

Open Crypto Audit Project

TrueCrypt

Security Assessment

Prepared for:

Prepared by:

Andreas Junestam –Security Engineer

Nicolas Guigo – Security Engineer

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 2 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

©2014, iSEC Partners, Inc.

Prepared by iSEC Partners, Inc. for Open Crypto Audit Project. Portions of this document, and

the templates used in its production are the property of iSEC Partners, Inc. and cannot be cop-

ied without permission.

While precautions have been taken in the preparation of this document, iSEC Partners, Inc., the

publisher, and the author(s) assume no responsibility for errors, omissions, or for damages re-

sulting from the use of the information contained herein. Use of iSEC Partners services does not

guarantee the security of a system, or that computer intrusions will not occur.

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 3 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

Document Change Log

Version Date Change

0.5 2014-02-12 First draft of document

0.9 2014-02-13 Peer reviewed by Josh Yavor, Mike Ryan, Javed Samuel, and Russ Sevin-

sky

1.0 2014-02-14 Delivered to Open Crypto Audit Project

1.1 2014-03-04 Finalized for publication

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 4 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

Table of Contents

1 Executive Summary ... 5

1.1 iSEC Risk Summary .. 6

1.2 Project Summary .. 7

1.3 Findings Summary .. 7

1.4 Recommendations Summary ... 8

2 Engagement Structure ... 9

2.1 Internal and External Teams .. 9

2.2 Project Goals and Scope .. 10

3 Detailed Findings ... 11

3.1 Classifications ... 11

3.2 Vulnerability Overview .. 13

3.3 Detailed Vulnerability List .. 14

4 Appendices .. 25

A Example issues in the bootloader decompressor ... 25

A.1 Out of bounds read in stored() ... 25

A.2 Out of bounds write in construct() .. 25

A.3 Out of bounds read in decode() ... 26

B Code quality issues in TrueCrypt ... 27

B.1 Signed / unsigned mismatches ... 27

B.2 Inconsistent integer variable types ... 28

B.3 Lack of integer overflow protections / checks 28

B.4 Use of deprecated, insecure string APIs ... 29

B.5 Suppression of compiler warnings .. 29

B.6 Use of Zw APIs ... 30

B.7 Other minor issues .. 30

B.8 General readability issues .. 31

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 5 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

1 Executive Summary

Application Summary

Application Name TrueCrypt

Application Version 7.1a

Application Type Disk encryption software

Platform Windows, C / C++

Engagement Summary

Engineers Engaged Two (2)

Engagement Type Security Assessment

Testing Methodology Source code aided security assessment

Vulnerability Summary

Total High severity issues Zero (0)

Total Medium severity issues Four (4)

Total Low severity issues Four (4)

Total vulnerabilities identified Eleven (11) (incl. three (3) Informational)

See Section 3.1 for descriptions of these classifications.

Category Breakdown:

Access Controls 0

Auditing and Logging 0

Authentication 0

Configuration 0

Cryptography 1 ■

Data Exposure 4 ■■■■

Data Validation 3 ■■■

Denial of Service 2 ■■

Error Reporting 1 ■

Patching 0

Session Management 0

Timing 0

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 6 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

1.1 iSEC Risk Summary

The iSEC Partners Threat Matrix chart evaluates discovered vulnerabilities according to estimat-

ed user risk. The impact of the vulnerability increases towards the bottom of the chart. The so-

phistication required for an attacker to find and exploit the flaw decreases towards the left of the

chart. The closer a vulnerability is to the chart origin, the greater the risk.

H
ig

h

Attack Sophistication

U
s

e
r

R
is

k
L
o
w

Simple Difficult

©2008 iSEC Partners, Inc.

• IOCTL_DISK_VERIFY

integer overflow

• Sensitive information might be

paged out from kernel stacks

• TC_IOCTL_GET_SYSTEM_DRIVE_DUMP_CONFIG

kernel pointer disclosure

• Multiple issues in the bootloader

decompressor

• Windows kernel driver uses memset()

to clear sensitive data

• MainThreadProc() integer

overflow

• Weak Volume Header key

derivation algorithm

• TC_IOCTL_OPEN_TEST

multiple issues

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 7 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

1.2 Project Summary

The Open Crypto Audit Project
1
 engaged iSEC Partners to review select parts of the TrueCrypt

7.1a disk encryption software. This included reviewing the bootloader and Windows kernel driv-

er for any system backdoors as well as any other security related issues.

iSEC performed a source code assisted security assessment of the TrueCrypt bootloader and

Windows kernel driver. A breakdown of what areas were included, as well as excluded, can be

found in Section 2.2. The assessment included reviewing source code for the bootloader and

kernel driver as well as hands-on testing. The team also compiled both components and per-

formed limited fuzzing of select interfaces.

The iSEC team reviewed the TrueCrypt 7.1a source code, which is publicly available as a zip ar-

chive (“truecrypt 7.1a source.zip”) at http://www.truecrypt.org/downloads2. The SHA1 hash of

the reviewed zip archive is 4baa4660bf9369d6eeaeb63426768b74f77afdf2. iSEC did not attempt

to create a reproducible build; instead, the team performed hands-on testing against binaries

available from http://www.truecrypt.org/downloads and binaries compiled from the source

code.

Two engineers performed this work in an engagement concluding on February 14
th

, 2014. All

work was carried out at iSEC’s facilities in Seattle, WA.

