
Research Software Sustainability
Report on a Knowledge Exchange Workshop

Author
Simon Hettrick, The Software Sustainability Institute

February 2016

“Research Software Sustainability:
Report on a Knowledge Exchange Workshop”

Author
Simon Hettrick,
The Software Sustainability Institute

© Knowledge exchange
Published under the CC BY 4.0 licence
creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

Contents

An Introduction to
Knowledge Exchange

4

Our vision
Our mission

4
4

1 Executive summary 5

2 About the workshop 6

3 Background 7
3.1 Definitions
3.2 Introduction to software

sustainability
3.3 Software is not data
3.4 Software lifecycle
3.5 Approaches to sustainability

and preservation

7
7

8
9

10

4 Key recommendations 11

5 Benefits of software
sustainability

12

6 Societal barriers to
software sustainability

13

6.1 A lack of awareness of software’s
role in research

6.2 A lack of identification and citing
of software

6.3 A lack of understanding of
licensing and ownership

6.4 A lack of clear incentives and
impact

6.5 A lack of software skills
6.6 A lack of a career path for software

experts
6.7 Gender balance

13

13

14

14

14
15

15

7 Technical barriers to
sustainability

16

7.1 Identifying good software
7.2 Software discovery

16
17

8 Providing access to
expertise in software
sustainability

18

8.1 Centralised expertise: the UK’s
Software Sustainability Institute

8.2 Distributed expertise: DANS
and SURFsara

8.3 Building capacity across Europe

18

18

19

9 The role of funders in
software sustainability

20

9.1 A change to novelty requirements
9.2 Funding for maintenance, not

just creation
9.3 Software Management Plans

20
20

20

10 Current national
activities

22

10.1 Germany
10.2 The Netherlands
10.3 The United Kingdom
10.4 Outside Europe

22
22
23
24

11 Appendices 25
Appendix 1: presentations from the
workshop and key message
Appendix 2: position papers and
statements from attendees at the
workshop

25

26

4 Knowledge Exchange Workshop - Research Software Sustainability

An Introduction to Knowledge Exchange

An Introduction to
Knowledge Exchange

The Knowledge Exchange (KE) partners are five key
national organisations within Europe tasked with
developing infrastructure and services to enable the use
of digital technologies to improve higher education and
research: CSC in Finland, DEFF in Denmark, DFG in
Germany, Jisc in the UK and SURF in the Netherlands.

Our five partners share a clear vision that scholarship
should be open. Through Knowledge Exchange we are
working together to support the development of digital
infrastructure to enable open scholarship. We are raising our
collective voice to inform national and international policies
and promote common approaches, so that it becomes
easier for scholarship to cross national boundaries.

We share our knowledge, experiences and resources.

Our vision
Digital technologies create innovative opportunities to
advance research and higher education.

Open scholarship is one of these opportunities.
Opening up access to scientific outputs (including
publications, data and software) and encouraging open
methods and collaboration can:

 ` improve transparency and engender greater trust
in research

 ` increase the effective sharing and use of research

 ` support wider participation in research

All of these possibilities are underpinned by digital
technologies.

Our vision is to enable open scholarship by supporting
an information infrastructure on an international level.

Our mission
Knowledge Exchange activities support the individual
agendas of the five partner organisations. They also
advance progress towards achieving our shared vision.

We are increasing the impact of partner activities by
exchanging knowledge between experts in the area of
digital technologies for research and higher education.

We are building on those exchanges to inform
developments in information infrastructure, including
technical as well as the organisational, policy and
economic aspects.

We are exchanging best practice, practical solutions
and innovative approaches to improve all aspects of
each partner’s performance. This will ensure that they
can create more effective solutions.

Contact
Web: knowledge-exchange.info
Email: office@knowledge-exchange.info
Twitter: @knowexchange
Tel: +44 203 697 5804

© Knowledge exchange
Published under the CC BY 4.0 licence
creativecommons.org/licenses/by/4.0/

http://knowledge-exchange.info
mailto:office%40knowledge-exchange.info?subject=
http://creativecommons.org/licenses/by/4.0/

5Knowledge Exchange Workshop - Research Software Sustainability

1 Executive summary

Without software, modern research would not be possible.
Understandably, people tend to marvel at results rather
than the tools used in their discovery, which means the
fundamental role of software in research has been
largely overlooked. But whether it is widely recognised
or not, research is inexorably connected to the software
that is used to generate results, and if we continue to
overlook software we put at risk the reliability and
reproducibility of the research itself.

The adoption of software is accompanied by new risks
- many of which are unknown to the majority of the
research community. The practices of software
sustainability minimise these risks and help to increase
trust in research results, increase the rate of discovery,
increase return on investment and ensure that research
data remains readable and usable for longer.

Funders are well aligned with the goals of software
sustainability: both seek to support reliable, trusted
research. This means that funders are well placed to
play a pivotal role in advocating software sustainability.
Funders can help raise awareness, and can make some
simple, low-cost changes, such as encouraging the
adoption of software management plans, that could
lead to significant improvements in the software used
in research.

Improving software sustainability requires a number of
changes: some technical and others societal, some
small and others significant. We must start by raising
awareness of researchers’ reliance on software. This
goal will become easier if we recognise the valuable
contribution that software makes to research - and
reward those people who invest their time into
developing reliable and reproducible software. We must
educate the research community on the issues raised
by software adoption, and provide training in the
software engineering skills that are needed to overcome
them. We cannot rely on researchers to adopt all of the
skills needed for software sustainability, we must also

allow research groups to recruit software experts, and
we must create organisations that develop and
disseminate expertise in software sustainability.

The adoption of software has led to significant
advances in research. But if we do not change our
research practices, the continued rise in software use
will be accompanied by a rise in retractions. Ultimately,
anyone who is concerned about the reliability and
reproducibility of research should be concerned about
software sustainability. This argument alone may rely
too much on the stick and not enough on the carrot.
To that end, we must also show that software
sustainability promises to identify and make available
the software that is most likely to advance research.

1 Executive summary

6 Knowledge Exchange Workshop - Research Software Sustainability

2 About the workshop

The meeting was organised and chaired by Bas
Cordewener, Matthias Katerbow and Sarah James.
Many thanks are due to those who contributed their
time and expertise to this report. In particular to all
those who presented and contributed at the workshop:

Patrick Aerts, Hans Bennis, Timo Borst, Daan Broeder,
Christopher Brown, Neil Chue Hong, Bas Cordewener,
Mustafa Dogan, Peter Doorn, Matthew Dovey, Martin
Hammitzsch, Simon Hettrick, Sarah James, Matthias
Katerbow, Brian Matthews, Cedric Nugteren, Andreas
Raabe, Arfon Smith, Stefan Strathman, Rob van
Nieuwpoort, Stefan Winkler-Nees and Andreas Zeller.

This report is based on discussions that took place
during the workshop. It was written by Simon Hettrick
and edited by Bas Cordewener, Matthias Katerbow and
the workshop participants.

This report is provided under a Creative Commons
Attribution 4.0 International licence1.

2 About the workshop

The Knowledge Exchange Workshop on Research Software Sustainability
took place on 1-2 October 2016 at the DFG Offices in Berlin.

