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Abstract

Ear detection is an important part of an ear recogni-
tion system. In this paper we propose a shape model-based
technique for locating human ears in side face range im-
ages. The ear shape model is represented by a set of discrete
3D vertices corresponding to ear helix and anti-helix parts.
Given side face range images, step edges are extracted con-
sidering the fact that there are strong step edges around the
ear helix part. Then the edge segments are dilated, thinned
and grouped into different clusters which are potential re-
gions containing ears. For each cluster, we register the ear
shape model with the edges. The region with the minimum
mean registration error is declared as the detected ear re-
gion; the ear helix and anti-helix parts are meanwhile iden-
tified. Experiments are performed with a large number of
real face range images to demonstrate the effectiveness of
our approach. The contributions of this paper are: (a) a
ear shape model for locating 3D ears in side face range im-
ages, (b) an effective approach to detect human ears from
side face range images, (c) experimental results on a large
number of ear images.

1. Introduction

Ear is a viable new class of biometrics since the ear has
desirable properties such as universality, uniqueness and
permanence [1, 2]. For example, ear is rich in features; it
is a stable structure which does not change with the age;
it doesn’t change its shape with facial expressions, cosmet-
ics and hair styles. Although it has certain advantages over
other biometrics, the ear has received little attention com-
pared to other popular biometrics such as face, fingerprint
and gait [3, 4, 5, 6, 7, 8]. The current research has used
intensity images and, therefore, the performance of the sys-
tems is greatly affected by imaging problems such as light-
ing and shadows. Range sensors which are insensitive to
above imaging problems can directly provide us 3D geo-
metric information. Therefore, it is desirable to design a
human ear recognition system from 3D side face range im-
ages obtained at a distance. Human ear detection is the first
task of a human ear recognition system and its performance

affects the overall quality of the system.

In this paper, we propose a simple ear shape model-based
technique for locating human ears in side face range im-
ages. The ear shape model is represented by a set of discrete
3D vertices corresponding to ear helix and anti-helix parts.
Since the two curves formed by ear helix and anti-helix
parts are similar for different people, we do not take into
account the small deformation of two curves between differ-
ent persons, which greatly simplifies our ear shape model.
Given side face range images, step edges are extracted; then
the edge segments are dilated, thinned and grouped into dif-
ferent clusters which are potential regions containing ears.
For each cluster, we register the ear shape model with the
edges. The region with the minimum mean registration er-
ror is declared as the detected ear region; the ear helix and
anti-helix parts are meanwhile identified.

The rest of paper is organized as follows. Section 2 intro-
duces the related work, motivation and contributions. Sec-
tion 3 describes our approach to build the ear shape model
and detect human ears in side face range images. Section 4
gives the experimental results to demonstrate the effective-
ness of our approach. Section 5 provides the conclusions.

2. Related work, motivation and contributions
2.1 Related work

There are only a few papers dealing with object detec-
tion from range images. We give a brief review of object
detection techniques from range images.

Chen and Bhanu [9] presented a template matching
based detection method for extracting ears from side face
range images. The model template is represented by an
average histogram of shape index of ears. However this
method can not identify the ear region accurately.

Garcia et. al [10] generated a unique signature of the
3D object by the Fourier transform of the phase-encoded
range image at each specific rotation. The signature defined
in a unit sphere permitted the detection of 3D objects by
correlation techniques.

Heisele and Ritter [11] proposed a method for segment-
ing temporal sequences of range and intensity images. The
fusion of range and intensity data for segmentation wae
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solved by clustering 4D intensity/position features. Kalman
filters were then used to stabilize tracking by predicting dy-
namic changes in cluster positions.

Sparbert et. al [12] presented a method to detect lanes
and classify street types from range images. First they cal-
culated the lane’s width, curvature and relative position to
the car, then compared them with a prior knowledge on con-
struction rules of different street types, and finally achieved
street type based on the mean value of lane’s width.

Keller et. al. [13] introduced a fuzzy logic system for
automatic target detection from LADAR images. They used
two fuzzy logic detection filters and one statistical filter to
create pixel-based target confidence values which are fused
by the fuzzy integral to generate potential target windows.
Features extracted from these windows were fed to a neural
network post-processor to make a final decision.

Meier and Ade [14] proposed an approach to separate
image features into ground and road obstacles by assum-
ing the road was flat. They distinguished obstacles and
road pixels using the separating plane. The plane model
was updated by fitting a plane through all pixels marked as
ground. Connected component analysis was used to parti-
tion detected obstacles into different objects.