1.3 Findings Summary

During this engagement, the iSEC team identified eleven (11) issues in the assessed areas. Most

issues were of severity Medium (four (4) found) or Low (four (4) found), with an additional

three (3) issues having severity Informational (pertaining to Defense in Depth).

Overall, the source code for both the bootloader and the Windows kernel driver did not meet

expected standards for secure code. This includes issues such as lack of comments, use of inse-

cure or deprecated functions, inconsistent variable types, and so forth. A more in-depth discus-

sion on the quality issues identified can be found in Appendix B. In contrast to the TrueCrypt

source code, the online documentation available at http://www.truecrypt.org/docs/ does a very

good job at both describing TrueCrypt functionality and educating users on how to use True-

Crypt correctly. This includes recommendations to enable full disk encryption that protects the

system disk, to help guard against swap, paging, and hibernation-based data leaks.

The team also found a potential weakness in the Volume Header integrity checks. Currently,

integrity is provided using a string (“TRUE”) and two (2) CRC32s. The current version of True-

Crypt utilizes XTS
2
 as the block cipher mode of operation, which lacks protection against modi-

fication; however, it is insufficiently malleable to be reliably attacked. The integrity protection

can be bypassed, but XTS prevents a reliable attack, so it does not currently appear to be an is-

sue. Nonetheless, it is not clear why a cryptographic hash or HMAC was not used instead.

Finally, iSEC found no evidence of backdoors or otherwise intentionally malicious code in the

assessed areas. The vulnerabilities described later in this document all appear to be uninten-

tional, introduced as the result of bugs rather than malice.

1
 http://opencryptoaudit.org/

2
 http://www.truecrypt.org/docs/modes-of-operation

http://www.truecrypt.org/downloads2
http://www.truecrypt.org/downloads
http://www.truecrypt.org/docs/
http://opencryptoaudit.org/
http://www.truecrypt.org/docs/modes-of-operation

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 8 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

1.4 Recommendations Summary

Outside of the specific short and long term recommendations detailed in Section 3 of this doc-

ument, iSEC Partners also makes the following high level recommendations.

Update the Windows build environment. The current required Windows build environment

depends on outdated build tools and software packages that are hard to get from trustworthy

sources. For example, following the reproducible build instructions at

https://madiba.encs.concordia.ca/~x_decarn/truecrypt-binaries-analysis/ requires access to

VC++ 1.52 (released in 1993), in addition to various Windows ports of GNU tools downloadable

from wherever they can be found. Using antiquated and unsupported build tools introduces

multiple risks including: unsigned tools that could be maliciously modified, unknown or un-

patched security vulnerabilities in the tools themselves, and weaker or missing implementations

of modern protection mechanisms such as DEP
3
 and ASLR

4
. Once the build environment has

been updated, the team should consider rebuilding all binaries with all security features fully

enabled. For the purpose of auditing, TrueCrypt should release instructions for how to create

reproducible builds.

Improve code quality. Due to lax quality standards, TrueCrypt source is difficult to review and

maintain. This will make future bugs harder to find and correct. It also makes the learning curve

steeper for those who wish to join the TrueCrypt project.

3
 https://en.wikipedia.org/wiki/Data_Execution_Prevention

4
 https://en.wikipedia.org/wiki/Address_space_layout_randomization

https://madiba.encs.concordia.ca/~x_decarn/truecrypt-binaries-analysis/
https://en.wikipedia.org/wiki/Data_Execution_Prevention
https://en.wikipedia.org/wiki/Address_space_layout_randomization

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 9 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

2 Engagement Structure

2.1 Internal and External Teams

The iSEC team has the following primary members:

 Andreas Junestam – iSEC Technical Lead

 Nicolas Guigo – iSEC Security Engineer

 Tom Ritter – iSEC Account Contact

 Deanna Bjorkquist – iSEC Project Manager

The Open Crypto Audit Project team has the following primary members:

 Kenneth White – Open Crypto Audit Project Contact

 Matthew Green – Open Crypto Audit Project Contact

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 10 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

2.2 Project Goals and Scope

The goal of this engagement was to review the TrueCrypt bootloader and Windows kernel driver

for security issues that could lead to information disclosure, elevation of privilege, or similar

concerns. The assessment included a review of the following areas:

 TrueCrypt Bootloader

 Setup process

 Windows kernel driver specifically including:

 Elevation of Privileges from local user to kernel

 Information Disclosure during disk operations

 Volume parsing as it relates to system and drive partitions

 Rescue Disks code paths that do not have the private key

 Data Leakage

The assessment explicitly excluded the following areas:

 Volume parsing as it relates to a file container

 Rescue Disks code paths activated when the disk does contain the private key

 Cryptographic Analysis, including

 RNG analysis

 Algorithm implementation

 Security tokens

 Keyfile derivation

 Hidden Containers

 Linux and Mac Components

 All other components not explicitly included

This review used a combination of proprietary and public automated tools, manual test tech-

niques, and source code review to audit the application.

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 11 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

3 Detailed Findings

3.1 Classifications

The following section describes the classes, severities, and exploitation difficulty rating assigned

to each identified issue by iSEC.

Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices or software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking or order of operations

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to secu-

rity best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicat-

ed is important

Medium Individual user’s information is at risk, exploitation would be bad

for client’s reputation, moderate financial impact, possible legal

implications for client

High Large numbers of users, very bad for client’s reputation, or serious

legal or financial implications

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 12 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that ex-

ploit this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of

a complex system

High The attacker must have privileged insider access to the system, may

need to know extremely complex technical details or must discover

other weaknesses in order to exploit this issue

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 13 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

3.2 Vulnerability Overview

The following table is a summary of the vulnerabilities identified during testing by iSEC. Subse-

quent pages of this report detail each of the vulnerabilities, along with short and long term re-

mediation advice.