Footnotes
1 “Creative Commons — Attribution 4.0 International — CC BY

...” 2013. 21 Dec. 2015

(https://creativecommons.org/licenses/by/4.0).

https://creativecommons.org/licenses/by/4.0

7Knowledge Exchange Workshop - Research Software Sustainability

3 Background

3.1 Definitions
Three terms are often used, almost interchangeably,
when describing approaches to extending software
lifetime: sustainability, preservation and archiving. There
is no fixed definition for these terms, so for the purposes
of this report the following definitions will be used.

Research software (as opposed to simply software) is
software that is developed within academia and used
for the purposes of research: to generate, process and
analyse results. This includes a broad range of software,
from highly developed packages with significant user
bases2,3,4 to short (tens of lines of code) programs
written by researchers for their own use.

Software sustainability describes the practices, both
technical and non-technical, that allow software to continue
to operate as expected in the future. A constant level of
effort is required to maintain the software’s operation.

Software preservation is an approach to extend the
lifetime of software that is no longer actively maintained.
There are different approaches, as described below,
which vary in the effort required and the likelihood
of success.

Software archiving is one important aspect of software
preservation. It is the process of storing a copy of software
so that it may be referred to in the future. For example,
for the purposes of reproducibility, to store a copy of the
exact software that was used to generate a result in
a publication.

3.2 Introduction to software sustainability
Software is used at every stage of research, and across
all disciplines, to generate, process and analyse results.
Yet it is a relatively new addition to the researcher’s
toolbox, especially when we move from the traditional
computational fields and into new disciplines where
software is being rapidly adopted. Consequently,
software best practice and the skills needed to apply it
are not yet embedded in the research community.
Software promises to open new vistas of research, but it
is also associated with new risks. To mitigate these risks,
we must adopt the practices of software sustainability.

Software sustainability5 is vital to research because it is
inexorably linked to the reliability and reproducibility of
results. Although these concepts are well understood
in research, they tend to be overlooked when it comes
to research software. Software is a tool like any other,
so it must stand up to the same scrutiny. Improving
the reliability and reproducibility of software promises
benefits that will be felt across the research community,
but it requires change across that same community:
from funders, research organisations, publishers
and researchers.

3 Background

To understand the importance of software sustainability, one must
understand some key facts about software and its role in research.

Footnotes
2 “BALL Project: About.” 2005. 21 Dec. 2015

(ball-project.org).

3 “dmacrys - UCL Chemistry.” 2008. 21 Dec. 2015

(chem.ucl.ac.uk/basictechorg/dmacrys/index.html).

4 “Praat - Phonetic Sciences, Amsterdam.”

2003. 21 Dec. 2015 (fon.hum.uva.nl/praat).

5 See Appendix 1, presentation 1.

http://ball-project.org
http://www.chem.ucl.ac.uk/basictechorg/dmacrys/index.html
http://www.fon.hum.uva.nl/praat

8

Software sustainability defies easy definition. In general,
it can be seen as the practices that allow software to
continue to function as expected in the future, but this
definition makes sustainability sound straightforward.
It is not.

Software sustainability is an umbrella term that covers
a wide array of issues that are technical, cultural and
political in nature. There is no one-size-fits-all solution:
sustainability is highly specific to the software under
consideration. Technology can help in some areas, but
it cannot solve the problem alone. Instead, we must look
to change community practices to overcome societal
barriers that prevent or inhibit sustainability. Some of
these changes will be simple and easy to adopt, others
will challenge long-standing academic practices, meaning
that time and incentives will be needed to persuade the
community to change.

Software has a lifecycle: it is conceived, matures and
decays. At any point during this lifetime, an intervention
may be required to keep the software viable and to help
extract the greatest value from the investment made
into it. It is not feasible or desirable to sustain all software.
Inevitably some will outlive its usefulness, and some will
become unsustainable due to forces beyond the control
of the software’s owners or user community. Rather than
sustain all software, advocates of software sustainability
argue that resources should be concentrated on
sustaining software that is most useful. At the current
time, this is a difficult and occasionally arbitrary process
because there is no agreed system for measuring the
contribution of software to research. We must develop
such a system. If software can achieve credit, then software
developers can measure their contribution to research
in much the same way that publications are currently used
by researchers. By rewarding time invested into software
development (by both researchers and software developers)
we will incentivise the development of higher quality
research software across a wider range of areas.

There is cause for hope to be found in the world of research
data management. The campaign for understanding the
importance of data to research is at least 10-15 years
ahead of the campaign for software. Although there is
still room for improvement in this area, the campaign
has succeeded in getting data onto the research
agenda and has motivated change at every level of the

community. The momentum behind the campaign for
data can be used to raise awareness of software. After
all, data is nothing without the software needed to read,
analyse and visualise it. At the same time, we must
ensure that stakeholders understand that software is
not data: we can leverage the lessons learned by that
campaign, but we cannot simply re-apply to software
the best practices for research data management.

Software sustainability will require changes across the
research community, some of which are non-trivial - but
this can be an iterative journey. The small and easy
changes can showcase benefits that entice people to
tackle the larger challenges.

3.3 Software is not data
It is interesting to note the parallels between data and
software. Over the last 10-15 years there has been a
concerted effort to raise awareness of the importance of
data to research. Interest in Research Data Management
(RDM), and investment into understanding and then
disseminating best practices have considerably improved
how data is handled and preserved. But software is
not data. Whereas data is largely static, software is a
living entity that must evolve and adapt to the constant
changes in its environment. If it does not evolve, software
will decay. It can be argued that data is subject to decay,
but this is not the case. It is actually the software used
to store and read the data that decays.

Software is always reliant on other software for its correct
operation. The arrangement can be thought of as a
pyramid or stack: with the software the user wants to
use at the top, which is dependent on a second tier of
other software, which may itself be dependent on third
tier of other software, and so on. The other software is
known as the dependent software and it includes
everything from the operating system, system libraries,
and other necessary packages (e.g. a browser, JRE,
etc.). Software decay6 occurs because a change to any
of the dependent software can affect the operation of
the software higher up the stack, and the risk of this
occurring is often high because there is usually a large
number of software dependencies.

If we attempt to preserve software, it quickly becomes
out of step with its dependent software. Within a short
space of time these changes accumulate to the point

Knowledge Exchange Workshop - Research Software Sustainability

3 Background

9

where the software can no longer function. If software
is to continue to be of use, it must be sustained rather
than preserved.

3.4 Software lifecycle
Software should be seen as a living entity that may pass
through a number of stages during its lifetime. At any
stage, and for many different reasons, the software may
come to the end of its lifetime.

Research software can be developed by a single researcher
or software developer, or by a team. A significant amount
of research software is developed by a single researcher
(often a postdoctoral student or postgraduate) to solve
a problem specific to their research. If the software proves
useful, it can attract users. Growth generally begins
within the research group, then within the general field
in which the software was developed and then, less
frequently, the software may achieve large-scale adoption
across a number of domains. It is entirely possible that
code developed by a postdoctoral student may become
a highly successful software project with users from
around the globe7,8,9.

As adoption grows, so does the number of people
needed to sustain the software. These roles must be
funded, so each step in the lifecycle is associated with
decisions on how to raise appropriate finances. Funding
may be sought from a research funder or through
commercial means. (It is noted that commercialisation
is often difficult in an academic environment due to
restrictions - e.g. open-source publication requirements
by the original funder, the needs of an Open Science
policy - and because academia rarely presents a user
base of sufficient size to make commercialisation
viable.) Alternatively, an open-development approach
might be adopted where the software is provided for
free and developers are attracted to work on the project
by incentives (such as preferential support, or simply the
kudos from being associated with a successful project).