2.2 Motivation

The anatomical structure of the ear is shown in Figure 1.
The ear is made up of standard features like the face. These
include the outer rim (helix) and ridges (anti-helix) parallel
to the helix, the lobe and the concha which is a hollow part
of ear. From Figure 1, we clearly see that two curves formed
by ear helix and anti-helix parts are easily identified. We
can use these two curves to guide the procedure to locate
the ear in side face range images.

2.3 Contributions

The contributions of this paper are: (a) We propose a ear
shape model for locating 3D ears in side face range images.
(b) We develop an effective approach to detect human ears
from side face range images.

3. Technical approach
3.1 Ear shape model building

Considering the fact that the curves formed by ear he-
lix and anti-helix parts are similar for different people. In
this paper, we construct the ear shape model from one per-
son only. We plan to work on building a generic ear model
from multi persons. We extract ear helix and anti-helix
parts by running step edge detector with different thresh-
olds, choose the best extraction result, and do the edge
thinning. By running connected component labeling, we
extract the edges which correspond to ear helix and anti-
helix parts. We define the ear shape model s as 3D co-
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Figure 1. The external ear and its anatomical
parts.

Figure 2. The textured 3D face and overlaid
ear shape model.

ordinates {z,y, 2z} of n vertices which lie on the ear he-
lix and anti-helix parts. s is represented by a 3n X 1 vec-
tor {z1,y1,21,T2,Y2, 22, Tn,Yn, 2n}. Figure 2 shows
the 3D side face range image with textured appearance, in
which the ear shape model s marked by yellow vertices is
overlaid.

3.2 Step edge detection and thresholding

Given the step face range image, the step edge magni-
tude, denoted by M.y, is calculated as the maximum dis-
tance in depth between the center point and its neighbors in
a small window [15]. M, can be formulated as follows:

Mstep(iaj) = mam|z(i,j)—z(i—|—k,j+l)| (D
S 1)/2< k1< (- 1)/2

where w is the width of the window and z(i,j) is the z
coordinate of the point(i, j). To get the step edge magni-
tude image, a w x w window is translated over the origi-
nal side face range image and the maximum distance ~al-
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culated from equation (1) replaces the pixel value of the
pixel covered by the center of the window. One example of
step edge magnitude image is shown in Figure 3(b). In Fig-
ure 3(b), larger magnitudes are displayed as brighter pixels.
We can clearly see that most of the step edge magnitudes
are small values. To get edges, the step edge magnitude
image must be segmented using a threshold operator. The
selection of threshold value is based on the cumulative his-
togram of the step edge magnitude image. Since we are
interested in larger magnitudes, in our approach the top a%
(v = 3.5) pixels with the largest magnitudes are selected
as edge points. We can easily determine the threshold by
investigating the cumulative histogram. The thresholded bi-
nary image is shown in Figure 3(c), while the original side
face range image is shown in Figure 3(a).

(a) (b)

Figure 3. (a) Original side face range image.
(b) Its step edge magnitude image. (c) Its step
edge image.

3.3 Edge thinning and connected Component la-
beling

Since some step edge segments are broken, we dilate the
binary image to fill the gaps. The dilated image is shown
in Figure 4(a). We proceed to do edge thinning and the re-
sulting image is shown in Figure 4(b). The edge segments
are labeled by running connected component labeling algo-
rithm and some small edge segments (less than 15 pixels)
are removed. The left edge segments are shown in Figure
4(c).

(b ()

Figure 4. (a) Dilated edge image. (b) Thinned
edge image. (c) Left edge segments.

3.4 Clustering edge segments

Since the ear region contains several edge segments, we
group edge segments which are close to each other into dif-

ferent clusters. The clustering procedure works as follows:
For each edge segment e;

1. Initialize e; into a cluster C;, calculate its centroid
{Hmﬂyi}

2. For each edge segment e; while ¢ # j

(a) Calculate its centroid {jeq, foy; }

(b) if maz{|paj — pail, [y — pyil} < € pute;
into the cluster C;, remove e; and update clus-
ter’s centroid.

In the implementation, €; = 36 pizels since we like to put
ear helix and anti-helix parts into a cluster. Three examples
of clustering results are shown in the second row of Figure
5, in which each cluster is bounded by a red rectangular box.
The first row of Figure 5 shows side face range images.

10 segments
6 clusters

5 segments
3 clusters

7 segments
5 clusters

Figure 5. Examples of edge clustering results.

3.5 Locating ears by use of the ear shape model

For each cluster obtained in the previous step, we extract
step edges around ear helix and anti-helix parts. We use a
threshold e; = 1.9mm since the step edge magnitudes of
vertices in ear anti-helix are at least 1.9mm and the mag-
nitude of vertices in anti-helix part is smaller than that of
vertices in the helix part for the collected data. The prob-
lem of locating ears is to minimize the mean square error
between ear shape model vertices and their corresponding
edge vertices in the bounded rectangular box.