 Vulnerability Class Severity

1. Weak Volume Header key derivation algorithm

2. Sensitive information might be paged out from kernel stacks

3. Multiple issues in the bootloader decompressor

4. Windows kernel driver uses memset() to clear sensitive data

5. TC_IOCTL_GET_SYSTEM_DRIVE_DUMP_CONFIG kernel pointer

disclosure

6. IOCTL_DISK_VERIFY integer overflow

7. TC_IOCTL_OPEN_TEST multiple issues

8. MainThreadProc() integer overflow

9. MountVolume() device check bypass

10. GetWipePassCount() / WipeBuffer() can cause BSOD

11. EncryptDataUnits() lacks error handling

Cryptography

Data Exposure

Data Validation

Data Exposure

Data Exposure

Data Validation

Data Exposure

Denial of Service

Data Validation

Denial of Service

Error Reporting

Medium

Medium

Medium

Medium

Low

Low

Low

Low

Informational

Informational

Informational

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 14 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

3.3 Detailed Vulnerability List

1. Weak Volume Header key derivation algorithm

Class: Cryptography Severity: Medium Difficulty: Medium

FINDING ID: iSEC-OCAP-11

TARGETS: Encrypted Volume Header

DESCRIPTION: The key used to encrypt the TrueCrypt Volume Header is derived using PBKDF2,

a standard key derivation algorithm
5
. Developers are responsible for specifying an iteration

count that influences the computational cost of deriving a key from a password. The iteration

count used by TrueCrypt is either 1000 or 2000, depending on the hash function and use case.

In both cases, this iteration count is too small to prevent password guessing attacks for even

moderately complex passwords. The paper that introduces scrypt
6
, an alternate key derivation

function, demonstrates the challenge of using PBKDF2 even with a very high iteration count –

brute-forcing key derivation is easily parallelized and becomes more efficient each year with ad-

vances in CPU performance. The use of a small iteration count in TrueCrypt permits efficient

brute-force attacks against its header key.

EXPLOIT SCENARIO: An attacker captures an encrypted TrueCrypt volume and performs an of-

fline brute-force and / or dictionary attack to identify the key used to encrypt the Volume Head-

er. They use the recovered key to decrypt the volume.

SHORT TERM SOLUTION: Support the use of configurable iteration counts for PBKDF2 to keep

pace with advances in CPU and GPU speed. If the current volume format does not include re-

served space to store such a value, and if changes to the Volume Header cannot be made, this

value might be derived from a portion of the salt, so long as it is guaranteed to exceed a certain

minimum value.

LONG TERM SOLUTION: Consider supporting the use of additional key derivation functions.

Scrypt, in particular, requires the use of large amounts of memory and requires more expensive

hardware to brute-force.

5
 http://www.truecrypt.org/docs/header-key-derivation

6
 http://www.tarsnap.com/scrypt/scrypt.pdf

http://www.truecrypt.org/docs/header-key-derivation
http://www.tarsnap.com/scrypt/scrypt.pdf

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 15 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

2. Sensitive information might be paged out from kernel stacks

Class: Data Exposure Severity: Medium Difficulty: High

FINDING ID: iSEC-OCAP-6

TARGETS: TrueCrypt Windows kernel driver

DESCRIPTION: The TrueCrypt Windows driver code makes some effort to prevent sensitive in-

formation from being paged out during a low memory situation by allocating memory from the

non-paged pool. However, sensitive information, such as key material, may still leak to various

places during execution, among those kernel stack pages, which can be paged out under certain

conditions.

If the stack for the system thread created during volume mounting were to be paged out, there is

a risk that key information in ReadVolumeHeader() could end up on disk.

It should be noted that for this to be a threat, the user must be running a configuration in which

the main Windows system disk is not encrypted, something the TrueCrypt documentation ex-

plicitly recommends against
7
.

EXPLOIT SCENARIO: A user has a system with a TrueCrypt-encrypted partition on it, in which

they save sensitive information. An attacker creates a low memory situation on the user’s ma-

chine, forcing key information to be paged out to the unencrypted system disk. The attacker

later gains access to the disk and can extract the key from the page file.

SHORT TERM SOLUTION: Consolidate all sensitive information to one single location. The data

can then be locked into memory with the help of functions such as

MmLockPagableDataSection() or KeSetKernelStackSwapEnable() to prevent it from being paged

out to disk.

LONG TERM SOLUTION: The short term solution is sufficient to correct this issue. The TrueCrypt

team already has documentation discouraging users from using a setup that could be exposed to

this.

7
 http://www.truecrypt.org/docs/paging-file#Y311

http://www.truecrypt.org/docs/paging-file#Y311

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 16 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

3. Multiple issues in the bootloader decompressor

Class: Data Validation Severity: Medium Difficulty: High

FINDING ID: iSEC-OCAP-5

TARGETS: Decompressor.c

DESCRIPTION: The code to decompress the main bootloader suffers from several implementation

weaknesses. Throughout the source code, signed and unsigned integer types are mixed, arrays

are accessed without checking if the index is within bounds, and so forth. In several cases, the

lack of array bounds checking results out-of-bound accesses actually being performed. Three (3)

examples can be found in Appendix A.