At some point in its lifecycle, software may face an
obstacle to its continued existence. It might fall from
favour, be superseded, become redundant, run out of
funding or simply lose a key developer. If the obstacle
is insurmountable, the software can no longer be
sustained and an approach to software preservation
must be chosen.

Knowledge Exchange Workshop - Research Software Sustainability

3 Background

Footnotes
6 “Software rot - Wikipedia, the free encyclopedia.”

2011. 21 Dec. 2015

(https://en.wikipedia.org/wiki/Software_rot).

7 See Appendix 1, presentation 6.

8 “BALL - Biochemical Algorithms Library — The BALL Website.”

2005. 27 Oct. 2015 (ball-project.org).

9 “figshare - credit for all your research.”

2008. 27 Oct. 2015 (http://figshare.com).

https://en.wikipedia.org/wiki/Software_rot
http://ball-project.org
http://figshare.com

10

3.5 Approaches to sustainability
and preservation
In 2010, the UK’s Software Sustainability Institute and
Curtis+Cartwright investigated approaches to software
preservation10 which have since been adopted and
developed by the scientific computing department at
the Science and Technology Facilities Council in the UK.

1. Encapsulation. Preserve the original hardware and
software to prevent change and ensure that the
software continues to operate

2. Emulation. Emulate the original hardware and
operating environment to give the appearance that
nothing has changed so that the software continues
to operate

3. Migration. Update the software to maintain the
original functionality and transfer it to new platforms
as necessary to prevent obsolescence

4. Cultivation. Keep the software up to date by
adopting an open development model that allows
new contributors to be brought on board

5. Hibernation. Preserve knowledge of how to
resuscitate the software’s exact functionality at a
later date

6. Deprecation. Formally retire the software. Unlike
hibernation, no time is invested into preparations to
make it easier to resuscitate the software

7. Procrastination. Do nothing

Emulation software like CernVM11, Docker12, VMware13,
VirtualBox14, and Vagrant15 are seeing increasing adoption
across the research community. These systems can be
used to archive a copy of software and the environment
in which it runs. They are proving useful for purposes of
reproducibility, and are also being used to deliver and
deploy software. A project in the UK, recomputation.org16,
is using virtual machines to store everything needed to
replicate an experiment. The research software, data
and the operating environment on which the computation
occurred are stored together on a virtual machine. This
is archived and can be accessed at a later date if the
computation needs to be verified.

Knowledge Exchange Workshop - Research Software Sustainability

3 Background

Footnotes
10 Hong, N. Chue, et al. “Software Preservation Benefits Framework.”

Software Sustainability Institute Technical Report (2010).

11 “CernVM.” 2005. 28 Oct. 2015 (http://cernvm.cern.ch).

12 “Docker - Build, Ship, and Run Any App, Anywhere.” 2013. 28

Oct. 2015 (docker.com).

13 “VMware Virtualization for Desktop & Server, Application ...” 28

Oct. 2015 (vmware.com).

14 Downloads – Oracle VM VirtualBox.” 2011. 28 Oct. 2015

(virtualbox.org/wiki/Downloads).

15 “Vagrant.” 2013. 28 Oct. 2015 (vagrantup.com).

16 See Appendix 1, presentation 7.

http://cernvm.cern.ch
http://docker.com
http://vmware.com
http://virtualbox.org/wiki/Downloads
http://vagrantup.com

11

1. We must raise awareness of the fundamental role
of software in research
 ` All stakeholders, from researchers to policymakers,

must be included in this awareness raising campaign
 ` Incentives must be determined to persuade

stakeholders to invest resources into software
sustainability, and the risks of overlooking
sustainability must be made clear

2. Research software should be recognised as a
valuable research object in line with the investment
it receives and the research it makes possible
 ` Research software should become a citable

scientific deliverable of equivalent value to
researchers as that of a publication

 ` Agreement should be made on methods for citing
software

 ` Agreement should be made on methods for
measuring research impact

3. Funders should use their position to promote
software sustainability
 ` The goals of funders and software sustainability are

well aligned
 ` Funding should be made available for maintaining,

extending and preserving software
 ` Software management plans should be adopted to

motivate researchers to consider their use of
software and their plans for sustaining it

4. Skills related to software sustainability must be
embedded in the research community
 ` More researchers should learn basic software

engineering skills
 ` Doctoral training programmes should include an

element of basic software engineering
 ` Career paths for expert software developers

(Research Software Engineers) should be adopted

5. We must create organisations (centralised or
distributed) to act as focal points for software
sustainability expertise
 ` Researchers cannot be expected to acquire all the

skills that software sustainability requires, they must
have access to experts

 ` Each country should create these focal points in a
way that suits their research community

 ` These organisations should work together to share
knowledge and expertise

 ` This network may be enhanced by a European
organisation for software sustainability

4 Key recommendations

There are some changes - some simple, others not - that could
revolutionise software sustainability. Although many different views
were presented at the workshop, there was agreement that the
following recommendations would improve the reliability and
reproducibility of research.

Knowledge Exchange Workshop - Research Software Sustainability

4 Key recommendations

12

1. Trusted research
 ` Results that are generated by reliable, well tested

software can be trusted. Reproducible software
makes it easier for others to repeat computations
to verify results

2. Increased rate of discovery
 ` Reusable software is easy to adopt and extend.

By building on existing software, researchers can
invest more time into research and avoid wasting
time by replicating software that already exists

3. Increased return on investment
 ` Software is very expensive to develop. Reusing

software rather than replicating it has the potential
to save a significant amount of resources, which
could then be invested into new research

4. Research data remains readable and usable
 ` Data is meaningless without the software needed to

read and interpret it. Software that continues to
function allows continued access and use of research
data, aiding reproducibility and helping extract the
greatest return from the investment made into
collecting the data

5 Benefits of software
sustainability

Funding for research is limited. If we are to gain the investment that
software sustainability needs, we must show that it will lead to an
overall benefit for the research community. This is certainly the case.
Software sustainability creates reliable, reproducible and reusable
software which leads to:

Knowledge Exchange Workshop - Research Software Sustainability

5 Benefits of software sustainability

13

Improving software sustainability will require changes to
the accepted practices of the research community.

6.1 A lack of awareness of software’s role
in research
Possibly the greatest issue that currently limits software
sustainability is simply one of awareness. The research
community does not recognise the scale of its reliance
on software or the issues that limit software sustainability.

The effects of overlooking software are felt across the
research community. Researchers overlook the fundamental
contribution that software makes to the reliability and
reproducibility of their results. Publishers overlook the
need to identify software as a vital part of the publication
process. Funders overlook the need to make funding
available for maintaining software, and overlook the growing
need to secure software experts on research projects.
Research organisations overlook the need to build
software expertise in their staff. Policymakers overlook
the importance of software to research, and they apply
impact metrics that often penalise time invested into
software development rather than reward it.

It is clear that a sustained campaign of awareness raising is
required across the research community. This campaign
should be led by proponents of software sustainability
but must include all research stakeholders if it is to be
successful. The campaign will rely on developing and
promulgating a set of arguments to convince research
stakeholders that software sustainability is of fundamental
importance to research.

6.2 A lack of identification and citing
of software
Reproducibility requires that the exact version of the
software used to generate a result must be known. This is
difficult, because software constantly evolves. A similar
problem has been faced with data, where identifiers such
as a Digital Object Identifier (DOI)17 or Uniform Resource
Name18 are used to provide an actionable, interoperable

and persistent link to a specific data set. The same system
could be used to identify software.