1< ‘
E= =% |T(si) = I(si)l’ )
=1

where T;. is the rigid transformation and I(s;) is vertex in
the 3D side face image closest to the T7.(s;). Iterative Clos-
est Point (ICP) algorithm developed by Besl and Mckay
[16] is well-known method to align 3D shapes. However
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Figure 6. Examples of side face range images.

of two vertex sets respectively, we run ICP iteratively and
finally get the rotation matrix R and translation vector T,
which brings the ear shape model vertices and edge vertices
into alignment. The cluster with minimum mean square er-
ror is declared as the detected ear region; the ear helix and
anti-helix parts are meanwhile identified.

Frobabil

1 15 2 25 3 35
Wean square error for positive detection

Figure 7. Distribution of mean square error for
positive detection.

ICP requires that every point in one set have a correspond-
ing point on the other set, we can’t guarantee that edge ver- Figure 8. Examples of failed cases.
tices in the potential regions satisfy this requirement. There-
fore, we use a modified ICP algorithm presented by Turk
[17] to register the ear shape model with the edge vertices.
The steps of modified ICP algorithm to register a test shape 4. Experimental results
Y to a model shape X are:

1) Initialize the rotation matrix Ry and translation vector
To.

2) Given each point in Y, find the closest point in X.

3) Discard pairs of points which are too far apart.

4.1 Data acquisition

We use real range data acquired by Minolta Vivid 300.
: e ) . During the acquisition, 52 subjects sit on the chair about
4) Find the rigid transformation (R, T') such that £ is 0.55~0.75m from the camera. The first shot was taken

minimized. when subject’s left side face was approximately parallel
5) Apply the transformation (R, T) to Y. to the image plane; two shots were taken when the sub-
6) Goto step 2) until the difference |Ey — Ej_1] in two ject was asked to rotate his/her head to left and right side
successive steps falls below a threshold or the maximum within £35° with respect to his/her torso. The same acqui-
number of iterations is reached. sition procedure was repeated. Six images per subject were
By initializing the rotation matrix [y and translation recorded. Therefore we have 312 images in total. Each
vector Tp to the identity matrix and difference of centroids range image contains 200x200 grid points and each "ﬂ'f*
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point has a 3D coordinate (x, y, z). The ear shape model is
built from a side face range image described in Section 3.1.
Examples of side face range images are shown in Figure 6.

4.2 Results

We test the proposed detection method on 312 side face
range images. If the ear shape model is aligned with the ear
helix and anti-helix parts, we classify it positive detection;
otherwise false detection. In our experiments, the number
of vertices of the ear shape model is 113; the average num-
ber of edge segments is 6 and the average number of clus-
ters is 4. The average time to detect an ear from a side
face range image is 6.5 seconds with Matlab implementa-
tion on a 2.4G Celeron CPU. Examples of positive detection
results are shown in Figure 9. In Figure 9, the transformed
ear shape model marked by yellow points is superimposed
on the corresponding textured 3D face. From Figure 9, we
can observe that the ear is correctly detected and the ear he-
lix and anti-helix parts are identified from side face range
images. The distribution of mean square error defined in
equation (2) for positive detection is shown in Figure 7.
The mean of mean square error is 1.79mm. We achieve
92.6% detection rate. For the failed cases, we notice that
there are some edge segments around the ear region caused
by hair, which brings more false edge segments or results
in the cluster which can not include the ear helix and anti-
helix parts. Since ICP algorithm can not converge due to
the existence of outliers, the false detection happens, which
are shown in Figure 8 and 10. The original face range im-
ages and corresponding edge clusters are shown in Figure
8. In this figure, the first row shows face images; the second
row shows edge clustering results. The textured 3D faces
with overlaid detected ear helix and anti-helix are shown in
Figure 10.

5. Conclusions

We have proposed a shape model-based technique for lo-
cating human ears in side face range images. The ear shape
model is represented by a set of discrete 3D vertices corre-
sponding to ear helix and anti-helix parts. Given side face
range images, step edges are extracted, dilated, thinned and
grouped into different clusters which are potential regions
containing ears. For each cluster, we register the ear shape
model with the edges. Our method not only detects the ear
region, but also identifies the ear helix and anti-helix parts.
Experimental results on real face range images demonstrate
the effectiveness of our approach.
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Figure 9. Examples of positive detection results

Figure 10. Examples of false detection results
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