Table 1. Microelectrode data obtained in intact cell nuclei of various species

$V_{ m NE}$, mV	$\begin{array}{c} R_{\rm NE}, \\ \Omega \cdot {\rm cm}^2 \end{array}$	${G_{\rm NE},\atop {\rm S\cdot cm^{-2}}}$	$\begin{array}{c} G_{\mathrm{pore}}, \\ \mathrm{pS} \end{array}$	\emptyset_{pore} , nm	$\emptyset_{\mathrm{nuc}}, \ \mu\mathrm{m}$	Pores, $\mu \mathrm{m}^{-2}$	$A_{ m NE}, \ \mu{ m m}^2$	Pores/Nucleus	Cell Type	Condition	Reference No.
-13	1.5	0.7	200	3.2 (1.5)	30	40	2,827	113,080	Salivary gland	In situ	92
≈0	< 0.2	>5.8	>1,000	>6.0 (3.0)	80	58	20,106	1,166,148	Oocyte	In situ	77
-13	1.5	0.7	200	3.2 (1.4)	30	40	2,827	113,080	Salivary gland	In situ	94
-15	1.0	1.0	286	3.8 (1.7)	30	40	2,827	113,080	Salivary gland	In situ	93
-2 to -5	0.7^{a}	1.4	428	4.0(1.8)	30	40	2,827	113,080	Salivary gland	In situ	71
-2 to -5	1.4^{b}	0.7	214	2.8(1.3)	30	40	2,827	113,080	Salivary gland	In situ	71
-1.2 to -0.3	2.0	0.5	150	2.3(1.0)	30	40	2,827	113,080	Salivary gland	In situ	125
-33	ND	ND	ND	ND	12	11	452	4,972	HeLa cells	In situ	47
ND	0.3	3.3	2,100	10.3(5.2)	9	16	254	4,064	Liver cells	In vitro	135
-10	< 8.0	> 0.1	>300	>3.9(1.8)	16	3	804	2,412	Pronucleus	In vitro	106
-4	ND	ND	ND	ND	9	7	254	1,778	MDCK cells	In situ	119
-6	ND	ND	ND	ND	9	7	254	1,778	MDCK cells	In vitro	117
-3	1.4^{c}	0.7	932	7.5(3.5)	9	7	254	1,778	MDCK cells	In vitro	114
-6	1.0^{d}	1.0	980	7.7 (3.6)	9	10	254	2,540	MDCK cells	In vitro	114
ND	1.7^{e}	0.6	798	6.4(2.9)	9	7	254	1,778	MDCK cells	In vitro	116
ND	1.1^{f}	0.9	1,198	7.8(3.6)	9	7	254	1,778	MDCK cells	In vitro	116

a No ecdysone. b 1–5 h of ecdysone. c Aldosterone-depleted cells. d Aldosterone-supplemented cells. e No TATA-binding protein (TBP). f 10 Min post-TBP. ND, no data available; $V_{\rm NE}$, nuclear envelope (NE) potential; $R_{\rm NE}$, total NE resistance; $G_{\rm NE}$, total NE conductance; $A_{\rm NE}$, total nuclear envelope area; $G_{\rm pore}$, single nuclear pore complex (NPC) conductance, estimated from $G_{\rm NE}$ and NPC density; $G_{\rm nuc}$, nuclear diameter; $G_{\rm pore}$, electrical pore diameter (d) estimated from the equation $d=2[(\rho_s l_x G_{\rm pore})/\pi]^{1/2}$. In this equation ρ is the resistivity of the cytosolic solution (70–100 Ω c cm depending on the preparation) and l is the estimated pore length (40 nm based on measurements of the total height of native NPCs with atomic force only). The $G_{\rm pore}$ values in parentheses were calculated for a pore length of 10 nm, assuming that the central part of the nuclear pore channel has only the length of the thickness of a double lipid bilayer, whereas the channel entrances at both sides of the nuclear pore complex were assumed to be wide and, thus, were electrically neglected. [Nuclear pore density was taken from the indicated papers or from Maul (104).]