Software repositories provide somewhere to store software
and record its version history (i.e a record of each
iteration of the software from when it was first conceived
to the current version). Some of these repositories, notably
Github19 and Zenodo20, allow DOIs to be associated with
versions of the software. The DOI or URN makes it
significantly easier to identify the specific version of the
software used to generate a research result, and it makes it
significantly easier for a reader to access that software.

When a researcher builds on someone else’s research,
it is good practice to cite the paper that describes the
research. Highly cited papers are one way of identifying
important research, and they are used to gain recognition
and reward for the author of the paper.

6 Societal barriers to
software sustainability

Knowledge Exchange Workshop - Research Software Sustainability

6 Societal barriers to software sustainability

Footnotes
17 “Digital Object Identifier System.” 2015. 28 Oct. 2015 (doi.org).

18 “Uniform Resource Name - Wikipedia, the free encyclopedia.”

2011. 14 Nov. 2015

(https://en.wikipedia.org/wiki/Uniform_Resource_Name).

19 “GitHub - Where software is built.” 2008. 28 Oct. 2015 (https://

github.com).

20 “Zenodo.” 2012. 28 Oct. 2015 (http://zenodo.org).

http://doi.org
https://en.wikipedia.org/wiki/Uniform_Resource_Name
https://github.com
https://github.com
http://zenodo.org

14

When a researcher builds on someone else’s software,
they are unlikely to even mention it in the paper. Citation
of software is necessary not just for reproducibility, but
also to credit the software developer who made the
research possible.

Software citations would provide a clear way of recognising
the contribution of software developers and infrastructure
providers to the research process. However, they would
also allow researchers to gain credit for developing software,
after all, most research software is developed by researchers.

Although the technology exists to cite software, there is
not yet any general agreement across the community of
the necessity to do so, nor is there significant pressure
on publishers to mandate the citation of software. If we
are to increase the citation of software, we must persuade
the research community of its importance, agree on an
acceptable way to cite software and then persuade
policymakers, funders and publishers to reward - or
even mandate - software citation. There is a growing
number of journals where a researcher can publish their
software21 and at least one journal dedicated to describing
research software with high reuse potential22.

6.3 A lack of understanding of licensing
and ownership
A significant restriction on the re-use of software is a
lack of understanding about licensing23. If the owner of
the software does not describe how others can use it
(i.e. by licensing it), then people will - quite rightly - be
cautious about using or extending the software.

The main problems with licensing relate to who owns the
software and what licence best suits the owner’s needs.
The owner of the software is the only person who has
the right to licence it. Before a licence can be chosen,
the owner must be identified. Many research organisations
do not make clear their stance on the ownership of
software developed by people working within their
organisation, yet the law is clear on the subject, so there
is little reason for this position to persist. Licensing would
become significantly easier if research organisations
were to make a clear statement about their stance on
the ownership of software developed by their employees
(and other notable groups, such as students).

Raising awareness of licensing and providing easier access
to Intellectual Property (IP) experts would help developers
understand the correct licence to choose, and researchers
to understand the limitations on their use of software.
Many research organisations provide access to these
experts but, anecdotally at least, it would appear that
people are not making use of this service or that the experts
are not sufficiently well versed in IP in relation to software.

6.4 A lack of clear incentives and impact
Software sustainability requires the investment of effort,
changes in practice and funding. If we are to persuade
stakeholders to make this investment, we must be clear
of the incentives for doing so.

The worthiness of research is measured through impact
metrics - generally related to publications and citations.
These metrics add a strong incentive for researchers to
be the first to discover and publish. This pressure to quickly
gain results forces researchers to invest minimal time on
any aspect of software development that is not focussed
on generating a result - this is not an environment that
fosters sustainability. We must devise research impact
metrics that reward advances in research, but also reward
making those advances using software that is sustainable.

As discussed above, if software were cited and made
discoverable in publications, it would become an additional
incentive for developing sustainable software.

6.5 A lack of software skills
Many researchers know how to code, but few understand
the wider set of skills that are needed to develop reliable,
reproducible and reusable software. These skills are
generally understood as “software engineering”.
Not all researchers have to become software engineers.
Instead, it is necessary for a researcher to learn skills
appropriate for their level of involvement in software.
Organisations like Software Carpentry24 address this
problem by training researchers in the basics of software
engineering. This type of training helps increase the
general skill level of the research community, but if we
are to significantly increase skills, software engineering
should be incorporated into doctoral training programmes.
Ensuring that software skills are provided at the very start
of a research career is likely to ensure that these skills
are used throughout that research career.

Knowledge Exchange Workshop - Research Software Sustainability

6 Societal barriers to software sustainability

15

At some point during the growth of a software project,
the skills and tasks that can be undertaken as a researcher
become too great. At this stage it is necessary to acquire
the skills of a software expert.

6.6 A lack of a career path for software experts
The goals of software sustainability would be considerably
advanced if experts in software development and
engineering were embedded in research groups. Handing
over responsibility for software sustainability to an
expert reduces the pressure on researchers to master
yet another skill set.

Currently, software experts in academia lack a career
path, so most are hired as postdoctoral researchers.
Success in these positions is measured on the basis of
publications, so a software developer hired into this role
quickly finds themselves in a dead-end position with no
option for recognition, reward or career advancement.
This makes it difficult to hire and retain expert software
developers in academia, and this lack of experts is a
significant inhibitor of software sustainability.

Gaining recognition and reward for expert software
developers is the goal of the UK’s campaign for
“Research Software Engineers” (RSEs), which is being
led by the Software Sustainability Institute. Since 2013,
the campaign has raised awareness of the RSE role, led
to the founding of an association25 to represent people
in the role (with almost 500 members, 150 of whom
joined in 2015), and has been successful in seeing funders
and organisations accept the role - culminating in a £3
million investment in 2015 by the EPSRC to fund RSE
Fellowships26. Within the UK, the term RSE is becoming
the accepted way of referring to a person conducting
software development in academia, and the use of the
term is growing across Europe, Canada and the US.

Access to software experts will increase the sustainability
of software developed within academia. But until there
is a career path into which these experts can be hired,
academia will continue to experience serious problems
attracting and retaining software experts.

6.7 Gender balance
Gender is not an issue that directly affects software
sustainability. However, there are significantly fewer women
in software-related roles than men - a disparity that
increases with seniority of role. Indeed, this gender disparity
was mirrored by the attendees at the Knowledge Exchange
Workshop on Research Software Sustainability. Although
gender does not have a direct impact on software
sustainability, it was generally agreed that diversity issues
should be addressed where possible as part of this work.

Knowledge Exchange Workshop - Research Software Sustainability

6 Societal barriers to software sustainability

Footnotes
21 “In which journals should I publish my software? | Software ...”

2013. 14 Nov. 2015

(software.ac.uk/resources/guides/which-journals-should-i-

publish-my-software).

22 “Journal of Open Research Software.” 2012. 14 Nov. 2015 (http://

openresearchsoftware.metajnl.com)

23 See Appendix 1, presentation 4.

24 “Software Carpentry.” 2014. 28 Oct. 2015

(https://software-carpentry.org).

25 “The people behind research software.”

2006. 21 Dec. 2015 (rse.ac.uk).