It should be noted that in order to exploit this, an attacker would need access to the disk on

which the TrueCrypt-encrypted system resides. An attacker with this level of access could in-

stead perform a more effective evil maid attack
8
.

EXPLOIT SCENARIO: An attacker modifies the compressed bootloader on the disk to exploit one

of the issues in the decompressor. Successful exploitation allows the attacker to modify the

TrueCrypt code to record and save the password while the user enters it.

SHORT TERM SOLUTION: Fix the issues identified in the decompressor. Alter the input buffer

handling to take an input size argument and verify that the code does not attempt to read past

the end of the buffer while decompressing.

LONG TERM SOLUTION: Make integer types more consistent throughout the TrueCrypt source

code, favoring well-defined unsigned types wherever possible. Perform extensive fuzzing of the

bootloader decompressor as well as a more in-depth review of the functionality.

8
 http://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html

http://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 17 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

4. Windows kernel driver uses memset() to clear sensitive data

Class: Data Exposure Severity: Medium Difficulty: High

FINDING ID: iSEC-OCAP-8

TARGETS: TrueCrypt Windows kernel driver

DESCRIPTION: The function burn() is used to clear sensitive data throughout most of the True-

Crypt Windows kernel driver. In the Windows version, burn() wraps RtlSecureZeroMemory(),

which is guaranteed to securely erase memory and will not be optimized out. However, in a

handful of places, memset() is used to clear potentially sensitive data. Calls to memset() run the

risk of being optimized out by the compiler.

One such location identified is in DriveFilter.c, line 104:

BootArgs = *bootArguments;

BootArgsValid = TRUE;

memset (bootArguments, 0, sizeof (*bootArguments));

if (BootArgs.BootLoaderVersion < 0x600)

With a second one later in the same file, at line 335:

if (mappedCryptoInfo)

{

 Dump ("Wiping memory %x %d\n", cryptoInfoAddress.LowPart,

 BootArgs.CryptoInfoLength);

 memset (mappedCryptoInfo, 0, BootArgs.CryptoInfoLength);

 MmUnmapIoSpace (mappedCryptoInfo, BootArgs.CryptoInfoLength);

}

EXPLOIT SCENARIO: A user has a system with a TrueCrypt-encrypted partition on it, in which

they save sensitive information. An attacker creates a low memory situation on the user’s ma-

chine, forcing key information that should have been securely wiped to be paged out to the un-

encrypted system disk. The attacker later gains access to the disk and extracts the key from the

paging file.

SHORT TERM SOLUTION: Alter the above code to call burn() instead of memset().

LONG TERM SOLUTION: Audit the code for other instances of memset() calls that should be re-

placed with calls to burn() to prevent potential information leakage.

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 18 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

5. TC_IOCTL_GET_SYSTEM_DRIVE_DUMP_CONFIG kernel pointer disclosure

Class: Data Exposure Severity: Low Difficulty: Low

FINDING ID: iSEC-OCAP-3

TARGETS: ProcessVolumeDeviceControlIrp() in Ntdriver.c

DESCRIPTION: The above function contains the following code:

case TC_IOCTL_GET_SYSTEM_DRIVE_DUMP_CONFIG:

 if (ValidateIOBufferSize (Irp, sizeof (GetSystemDriveDumpConfigRequest),

 ValidateOutput))

 {

 GetSystemDriveDumpConfigRequest *request = (GetSystemDriveDumpConfigRequest

 *) Irp->AssociatedIrp.SystemBuffer;

 request->BootDriveFilterExtension = GetBootDriveFilterExtension();

GetBootDriveFilterExtension() is implemented as follows:

DriveFilterExtension *GetBootDriveFilterExtension ()

{

 return BootDriveFilterExtension;

}

BootDriveFilterExtension is a pointer to the boot drive’s extension object, residing in the ker-

nel address space. Calling the function identified above will return this pointer to the caller:

>tc_test.exe \\.\truecrypt

0x852a4640

This issue discloses a kernel pointer to an unauthenticated userland program, which can be used

to help bypass kernel ALSR.

EXPLOIT SCENARIO: An attacker utilizes the kernel pointer disclosure from

TC_IOCTL_GET_SYSTEM_DRIVE_DUMP_CONFIG to learn where in the kernel address space

BootDriveFilterExtension resides.

SHORT TERM SOLUTION: Change the code so this functionality cannot be reached from user-

space.

LONG TERM SOLUTION: The short term solution is sufficient to correct this issue.

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 19 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

6. IOCTL_DISK_VERIFY integer overflow

Class: Data Validation Severity: Low Difficulty: Low

FINDING ID: iSEC-OCAP-1

TARGETS: ProcessVolumeDeviceControlIrp() in Ntdriver.c

DESCRIPTION: The above function contains the following code:

case IOCTL_DISK_VERIFY:

…

if (pVerifyInformation->StartingOffset.QuadPart + pVerifyInformation->Length >

Extension->DiskLength) Irp->IoStatus.Status = STATUS_INVALID_PARAMETER;

else

{

 IO_STATUS_BLOCK ioStatus;

 PVOID buffer = TCalloc (max (pVerifyInformation->Length, PAGE_SIZE));

By setting a large value for StartingOffset, Length values larger than Extension->DiskLength

can bypass the above check. For example, by setting StartingOffset to 0xffffffffdaffffff and

Length to 0x25000002 (~592Mb) the sum of these values will overflow to 1, bypassing the

check. The largest value of pVerityInformation->Length and PAGE_SIZE will later be used in the

call to TCalloc() to allocate memory from the non-paged pool.

