize the landmarks as the vehicle approaches from the road
or terrain.

We have developed an expectation-driven, knowledge-
based landmark recognition system, called PREACTE3! that
uses map, and landmark knowledge, spatial reasoning and a
novel dynamic model matching technique.? PREACTE’s
mission is to predict and recognize landmarks as the vehicle
approaches them from different perspective angles and at
varying ranges. Once the landmarks have been recognized,
they are associated with specific map coordinates, which are
then compared to the land navigation system’s readings, and
corrections are made. Landmarks of interest include build-



ings, gates, poles, and other man made objects.

Dynamic model matching generates and matches target
landmark and map site descriptions dynamically. These
descriptions are a collection of spatial, feature, geometric and
semantic models. From an approximate range and view
angle, and using a priori map information, 3-D landmark
models, and the camera model, PREACTE generates predic-
tions about individual landmark locations in the 2-D image.
The parameters. of all models are a function of range and
view angle. As the vehicle approaches the expected land-
mark, the image content changes, which in tumn requires
updating the search and match strategies. Landmark recogni-
tion, in this framework, has been divided into three stages:
detection, recognition, and verification. At far ranges, only
"detection" of distinguishing landmark features is possible,
whereas at close ranges, recognition and verification are more
feasible, since more details of the object are seen. The
salient features of the technique are: (a) landmark models are
dynamic; (b) different landmarks require different representa-
tions and modeling techniques; (c) a single landmark requires
hybrid models; and (d) at different ranges, different matching
and recognition plans are performed.

Details of the landmark recognition system, PREACTE,
together with results on Autonomous Land Vehicle imagery,
are given in the papers by Nasr and Bhanu.29-30.31

3.2 Target Model Acquisition and Refinement

Target recognition systems currently lack the ability to
adapt to changing environmental conditions and to modify
their behavior based on the context of the situation in which
they are operating. In order to be effective in dynamic out-
door scenarios, a robust recognition system should be able to
automatically acquire necessary contextual information from
the environment. Most target recognition systems lack this
capability. Their performance begins to quickly degrade
when subjected to the problems of variable lighting condi-
tions, image noise and object occlusion.

Due to recent advances in machine learning technol-
Ogy, some of the problems encountered in the target recogni-
tion domain seem to be resolvable, Learning allows an
intelligent recognition system to use situation context in order
to understand images. This context, as defined in a machine
leamning scenario, consists of a collected body of background
knowledge as well as environmental observations which may
impact the processing of the scene.

Machine learning will facilitate two main break-
throughs in the target recognition domain: automatic
knowledge base acquisition and continuous knowledge base
refinement. The use of learning in the knowledge base con-
struction will save the user from spending the enormous
amount of time necessary to derive target models and data-
bases. Knowledge base refinement can then be incorporated
to make any necessary changes to improve the performance
of the recognition system. These two modifications alone
will serve to significantly advance the present abilities of
most target recognition applications.
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To validate the concept of a target recognition system
with integrated machine learning capabilities, the paper by
Bhanu and Ming’ presents an overview of a new approach to
target recognition. The system currently under implementa-
tion is called TRIPLE: Target Recognition Incorporating
Positive Learning Expertise. The system uses a multi-
strategy technique; two powerful learning methodologies are
combined with a knowledge-based matching technique to
provide robust target recognition. Using dynamic models,
TRIPLE can recognize targets present in the database. If
necessary, the models can be refined if errors are found in
the representation. Additionally, TRIPLE can automatically
store a new target model and recall it when that target is
encountered again. Finally, since TRIPLE uses qualitative
data structures to represent targets, it can overcome problems
such as image noise and occlusion.

The two main leaming components of the TRIPLE sys-
tem are Explanation-Based Learning (EBL) and Structured
Conceptual Clustering (SCC). Explanation-based learning
provides the ability to build a generalized description of a
target class using only one example of that class, Structured
conceptual clustering allows the recognition system to clas-
sify a target based on simple, conceptual descriptions rather
than using a predetermined, numerical measure of similarity.
While neither method, used separately, would provide sub-
stantial benefits to a target recognition system, they can be
combined to offer a consolidated technique which employs
the best features of each method and is very robust.

4. TECHNOLOGY TRANSFER

In this report, we have presented a summary of our
work completed during the last twelve months. Our work is
directed towards providing key functionalities of target
motion detection and tracking, which are needed in auto-
nomous robotic combat vehicle missions of targeting, recon-
naissance, and' surveillance. In our experience with accom-
plishing these practical military missions, we find that for
spatio-temporal  vision  problems, purely  quantitative
approaches are unsuitable and insufficient because of the
inexact nature of vision. As such, the technical basis of our
work is qualitative reasoning and modeling for dynamic
scene understanding. Our PREACTE module for man made
landmark recognition and DRIVE module for motion detec-
ton and tracking are ready to be transferred and integrated
with Carnegie Mellon University’s software. We are also
working on integrating the PREACTE and DRIVE modules
for an end-to-end simulation demonstrating Honeywell’s
knowledge-based scene dynamics approach for technology
transfer to a robotic combat vehicle.

In addition to the robotic combat vehicle applications
as discussed above, our interest is also to transfer this tech-
nology to other practical military applications. Precision
Guided Weapons (PGWs), such as Honeywell’s next genera-
tion SADARM, are one such application. Conventional tech-
nology, such as Automatic Target Recognition (ATR), has
come a long way but it needs help.3 It is clear that for vision
technology to succeed in practical smart weapons applica-
tions, it must be optimally suited for such multisensor combi-
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nations as millimeter wavefinfrared,»>2> and CO, laser
(range, reflectance, Doppler and vibration xm:asumments).22
We are transferring the knowledge-based technology under
development here to smart weapons relevant multisensor
applications in order to provide significant improvement in
performance in diverse scenarios. We are using multisensory
and a priori information (map) in a knowledge-based frame-
work to achieve the required performance which is beyond
what conventional ATR technology can provide.
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