26 “Research Software Engineer (RSE) Fellowships - EPSRC ...” 2015.

28 Oct. 2015

(epsrc.ac.uk/funding/calls/rsefellowships).

http://software.ac.uk/resources/guides/which-journals-should-i-publish-my-software
http://software.ac.uk/resources/guides/which-journals-should-i-publish-my-software
http://openresearchsoftware.metajnl.com
http://openresearchsoftware.metajnl.com
https://software-carpentry.org
http://www.rse.ac.uk
http://epsrc.ac.uk/funding/calls/rsefellowships

16

7.1 Identifying good software
Adopting software requires a significant investment of
resources. Researchers’ resources are limited, so they
can be reluctant to adopt software simply because it is
too risky. This risk would be considerably reduced if there
was a way of identifying good software. This would
improve adoption and reuse of software - which are
both goals of sustainability.

The needs of researchers vary widely so what is good is
highly subjective. However, there is at least agreement
on some elements that are important: that software is
available, adequately documented, licensed, version
controlled27, tested, etc. If these elements could be
understood and rated, it should be possible to create a
system that will at least provide a measure of the software.

The subjectiveness of classifying software means that
this is a highly controversial subject. However, it should
be noted that similar concerns were raised about judging
the quality of data, and there are efforts, such as the
Data Seal of Approval28 and the Five Stars of Open
Data29, that have succeeded in reaching widespread
adoption. There is considerable interest in repeating this
endeavour for software30,31.

A framework proposed by the Netherlands eScience
Center (NLeSC) looks to understand the requirements of
both data stewardship and software sustainability32 and
combine them into a series of reusable protocols that
define the usage of software and data in a specific
research scenario.

The framework identifies three separate stakeholders:

1. Governments, research organisations and funding
organisations

2. The research community, society, industry
3. Executive level parties, such as computing centres,

data centres, libraries and policy organisations

Whenever a new software tool is used to generate
research, the researchers who conduct the research
also write a protocol. This describes the regulations and
best practices that govern the software and data - like a
combined software and data management plan - which
includes aspects such as reusability, future access, and
re-traceability of the data and software. The protocol is
published at the same time as the paper that describes
the research. In doing so, interested parties can read the
paper to understand the research, then read the protocol
to understand how the software and data were managed.

Since the protocol is now open, other researchers who
intend to conduct similar research can reuse the protocol
rather than having to write their own (or update or expand
it, if necessary). This means the original authors of the
protocol are rewarded with a citation for investing the
time into writing the protocol. In other words, the protocol
will become a parallel means for authors to gain credit
alongside journal publications.

It is the responsibility of the category 1 stakeholders
(governments, research organisations and funding
organisation) to set up the framework, determine minimum
requirements for its use, provide guidelines on how to
use it, and link to relevant laws. It is the responsibility of
the category 2 stakeholders (the research community,

7 Technical barriers to
sustainability

Some elements of software sustainability would be easier to achieve
if certain technical barriers could be overcome.

Knowledge Exchange Workshop - Research Software Sustainability

7 Technical barriers to sustainability

17

society and industry) to set up expert groups within a
discipline and make them responsible for the set up of
protocols, to write the protocols whilst adhering to the
guidance of the general framework, and then publish
the protocols as scientific publications.

A similar effort is underway in the UK, led by the Software
Sustainability Institute, to create a “Software Accreditation
Framework” which could be the basis of the Software
Seal of Approval. This would be a lightweight framework
that allows researchers to understand their software
sustainability practices by assessing their work against
a checklist of good practice. Details should be publicly
available in 2016.

7.2 Software discovery
Even good software will not be used if researchers are
not aware of its existence. Making software more
discoverable should reduce replication and foster reuse.
More reuse will allow funding and researcher effort to be
focussed on research rather than software development.
If developers can show use of software, they will find it
easier to make a case for funding to maintain their software.

However, making software available is more complicated
than simply adding a download to a website (referred to
by the developer’s adage “Build it and they will come”).
Research software tends to have a highly specific purpose,
so much of it has a very limited potential market. Making
people aware of software requires skills in marketing
and advertising that are often lacking in research projects.
Software catalogues and brokers are two approaches
to increase awareness and availability of research software.

Software catalogues are typically created to benefit a
particular field or a particular set of computational
processes. Since they are made to service a particular
market, they act as a single point of contact around
which a community may grow, which increases the
likelihood that software will be discovered. Software
catalogues come in two forms. The first is most like a
catalogue: a description of the different software
available and links to the developers of that software.
The second is more centralised: a software repository
(separate from the developers’ own storage infrastructure)
where software is stored.

The main problem with software catalogues, especially
those that remove the software from the original
developers, is that they require significant curation
effort. If the catalogue is not reviewed and refreshed on
a regular basis, it risks becoming a collection of out of
date software - a software graveyard rather than a
software catalogue.

Software brokers33 are an active form of catalogue that
tries to match a researcher’s needs with a particular
technology. Software developers would use the broker
to describe their software’s functionality and researchers
would use it to describe their requirements. The broker
could then match researchers and software developers.

There is an obvious problem that the software catalogues
and brokers can only operate if they have access to
information about the software that is available. One
solution that fits with other proposals in this report is to
mine Software Management Plans for this information.

Knowledge Exchange Workshop - Research Software Sustainability

7 Technical barriers to sustainability

Footnotes
27 See Appendix 1, presentation 5.

28 “Data Seal of Approval: Home.” 2009. 14 Nov. 2015

(http://datasealofapproval.org).

29 “5-star Open Data.” 2012. 14 Nov. 2015

(http://5stardata.info).

30 “The five stars of research software | Software Sustainability ...” 2013.

14 Nov. 2015

(software.ac.uk/blog/2013-04-09-five-stars-research-software).

31 See Appendix 1, presentation 10.

32 See Appendix 1, presentation 2.

33 See Appendix 1, presentations 1 and 8.

http://datasealofapproval.org
http://5stardata.info
http://software.ac.uk/blog/2013-04-09-five-stars-research-software

18

Software sustainability is a broad issue, so these
organisations would have to be equally diverse because
they might be called upon to provide researchers with
expertise on everything from software engineering to
community building.

8.1 Centralised expertise: the UK’s
Software Sustainability Institute
The UK was the first country to invest in an organisation
that focusses on improving software sustainability. The
Software Sustainability Institute is a national service for
UK-based researchers. It’s first phase (2010-2015) was
funded by the Engineering and Physical Sciences Research
Council. Its second phase (2015-2019) has attracted
two additional funders: the Biotechnology and Biological
Sciences Research Council and the Economic and Social
Research Council. These additional funders is testament
to the growing interest in software sustainability
across disciplines.

Software sustainability is a broad issue, which the Institute
tackles by splitting its effort over five teams.

 ` The Community team gathers information from the
research community. It runs workshops and a
fellowship programme to raise awareness of software
sustainability and gather information about software
from the research community

 ` The Research Software team comprises research
software engineers who provide their expertise in
software engineering to the research community34

 ` The Training team facilitates and runs training, such
as Software and Data Carpentry, to provide the skills
needed by the research community

 ` The Policy team conducts research to understand
the research software community and the investment
into it, then uses this information to campaign for
changes to be made that support sustainability

 ` The Communications team have developed a
highly popular platform which is used to encourage
participation from the research community and to
disseminate information about software sustainability

The Institute has successfully raised awareness of the
issues around software sustainability, and created a
significant community around those issues35. Endeavours
like the Research Software Engineer campaign36 are
changing the research community, and the Journal of
Open Research Software37 is changing the way researchers
think about software publication.