EXPLOIT SCENARIO: An attacker repeatedly calls the IOCTL_DISK_VERIFY with malicious values

in order to starve the kernel of memory and make other allocations fail. This in turn can result in

either a Denial of Service or issues in other parts of the code.

SHORT TERM SOLUTION: Verify that the addition will not overflow before the sum is checked

against Extension->DiskLength.

LONG TERM SOLUTION: Deploy proper integer overflow / underflow checks throughout the

TrueCrypt source code. For Windows, the IntSafe
9
 library is a convenient way to do this.

9
 http://msdn.microsoft.com/en-us/library/windows/desktop/ff521693(v=vs.85).aspx

http://msdn.microsoft.com/en-us/library/windows/desktop/ff521693(v=vs.85).aspx

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 20 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

7. TC_IOCTL_OPEN_TEST multiple issues

Class: Data Exposure Severity: Low Difficulty: Low

FINDING ID: iSEC-OCAP-2

TARGETS: ProcessVolumeDeviceControlIrp() in Ntdriver.c, IOCTLs TC_IOCTL_OPEN_TEST and

TC_IOCTL_GET_SYSTEM_DRIVE_CONFIG

DESCRIPTION: The code handling the TC_IOCTL_OPEN_TEST IOCTL contains multiple issues, all

of which result in information leakage at a minimum. This is due to the fact that the code uses

ZwCreateFile(), which does not perform an ACL check, to open arbitrary files and performs

various operations on them.

With this, an attacker can:

 Deduce the presence of files they do not have access to

 Deduce if said files are smaller than TC_MAX_VOLUME_SECTOR_SIZE

 Deduce if said files start with the string “TrueCrypt” or one of four magic markers

It should also be noted that the same issues apply to the code handling the IOCTL

TC_IOCTL_GET_SYSTEM_DRIVE_CONFIG.

EXPLOIT SCENARIO: An attacker exploits this vulnerability to gain information about files they

would normally not have access to.

SHORT TERM SOLUTION: TrueCrypt should investigate if the call to ZwCreateFile() can be re-

placed with a call to NtCreateFile(). NtCreateFile() will carry out an ACL check before open-

ing the file, only allowing the caller to open files they have access to. If not, stringent validation

must be performed on the supplied filename.

LONG TERM SOLUTION: Assess all calls made to Zw functions from within the TrueCrypt Win-

dows kernel driver. TrueCrypt should replace all those which can be replaced with a call to the

corresponding Nt function. For all others, filter arguments that are supplied from requests origi-

nating in user-mode.

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 21 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

8. MainThreadProc() integer overflow

Class: Denial of Service Severity: Low Difficulty: Medium

FINDING ID: iSEC-OCAP-7

TARGETS: MainThreadProc() in EncryptedIoQueue.c

DESCRIPTION: The above function contains the following code:

case IRP_MJ_READ:

 item->Write = FALSE;

 item->OriginalOffset = irpSp->Parameters.Read.ByteOffset;

 item->OriginalLength = irpSp->Parameters.Read.Length;

 break;

Both irpSp->Parameters.Read.ByteOffset and irpSp->Parameters.Read.Length originate

from user-space. These values are used later in the same function:

if (queue->IsFilterDevice

 && !item->Write

 && item->OriginalLength > 0

 && (item->OriginalLength & (ENCRYPTION_DATA_UNIT_SIZE - 1)) == 0

 && (item->OriginalOffset.QuadPart & (ENCRYPTION_DATA_UNIT_SIZE - 1)) != 0)

{

 byte *buffer;

 ULONG alignedLength = item->OriginalLength + ENCRYPTION_DATA_UNIT_SIZE;

 LARGE_INTEGER alignedOffset;

 alignedOffset.QuadPart = item->OriginalOffset.QuadPart & ~((LONGLONG)

 ENCRYPTION_DATA_UNIT_SIZE - 1);

 buffer = TCalloc (alignedLength);

If item->OriginalLength == 0xFFFFFE00, the addition with ENCRYPTION_DATA_UNIT_SIZE will

overflow and alignedLength will become zero (0) and an empty chunk will be allocated by the

TCalloc() call. The null-sized read request is then passed down the stack. Assuming the lower-

level driver graciously handles zero-size reads, the code will then read outside the buffer when it

tries to copy item->OriginalLength bytes from the attacker-controlled buffer:

memcpy (dataBuffer, buffer + (item->OriginalOffset.LowPart &

(ENCRYPTION_DATA_UNIT_SIZE - 1)), item->OriginalLength);

Since the destination dataBuffer is also mapped in user-space (via MDL), this could result in

information disclosure.

EXPLOIT SCENARIO: An attacker submits a read request to the TrueCrypt Windows kernel driver

that overflows the unsigned integer.

SHORT TERM SOLUTION: Ensure all values submitted from user-space are sanitized before using

them.

LONG TERM SOLUTION: Deploy proper integer overflow / underflow checks throughout the

TrueCrypt source code. For Windows, the IntSafe library is a convenient way to do this.