If we are to improve the research community’s use of software, there
must be an organisation (or organisations) who promote software
sustainability and provide access to expertise in the subject.

8 Providing access to expertise in
software sustainability

Knowledge Exchange Workshop - Research Software Sustainability

8 Providing access to expertise in software sustainability

19

8.2 Distributed expertise: DANS and
SURFsara
A centralised approach to software sustainability arose in
the UK due to a confluence of expertise and funding. It is
not necessarily the only way to approach sustainability.
Sharing expertise across a number of centres is also a
possibility and is the approach that is being considered in
the Netherlands with both DANS38 and SURFsara39
sharing responsibility.

To work effectively, there should be a clear demarcation
of responsibilities between each centre, and good
communication, so that lessons learned through dealing
with projects can propagate across the centres.

8.3 Building capacity across Europe
There is obviously a need for sustainability expertise to be
housed within each country. We benefit from a highly
active and well-funded research infrastructure across the
EU, which raises the question of whether some broader
Europe-wide organisation should also be formed. This
would most likely act as an umbrella group that shares
expertise across national organisations and campaigns
for software sustainability at an EU level.

There was broad agreement at the workshop that an
EU-level organisation or platform should be investigated.
This investigation should include representatives from the
different European countries that have expressed an
interest in a centre for European software sustainability.

It was noted at the workshop that the concept of
Europe-wide software sustainability could be raised at
the next meeting of the Research Data Alliance40, since
many of the people involved in this project will have an
interest in software sustainability.

Knowledge Exchange Workshop - Research Software Sustainability

8 Providing access to expertise in software sustainability

Footnotes
34 See Appendix 1, presentations 3.

35 “Measuring the success of the Software Sustainability Institute.”

2015. 28 Oct. 2015

(software.ac.uk/attach/SuccessMetricsApril2014.pdf).

36 “Research Software Engineers | Software Sustainability ...”

2015. 14 Nov. 2015

(software.ac.uk/policy/research-software-engineers).

37 “Journal of Open Research Software.” 2012. 14 Nov. 2015

(http://openresearchsoftware.metajnl.com).

38 “DANS — English.” 2005. 14 Nov. 2015 (dans.knaw.nl/en).

39 “SURF | SURFsara.” 2015. 14 Nov. 2015

(surf.nl/en/about-surf/subsidiaries/SURFsara).

40 “RDA | Research Data Sharing without barriers.”

2013. 21 Dec. 2015 (https://rd-alliance.org).

http://software.ac.uk/attach/SuccessMetricsApril2014.pdf
http://software.ac.uk/policy/research-software-engineers
http://openresearchsoftware.metajnl.com
http://dans.knaw.nl/en
http://surf.nl/en/about-surf/subsidiaries/SURFsara
https://rd-alliance.org

20

They can raise awareness of software sustainability,
they can ask researchers to describe their plans for
software-related issues in their proposals, and they can
incentivise this change by making funding contingent on
adequate software planning.

9.1 A change to novelty requirements
Funders seek novelty in the proposals they fund, but
this is antithetical to the needs of software sustainability,
where maintenance - not novelty - is key. This focus on
novelty provides a perverse incentive for researchers to
develop new software rather than reuse existing software.
Funders could promote reuse of software by ensuring
that reviewers of proposals look for novelty only in
research and not in the software used in that research.

9.2 Funding for maintenance, not just creation
If software is not to succumb to decay, it must be
maintained. Before software can be reused, it typically
must adapted or extended to its new purpose. Maintaining
and extending software are core requirements of
software sustainability, but very little funding is available
for these purposes.

The difficulty of gaining funding for software maintenance
is a significant barrier to the sustainability of software. If
funders are to foster sustainability, they must provide
funding for maintaining, adapting and extending software.
An alternative approach would be to create a separate
funding stream purely for investment into software
maintenance projects. The UK’s Engineering and
Physical Sciences Research Council and the

Biotechnology and Biological Sciences Research Council
have both run funding calls for the maintenance of
software. These schemes - Software for the Future41
and Bioinformatics and Biological Resources Fund42
- have been highly competitive, proving significant
demand for such schemes.

9.3 Software Management Plans
Data Management Plans (DMPs)43,44 have been mandated
by many funders. This has forced researchers to
contemplate the importance of their data, how it should
be identified and preserved, and how value can be best
extracted from it. The mandate for DMPs has cost little
- in both the effort needed to implement the change
and in the extra effort required to complete the plan
- but has led to a significant improvement in awareness
of data issues. Similar benefits could be gained if funders
were to mandate Software Management Plans (SMPs)45.

It must be noted that aside from their passing resemblance,
DMPs and SMPs will require significantly different
information and will require significantly different expertise
to complete. This means that it is inadvisable to simply
extend DMPs to cover software. To improve software
sustainability, SMPs must be viewed as separate and
different to DMPs.

Software Management Plans (SMPs) chart the development
and sustainability plans for software used and developed
in a research project. They force researchers and
developers to contemplate their software’s lifespan and
to make plans for sustaining it in the future.

Funders look to support reliable, trusted research which is also the
goal of software sustainability. A lack of awareness of the importance
of software is a significant barrier to software sustainability, and
funders are well placed to change this situation.

9 The role of funders in
software sustainability

Knowledge Exchange Workshop - Research Software Sustainability

9 The role of funders in software sustainability

21

A typical SMP will require information about the software
assets (i.e. what software will be used and developed),
intellectual property and governance, provisions for
access, sharing and reuse, plans for long-term preservation,
and resourcing and responsibility. A prototype service to
help developers to write an SMP has recently been
released by the Software Sustainability Institute, which
could be adapted and extended for use by funders (it is
currently undergoing an upgrade and as such will not
be available until 2016).

Some research funders have made SMPs a mandatory
aspect of specific funding calls related to software
development. If this practice were to grow, for example
if SMPs were to be a mandatory part of any research
project in which software was developed, then recognition
of software sustainability would increase significantly.
Assessing SMPs will require funders to acquire people
with the necessary skills, potentially through including
technical peer reviewers, such as research software
engineers (see above), on proposal review committees.

SMPs could also help foster reuse of software if they
were to require that anyone seeking funding for
software development must first show that reasonable
effort has been invested into checking that the software
does not already exist. If similar software is found, the
developers would be required to explain why reuse is
not possible and hence why new development is
needed. The information in these SMPs could be
extracted to provide an overview of the research
software that is available, which would be a valuable
resource for improving awareness of software across
the research community.

It should be noted that SMPs should not become another
part of the paperwork that researchers must fill in for no
obvious benefit. To ensure they are useful, and do not
stifle innovation, SMPs should be lightweight and
necessary only when software is to be developed by a
research project.

SMPs will only affect change if they are assessed as a
vital part of a funding proposal, and if they are accepted
by the research community: a good SMP should
increase the proposal’s chance of being accepted.

Knowledge Exchange Workshop - Research Software Sustainability

9 The role of funders in software sustainability

Footnotes
41 “Software for the Future II - EPSRC website.” 2015. 13 Nov.

2015 (epsrc.ac.uk/funding/calls/softwarefuture).

42 “Bioinformatics and Biological Resources Fund - BBSRC.” 2015.

13 Nov. 2015 (bbsrc.ac.uk/funding/opportunities/2014/2014-

bioinformatics-biological-resources-fund).

43 “Data Management Plan (DMP) | Data - Research Data ...” 2014.

21 Dec. 2015 (https://data.uni-bielefeld.de/en/data-

management-plan).

44 “DMPonline.” 2011. 21 Dec. 2015

(https://dmponline.dcc.ac.uk).

45 “Writing and using a software management plan | Software ...”

2014. 21 Dec. 2015 (software.ac.uk/resources/guides/

software-management-plans).

http://epsrc.ac.uk/funding/calls/softwarefuture
http://bbsrc.ac.uk/funding/opportunities/2014/2014-bioinformatics-biological-resources-fund
http://bbsrc.ac.uk/funding/opportunities/2014/2014-bioinformatics-biological-resources-fund
https://data.uni-bielefeld.de/en/data-management-plan
https://data.uni-bielefeld.de/en/data-management-plan
https://dmponline.dcc.ac.uk
http://software.ac.uk/resources/guides/software-management-plans
http://software.ac.uk/resources/guides/software-management-plans

22

10.1 Germany
Presented by Timo Borst, head of innovative information
systems and publishing technologies, ZBW, German
National Library of Economics47.

The view from Germany on software sustainability was
presented from the perspective of infrastructure providers.
Maintenance of software is a problem because, although
many researchers develop their own software, they lack
experience in ensuring software quality or ease of reuse,
and often lack extra information needed to make use of
software, such as documentation and licensing information.
The role of software maintenance cannot be taken on
board by infrastructure providers, because they lack the
resources to do so. What’s more, resources are difficult
to come by because funders tend not to invest in
maintenance, being as they are supporters of novelty,
not duration.

A distinction was drawn between research software,
which is developed by researchers, and infrastructure
software, which is developed by interdisciplinary teams
for infrastructure purposes. These different types of
software are developed under different circumstances
with different target audiences. Research software,
under this definition, is developed to achieve a research
goal with no effort invested into maintenance (i.e. on
reuse or integration with infrastructure). However,
Infrastructure software is developed with a focus on
creating a data structure or on data management and,
as a consequence, some maintenance is planned.

Infrastructure providers can help support software
maintenance and foster its reuse. They can help develop
and disseminate best practice, provide platforms for
developing software (via PaaS and IaaS) and provide a
long-term archiving service.

To combat problems with software citation, the success
of the DataCite project was discussed. This allowed data
to be associated with a DOI, which allowed data to be

cited in papers to the benefit of both reproducibility and
the recognition of the role of the data. There is interest in
providing a similar service for software.

There have been some projects, workshops and initiatives
to foster software sustainability.

It was noted that the DFG only provides funding for
software development and not software maintenance.
Funders must fund software maintenance if we are to
expect stakeholders to conduct software maintenance.

10.2 The Netherlands
Presented by Peter Doorn, director, Data Archiving and
Networked Services48.

Interest in software sustainability has grown in the
Netherlands over the last three years. Within the humanities,
concerns have been raised by digital humanities programs
and infrastructures, such as CATCH49 and CLARIN50.
These were mirrored by rdnl51 (a cooperative comprising
DANS52, 3TU.Datacentre53 and SURFsara54) which was
created to investigate long-term data archiving, but
developed an interest in software when it was realised
that this was fundamental to their goals.

A series of meetings has been held since 2012, which
ultimately led to the creation of a report Self Service for
Software Sustainability, which has not been released
publicly, but a summarised version will soon be made
more widely available. The summarised version, called
Research Software at the Heart of Discovery covers
some major issues with software sustainability, such as
how best to utilise existing organisations and models to
develop a federated/virtual Dutch Software Sustainability
Institute, developing software- and data-carpentry training
for new PhDs, promoting research software as a citable
scientific deliverable of equivalent value to publication,
ensuring recognition and career paths for Research
Software Engineers and developing academic models for
sharing and disseminating research software.

10 Current national activities46

Knowledge Exchange Workshop - Research Software Sustainability

10 Current national activities

23

One important aspect of the report is a discussion of a
seal of approval for software, as described above. This
approach is based on the successful DataSHIELD project,
launched in 2005, which provided researchers with a
framework against which a minimum quality standard
for data could be developed. A similar initiative is hoped
to be successful for software.

The next step in the Netherlands investigation of software
sustainability is to release the Research Software at the
Heart of Discovery report to important stakeholders and
collect responses. This will be performed whilst investigating
the viability of the software seal of approval. A second
step is to investigate the viability of a European Software
Sustainability Institute. This would be an organisation that
borrows from its UK counterpart and provides some level
of services to researchers across Europe.

10.3 The United Kingdom
Presented by Matthew Dovey, Head of research
technology, Jisc55.

The Software Sustainability Institute was founded in the
UK in 2010 to investigate and tackle the issue of software
sustainability. It has conducted much of the early work
and developed approaches to foster sustainability in a
way that meets the requirements of researchers. See
above for a detailed description of the Institute.

Collaborative Computational Projects (CCPs) bring together
leading UK expertise in key fields of computational
research to tackle large-scale scientific software
development, maintenance and distribution. Each project
represents many years of intellectual and financial
investment. The aim is to capitalise on this investment
by encouraging widespread and long term use of the
software, and by fostering new initiatives such as High
End Computing consortia.

The CCPs are supported by the Software Engineering
Support Centre (SESC), which runs a community hub for
software, and provides access to software development
tools and specialised advice. The goal of the SESC is to
promote sustainability of the CCPs by supporting software
projects to remain usable - even after active development
ends. The SESC also provides outreach around software
credit and work on embedding automated testing.

Knowledge Exchange Workshop - Research Software Sustainability

10 Current national activities

Footnotes
46 There is no information from Denmark or Finland because

representatives from these countries did not attend the

workshop.

47 See Appendix 1, presentation 11.

48 See Appendix 1, presentation 10.

49 “Continuous Access To Cultural Heritage (CATCH) - NWO.” 2013.

21 Oct. 2015 (nwo.nl/en/research-and-results/programmes/Co

ntinuous+Access+To+Cultural+Heritage+(CATCH)).

50 “CLARIN: Common Language Resources and Technology ...”

2015. 21 Oct. 2015 (https://eudat.eu/communities/clarin-

common-language-resources-and-technology-infrastructure).

51 “Research Data Netherlands.” 2013. 21 Oct. 2015

(researchdata.nl).

52 (dans.knaw.nl).

53 “Search - 3TU.Datacentrum.” 2010. 21 Oct. 2015

(http://datacentrum.3tu.nl/en/home).

54 “SURF | SURFsara.” 2015. 21 Oct. 2015

(surf.nl/en/about-surf/subsidiaries/SURFsara).

55 See Appendix 1, presentation 9.

http://www.nwo.nl/en/research-and-results/programmes/Continuous+Access+To+Cultural+Heritage+(CATCH)
http://www.nwo.nl/en/research-and-results/programmes/Continuous+Access+To+Cultural+Heritage+(CATCH)
https://eudat.eu/communities/clarin-common-language-resources-and-technology-infrastructure
https://eudat.eu/communities/clarin-common-language-resources-and-technology-infrastructure
http://researchdata.nl
http://dans.knaw.nl
http://datacentrum.3tu.nl/en/home
http://surf.nl/en/about-surf/subsidiaries/SURFsara

24

Jisc is investigating a number of areas related to software
sustainability and data. The Research Data Spring (RDS)56
aims to find new technical tools, software and service
solutions that will improve researchers’ workflows and
the use and management of their data. It is a partnerships
between researchers, librarians, publishers, developers
and other stakeholders engaged in the software and data
lifecycle. It involves a series of sandpits where researchers
pitch ideas, some of which are funded by Jisc. One of
these sandpits led to the Software reuse, repurposing
and reproducibility project57 which aims to challenge
some of the major software sustainability challenges,
such as discovering and reusing software.