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 22 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

9. MountVolume() device check bypass

Class: Data Validation Severity: Informational Difficulty: Low

FINDING ID: iSEC-OCAP-9

TARGETS: VolumeThreadProc() in Ntdriver.c

DESCRIPTION: The above function contains the following code:

if (memcmp (pThreadBlock->mount->wszVolume, WIDE ("\\Device"), 14) != 0)

{

 wcscpy (pThreadBlock->wszMountVolume, WIDE ("\\??\\"));

 wcsncat (pThreadBlock->wszMountVolume, pThreadBlock->mount->wszVolume,

 sizeof (pThreadBlock->wszMountVolume) / 2 - 5);

 bDevice = FALSE;

}

else

{

 pThreadBlock->wszMountVolume[0] = 0;

 wcsncat (pThreadBlock->wszMountVolume, pThreadBlock->mount->wszVolume,

 sizeof (pThreadBlock->wszMountVolume) / 2 - 1);

 bDevice = TRUE;

}

pThreadBlock->mount->wszVolume is directly supplied by the user-mode caller through the

IRP
10

. If this string starts with “\\device\\” (in lower case), the code will not treat this as a de-

vice and bDevice will be FALSE. This will result in an unintended code path being followed in the

function TCOpenVolume().

SHORT TERM SOLUTION: Alter this check to be more robust. For example, it could use a case in-

sensitive string comparison to prevent the above bypass.

LONG TERM SOLUTION: The short term solution is sufficient to correct this issue.

10

 http://msdn.microsoft.com/en-us/library/windows/hardware/ff550694(v=vs.85).aspx

http://msdn.microsoft.com/en-us/library/windows/hardware/ff550694(v=vs.85).aspx

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 23 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

10. GetWipePassCount() / WipeBuffer() can cause BSOD

Class: Denial of Service Severity: Informational Difficulty: Medium

FINDING ID: iSEC-OCAP-4

TARGETS: GetWipePassCount() and WipeBuffer() in Wipe.c

DESCRIPTION: The above functions contain the following code:

default:

 TC_THROW_FATAL_EXCEPTION;

Where TC_THROW_FATAL_EXCEPTION is defined as:

#elif defined (TC_WINDOWS_DRIVER)

define TC_THROW_FATAL_EXCEPTION KeBugCheckEx (SECURITY_SYSTEM, __LINE__, 0,

0, 'TC')

If a user-mode caller submits a wipe algorithm to the driver which is not among the defined cas-

es, the code will execute TC_THROW_FATAL_EXCEPTION and produce a Blue Screen of Death. This

behavior can be triggered by submitting the IOCTL TC_IOCTL_BOOT_ENCRYPTION_SETUP or

TC_IOCTL_START_DECOY_SYSTEM_WIPE to the TrueCrypt driver. It should be noted that both these

IOCTLS require administrative privileges to call.

SHORT TERM SOLUTION: Alter the error handling to produce a more appropriate and actionable

error message.

LONG TERM SOLUTION: TC_THROW_FATAL_EXCEPTION is used in several places in the driver.

Investigate if better error handling would be prudent in some places.

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 24 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

11. EncryptDataUnits() lacks error handling

Class: Error Reporting Severity: Informational Difficulty: High

FINDING ID: iSEC-OCAP-10

TARGETS: EncryptDataUnits() in Crypto.c

DESCRIPTION: The EncryptDataUnits() function is called from both the bootloader and the

Windows kernel driver to encrypt data. This function is always expected to succeed and there-

fore does not return any kind of status value. If the encryption fails for any reason, the caller will

still write the data, resulting in unencrypted data being written to disk.

Exploit Scenario: Unexpected operating system or hardware conditions, such as failing RAM or

low-memory situations, cause the EncryptDataUnits() function to fail, resulting in unencrypt-

ed data being written to disk.

SHORT TERM SOLUTION: Bear this risk.

LONG TERM SOLUTION: Consider re-designing and re-implementing this functionality to be

more robust. For example, more security conscious users could be allowed to set a flag that forc-

es each encrypted block to be verified, with appropriate error values returned in case of failure.

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 25 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

4 Appendices

A Example issues in the bootloader decom-

pressor

iSEC identified several issues in the bootloader decompressor. For an overview of these issues,

refer to iSEC-OCAP-5.

A.1 Out of bounds read in stored()

The stored() function operates on a byte stream read from disk. The amount of bytes to operate

on is read from the input byte stream. Once read, this amount is verified against the size of the

output buffer and is then used to copy bytes from input to output:

len = s->in[s->incnt++];

len |= s->in[s->incnt++] << 8;

…

if (s->out != NIL) {

 if (s->outcnt + len > s->outlen)

 return 1; /* not enough output space */

 while (len--)

 s->out[s->outcnt++] = s->in[s->incnt++];

}

If len is smaller than the size of the output buffer but larger than the input buffer, the line copy-

ing the bytes will read outside the s->in array.

This issue can be triggered with the input \xf8\x7f\x00\x80\xff, which requires the output

buffer to be at least 0x7f bytes.

A.2 Out of bounds write in construct()

The following code can be found in the function Dynamic():

symbol = decode(s, &lencode);

if (symbol < 16) /* length in 0..15 */

 lengths[index++] = symbol;

…

/* build huffman table for literal/length codes */

err = construct(&lencode, lengths, nlen);

The function decode() can return -9 as an error value. This error condition is never checked for,

and the value -9 is instead used as a symbol value. This symbol value is later used in two differ-

ent places in the function construct():

for (symbol = 0; symbol < n; symbol++)

 (h->count[length[symbol]])++;

…

for (symbol = 0; symbol < n; symbol++)

 if (length[symbol] != 0)

 h->symbol[offs[length[symbol]]++] = symbol;

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 26 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

The first use results in memory at h->symbol[-9] being increased n times, while the second use

results in using whatever is at offs[-9] as index into h->symbol[].

This issue can be triggered with the input \x14\x00\x00\x00, as long as the input buffer is large

enough to not trigger the following issue.