10.4 Outside Europe
Efforts to improve software sustainability are not limited
to Europe.

In Australia, the Research Platform Services58 based at
the University of Melbourne has taken the lead in providing
researchers with the research-specific software. Their main
contribution to software sustainability has been in promoting
the adoption of Software Carpentry across departments
at the University of Melbourne and at other universities in
Australia. They also run a training programme, called
Research Bazaar59, that has a strong focus on community
building and the adoption of software engineering and
data management techniques.

In Canada, CANARIE’s60 Research Software Program61
champions the development of software tools that
accelerate discovery by simplifying access to digital
infrastructure. A series of workshops and funding calls
have raised awareness of research software, have
supported careers for software experts in academia
and has led to the development and support of new
software tools.

The main endeavour in the US is the Workshop on
Sustainable Software for Science: Practice and
Experiences (WSSSPE)62. Although it started as a forum
for discussion of the challenges faced by software
sustainability, it now encompasses a significant number
of people who are lobbying for changes to software
practice in the US and who are looking to create centres
to support software sustainability.

Depsy63 promotes credit for software as a fundamental
building block of science. It text-mines papers to find
fulltext mentions of software they use, revealing impacts
invisible to citation indexes, like Google Scholar.

Knowledge Exchange Workshop - Research Software Sustainability

10 Current national activities

Footnotes
56 “Research data spring | Jisc.” 2015. 14 Nov. 2015

(jisc.ac.uk/rd/projects/research-data-spring).

57 “Research data spring: software reuse, repurposing ... - Jisc.”

2015. 14 Nov. 2015

(jisc.ac.uk/podcasts/research-data-springsoftware-reuse-

repurposing-and-reproducibility-22-sep-2015).

58 “About us - The Research Bazaar - ResBaz.” 2015. 16 Nov. 2015

(http://melbourne.resbaz.edu.au/about).

59 “The Research Bazaar.” 2015. 16 Nov. 2015

(http://melbourne.resbaz.edu.au).

60 “CANARIE Network | CANARIE.” 2014. 14 Nov. 2015

(canarie.ca/network).

61 “Research Software | CANARIE.” 2014. 14 Nov. 2015

(canarie.ca/software).

62 “Working towards Sustainable Software for Science: Practice ...”

2013. 14 Nov. 2015

(http://wssspe.researchcomputing.org.uk).

62 DEPSY project

(http://depsy.org).

http://jisc.ac.uk/rd/projects/research-data-spring
http://jisc.ac.uk/podcasts/research-data-springsoftware-reuse-repurposing-and-reproducibility-22-sep-2015
http://jisc.ac.uk/podcasts/research-data-springsoftware-reuse-repurposing-and-reproducibility-22-sep-2015
http://melbourne.resbaz.edu.au/about
http://melbourne.resbaz.edu.au
http://canarie.ca/network
http://canarie.ca/software
http://wssspe.researchcomputing.org.uk
http://depsy.org

25

Appendix 1: presentations from the workshop and key message

No. Title Presenter Key message

1 Transition – Software
Sustainability
Explained

Daan Broeder-
Meertens Institute,
Netherlands

When considering software sustainability try to cater for
developers working within or close to the research groups.
Provide them with a long-term perspective and career
opportunities. In the end, the most sustainable software
is the most used software.

2 Responsibilities -
Data Stewardship and
Software Sustainability

Patrick Aerts -
the Netherlands
eScience Center
(NLeSC)

It is essential that researchers themselves address the
issues of data stewardship and software sustainability.
But they need support and guidance, based on minimum
requirements, best practices, legal matters and standards.
Software sustainability and data stewardship should be
addressed on an equal footing. A European Software
Sustainability Initiative supported by all countries should
be considered.

3 Transition: Towards
reusable and extensible
code, SSI’s Open Call
approach

Neil Chue Hong -
Software Sustainability
Institute, UK

This presentation provided general information about
the topic addressed, indicating the importance to raise
awareness and to acknowledge the variety of stakeholders
and necessity of coordinated approaches.

4 Re-use: Stimulate
sustainability with
strong compatible
licenses and additional
license provisions

Martin Hammitzsch -
Research Centre for
Geosciences,
Germany

To achieve specific goals when releasing software consider
licence up- and down-stream compatibility, select a strong
permissive or copyleft licence, and provide additional licence
provisions. In the sciences a toolbox covering these aspects
and a guideline may help to make the best decision.

5 Development – An
HPC service provider
and industry client,
merging software
using Git

Cedric Nugteren -
SURFsara,
Netherlands

Collaboration between researchers, industry and
HPC-centres can be facilitated using a versioning
system such as git as long as a clear flow is agreed
upon. Sustainability can be further improved using
formalised tests, checks, and (in-line) documentation.

7 Long Term Maintenance
- BALL - Biochemical
Algorithms Library, keep
software depending on
operating systems or
underlying software
up-to-date

Andreas Zeller -
Saarland University,
Germany

This presentation provided general information about
the topic addressed, indicating the importance to raise
awareness and to acknowledge the variety of stakeholders
and necessity of coordinated approaches.

11 Appendices

Knowledge Exchange Workshop - Research Software Sustainability

11 Appendices

26

No. Title Presenter Key message

8 Research Perspective Hans Bennis –
Meertens Institute, NL

It is essential that thinking about software sustainability
becomes a natural part in the development of research
proposals that include the creation of software. This can
be achieved by requiring researchers to pay attention to
software sustainability in their proposals as part of the
assessment criteria in the review procedure (as is often
the case for data) and by developing procedures for the
assessment of quality of software in a kind of Software
Seal of Approval.

9 National situation UK Matthew Dovey - Jisc,
UK

This presentation provided general information about
the topic addressed, indicating the importance to raise
awareness and to acknowledge the variety of stakeholders
and necessity of coordinated approaches.

10 National situation
Netherlands

Peter Doorn - DANS,
Netherlands

This presentation provided general information about
the topic addressed, indicating the importance to raise
awareness and to acknowledge the variety of stakeholders
and necessity of coordinated approaches.

11 National situation
Germany

Timo Borst - ZBW,
Germany

To become more sustainable and integrated, research
software must comply with the standards of a more general
research infrastructure. Infrastructure providers, on the
other hand, can contribute by maintaining, updating and
preserving those pieces of software, which turned out to
be important for the research community.

Appendix 2: position papers and statements from attendees at the workshop

 ` “Relevance and Challenges regarding Research Software Sustainability”, Hammitzsch, Martin; Wächter, Joachim.
(http://dx.doi.org/10.5281/zenodo.35360)

Knowledge Exchange Workshop - Research Software Sustainability

11 Appendices

Knowledge Exchange Office
C/ O Jisc,
One Castlepark,
Tower Hill,
Bristol, BS2 0JA

t: +44 203 697 5804
e: office@knowledge-exchange.info

mailto:office%40knowledge-exchange.info?subject=