A.3 Out of bounds read in decode()

With a legal input stream, decode() can run out of buffer before it finds a symbol to decode.

This will trigger an out of bounds read in the below line:

bitbuf = s->in[s->incnt++];

Since s->incnt is increased in each iteration (without any check to make sure it is in bounds) it

will result in an out of bounds read once the index is larger than the input buffer.

This issue can be triggered with the input \x14\x00\x00\x00.

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 27 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

B Code quality issues in TrueCrypt

During the review of the TrueCrypt bootloader and driver for Windows, iSEC identified a num-

ber of issues in the source that affected overall quality and maintainability of the code base

without directly leading to security problems. There is a risk that some of these issues could re-

sult in security vulnerabilities if the code is altered. These should therefore be addressed as a

Defense in Depth measure.

B.1 Signed / unsigned mismatches

Description

In both the bootloader and driver source code, there is a mix between signed and unsigned inte-

ger types. This does not directly result in any security issues, but it can have unintended conse-

quences. We include two (2) examples of signed / unsigned mixing in TrueCrypt.

ProcessMainDeviceControlIrp() in NtDriver.c:

typedef struct

{

 …

 unsigned __int64 diskLength;

typedef struct EXTENSION

{

 …

 __int64 DiskLength;

case TC_IOCTL_GET_VOLUME_PROPERTIES:

…

prop->diskLength = ListExtension->DiskLength;

ProcessMainDeviceControlIrp() in NtDriver.c:

case TC_IOCTL_IS_DRIVER_UNLOAD_DISABLED:

 if (ValidateIOBufferSize (Irp, sizeof (int), ValidateOutput))

 {

 LONG deviceObjectCount = 0;

 *(int *) Irp->AssociatedIrp.SystemBuffer = DriverUnloadDisabled;

 if (IoEnumerateDeviceObjectList (TCDriverObject, NULL, 0,

 &deviceObjectCount) == STATUS_BUFFER_TOO_SMALL && deviceObjectCount >

 1)

 *(int *) Irp->AssociatedIrp.SystemBuffer = TRUE;

A telling example of the risks of mixing signed and unsigned integer types is the chunked en-

coding integer overflow in nginx
11
. In this example, attackers are able to gain arbitrary code exe-

cution. Please see http://www.vnsecurity.net/2013/05/analysis-of-nginx-cve-2013-2028/ for an

in-depth discussion of this issue.

11
 http://nginx.org/

http://www.vnsecurity.net/2013/05/analysis-of-nginx-cve-2013-2028/
http://nginx.org/

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 28 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

Recommendation

Consider making integer variable types consistent wherever possible, with unsigned types typi-

cally being the safer choice. If a specification forces the use of a specific type for certain values,

make sure these are explicitly converted (if needed) in a safe manner before being operated on.

B.2 Inconsistent integer variable types

Description

In both the bootloader and driver source code, integers of different sizes are used and assigned

between one another without giving care to potential conversion issues. Again, the examples

below have not directly resulted in any security issues but could have unintended consequences.

AskPassword() in BootMain.cpp:

typedef struct

{

 unsigned __int32 Length;

…

size_t pos = 0;

…

password.Length = pos;

ProcessMainDeviceControlIrp() in Ntdriver.c:

typedef struct _DEVICE_OBJECT {

 …

 LONG ReferenceCount;

case TC_IOCTL_GET_DEVICE_REFCOUNT:

 if (ValidateIOBufferSize (Irp, sizeof (int), ValidateOutput))

 {

 *(int *) Irp->AssociatedIrp.SystemBuffer = DeviceObject->ReferenceCount;

Recommendation

Consider making integer variable types consistent wherever possible. For Windows driver code,

this is usually types such as ULONG, LONG etc.

B.3 Lack of integer overflow protections / checks

Description

In both the bootloader and driver source code, arithmetic operations are performed on untrust-

ed data that has not been fully verified. Additionally, no care is taken to prevent integers from

overflowing or underflowing when these operations are performed. This results in several

arithmetic issues throughout the source code, most of which are harmless. However, if the code

is changed or someone identifies a technique to exert more control over the behavior, this could

result in a security issue. Below follows an example of arithmetic issues in TrueCrypt.

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 29 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

DispatchControl() in VolumeFilter.c:

switch (irpSp->Parameters.DeviceIoControl.IoControlCode)

{

 case IOCTL_DISK_IS_WRITABLE:

 {

 …

 ++HiddenSysLeakProtectionCount;

By calling this functionality multiple times, HiddenSysLeakProtectionCount can be made to

overflow and become zero (0) again.

Recommendation

Deploy a library that helps perform arithmetic operations in a secure manner, such as IntSafe.

This will help preventing any integer overflows / underflows from causing issues.

B.4 Use of deprecated, insecure string APIs

Description

The code in Ntdriver.c, as well as supporting files, makes heavy use of APIs considered insecure

and which are now deprecated. This includes functions such as:

wcscpy()

wcscat() / wcsncat()

sprintf()

…

Recommendation

The Visual Studio CRT contains a new family of string handling functions (StringCch) that are

much more secure. These secure functions have effectively become the replacement for the more

insecure string handling functions

B.5 Suppression of compiler warnings

Description

The Microsoft compilers used to build TrueCrypt will warn against some of the issues men-

tioned above. However, in both the bootloader and Windows kernel driver, some of these warn-

ings have been suppressed. Some are suppressed with #pragma in the code, while others are sup-

pressed in the build scripts. This results in the code compiling without warnings, even though it

contains issues that should be corrected.

Platform.h used by the bootloader contains the following line:

#pragma warning (disable: 4018 4102 4704 4769)

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 30 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

BuildDriver.cmd used to build the driver contains the following line:

set TC_C_DISABLED_WARNINGS=-wd4057 -wd4100 -wd4127 -wd4152 -wd4201 -wd4701 -wd4702

-wd4706

Refer to http://msdn.microsoft.com/en-us/library/8x5x43k7.aspx for a reference of Microsoft

compiler warning values.

Recommendation

Consider removing the suppressions from both the code and the build environment. Instead,

alter the source code to ensure it compiles without warnings.

B.6 Use of Zw APIs

Description

The TrueCrypt Windows kernel driver makes heavy use of the Zw family of system calls. When a

Zw function is called, the originating caller is set to kernel, which causes the system to bypass all

ACL checks. If a user-mode caller can supply arbitrary arguments (via the IRP) to any of the Zw

calls, there is a major risk that a security issue will follow.

Recommendation

Assess all calls made to Zw functions from within the TrueCrypt Windows kernel driver. Replace

all those that can be replaced with a call to the corresponding Nt function. For all others, filter

arguments originating from user-mode.

B.7 Other minor issues

Description

The TrueCrypt Windows driver code contains a handful of other minor non-security issues that

do not fit under any of the other categories.

Ntdriver.c, line 817:

if (ValidateIOBufferSize (Irp, sizeof (LONG), ValidateOutput))

{

 LONG tmp = VERSION_NUM;

 memcpy (Irp->AssociatedIrp.SystemBuffer, &tmp, 4);

The call to memcpy() should be:

memcpy (Irp->AssociatedIrp.SystemBuffer, &tmp, sizeof(LONG));

http://msdn.microsoft.com/en-us/library/8x5x43k7.aspx

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 31 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

EnsureNullTerminatedString() in Ntdriver.c:

void EnsureNullTerminatedString (wchar_t *str, size_t maxSizeInBytes)

{

 ASSERT ((maxSizeInBytes & 1) == 0);

 str[maxSizeInBytes / sizeof (wchar_t) - 1] = 0;

}

maxSizeInBytes is never verified to be larger than zero (0), and since the ASSERT() is only com-

piled in for debug builds, it is never verified to be an even number. All calls to this function are

currently well controlled.

MountDrive() in DriveFilter.c:

if (NT_SUCCESS (status) && BootArgs.BootDriveSignature != *(uint32 *) (mbr +

 0x1b8))

The value 0x1b8 should be replaced with the help of a #define with a descriptive name.

MOUNT_LIST_STRUCT in Apidrvr.h:

typedef struct

{

 unsigned __int32 ulMountedDrives; /* Bitfield of all mounted drive letters */

 wchar_t wszVolume[26][TC_MAX_PATH]; /* Volume names of mounted volumes */

 unsigned __int64 diskLength[26];

 int ea[26];

 int volumeType[26]; /* Volume type (e.g. PROP_VOL_TYPE_OUTER,

 PROP_VOL_TYPE_OUTER_VOL_WRITE_PREVENTED, etc.) */

} MOUNT_LIST_STRUCT;

The value 26 should be replaced with the help of a #define with a descriptive name. Additional-

ly, this should be synchronized with the #define MAX_MOUNTED_VOLUME_DRIVE_NUMBER in

Common.h

B.8 General readability issues

Description

In addition to the implementation issues above, the code is difficult to read and follow in some

places. This makes it hard to assess the source code for bugs and perform general maintenance.

The following is a list of a few things found in the TrueCrypt source code that decrease readabil-

ity and ease of understanding, together with examples.

 “Compressed” code constructs

A common trait among C developers is to write so called one-liners:

IoGetNextIrpStackLocation (irp)->FileObject = fileObject;

While constructs like these are very size efficient, they do decrease readability and make

maintenance and error handling harder. Additionally, the extra space between the func-

tion name and the parenthesizes will throw off some readers.

iSEC Partners Final Report – Open Crypto Audit Project TrueCrypt Page 32 of 32

February 14, 2014 Open Crypto Audit Project Version 1.1

 Mixing of code and variables

Mixing code into variable declarations can make the code harder to spot:

BiosResult WriteEncryptedSectors (uint16 sourceSegment, uint16 sourceOffset,

byte drive, uint64 sector, uint16 sectorCount)

{

 BiosResult result;

 AcquireSectorBuffer();

 uint64 dataUnitNo;

Having a clear separation between variable declarations and the code using the variables

increases readability.

 Lack of comments

One of the better ways of increase understanding, readability, and maintainability of a

large source code project is to have helpful comments. This is especially true for a pro-

ject being worked on by a multi-person team. The TrueCrypt source code largely lacks

comments, leaving the reader to work out the detailed functionality intended by the au-

thor.

 Mixing of user-mode and kernel-mode functions with the same name

In part of the TrueCrypt source code that is shared among components, multiple func-

tions with the same name exist and are differentiated using #ifdef. For example, there

are two (2) ReadVolumeHeader() functions, one that is called from the kernel driver and

one that is called from the UI component. Functions such as these should be separated

and named differently to avoid risk of confusion.

 Overly long functions

While most functions in the TrueCrypt Windows kernel driver are designed to perform

an atomic task, a few such as TCOpenVolume() (~700 lines), can be hard to fol-

low. Refactoring such monolithic functions would greatly help readability.

