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Abstract

Recognition of objects when the number of model
objects becomes large is a challenging problem which
makes it increasingly difficult to view the object
recognition problem as — “find the best match” prob-
lem. We present a database-retrieval oriented ap-
proach where the goal is to index, retrieve, rank
and output a few top-ranked models, according to
their similarity with an input query object. The
approach consists of three stages: (1) feature-based
representation of model objects and object-feature
correspondence analysis; (2) clustering and index-
ing of the model objects in the factor space; and
(3) ranking indexed models based on mutual infor-
mation with query object. The approach is suitable
for semi-automatic object recognition tasks which
involve human interaction. Experimental results are
presented using MSTAR data to demonstrate the
merits of the approach.

1 Introduction

Model-based object recognition is a powerful ap-
proach which involves invariant feature domain rep-
resentations of models of different objects in a model
database, and matching these to the features of a

' new observation of an object, to select the best

match. However, as the number of models increases,
it becomes increasingly difficult to view the object
recognition problem as — “find the best match” prob-
lem. There are two main reasons for this: (1) The
discriminating power of a set of known features be-
comes increasingly insufficient for finding the correct
matching model; and (2) The sensitivity of features
to changes in object pose, image formation geome-
try, sensor parameters, etc. adds to the problem of
correct recognition.

Supported in part by grant F49620-97-1-0184. The
contents and information do not necessarily reflect the

" position or the policy of the U.S. Government.

In this context, the model-based object recognition
problem shares similarity with the content-based re-
trieval problems where the insufficiency of features
arises in capturing the notion of content. However,
the database retrieval approach — wherein, the goal
is index, retrieve, rank and output a few top-ranked
models as the most probable matches — has proved
to be useful for various practical tasks. Hence, for
the case of large model databases, taking a database-
retrieval stance to model-based recognition is a prac-
tically useful one for various interactive applications.
One such case is that of model-based recognition
of targets in Synthetic Aperture Radar (SAR) im-
ages. As has been observed and quantified in our
earlier research efforts [1], one of the main charac-
teristics of SAR images of objects is the sensitivity
of features (scattering centers) to azimuthal varia-
tion (pose variation). That is, for a given depression
angle, there is very low invariance for the scatter-
ing centers (features which are local maxima) when
the azimuth of an object is changed even by a cou-
ple of degrees. This requires a set of 360 models
for a single object, hence many thousands of mod-
els in the model-database. This paper presents a
database-retrieval oriented approach for the prob-
lem using a feature-based representation, classifica-
tion and ranking of the models.

2 Related Research and
Contributions

Recently, Pun et al. [2] have used correspondence
analysis (CA) for statistical structuring of pictorial
databases for content based retrieval. They repre-
sent images using aggregate features based on mul-
tiple cues, and do CA on images and attributes.
However, in the factor space generated by CA,
they use the feature projections only to explain
the dominant factors and not as seeds for cluster-
ing objects. They propose an Ascendant Hierar-
chical Classification method [3, 4] for structuring
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the projections of the images in the factor space.
For large model databases of objects with sensitive
and noisy features (like the SAR target database

we have used), the projections of objects are spread

out almost randomly in the factor space, and as a
result, a tree based classification may not be ap-
propriate. Triangle-inequality (TI) based indexing
schemes take advantage of the triangle inequality of
distance measures to reduce the number of direct
comparisons in a threshold search!. In the context
of content-based retrieval from image databases Bar-
ros et al. [5] have applied the idea to a real image
database and Berman et al. [6] have reported the
performance of different algorithms for the selection
of key objects as well as handling multiple distance
measures on a set of image features. However, appli-
cation of the TI using the distance between objects
in the feature space has the limitation of not dealing
with any redundancies of feature set in capturing
a description of the database objects. Berman et
al. [6] have reported on ranking the retrieved model
objects according to the computed lower bounds on
distances, in the context of content-based retrieval
of images. However, in the context of object recogni-
tion, since the feature based representation of model
objects is usually insufficient to capture all the prop-
erties of objects, the ordering based on lower bounds
may not be accurate. Viola et al. [7] use MI mea-
sure in their algorithm for alignment of a model ob-
ject to a new observation, assuming that the new
observation belongs to the same model object. In
our context, we use the MI measure for comparing
a candidate model object to a query object. For the
empirical estimation of MI, we have used the tech-
nique reported in [8].

The main contribution of our paper is that it
presents a new, systematic approach to model-based
object recognition from the database-retrieval point
of view. The advantages of our approach are, (z)
it deals with feature redundancies using CA, (iz) it
proposes feature-based clustering of model objects
in factor space, followed by TI based indexing of
objects for each cluster, as an useful alternative to
standard hierarchical clustering and tree-based in-
dexing methods, and (ii7) advocates a robust ap-
proach for ranking the initial retrievals using mutual
information between a query object and a candidate
model object. Our approach compares the query
and model objects by considering their information
content first in the feature domain (in TI based in-
dexing in factor space generated by CA), and then

1Given an object database O, a query object @, and
a distance measure d(-), the threshold search for a given
threshold T is to search for all objects o € O such that
the distance D(Q,0) <T.

in the original data domain (in mutual information
based ranking of initial retrievals). The former step
helps in quickly pruning a large number of models
from consideration for a query object and the latter
step ranks the candidates in a more robust manner.

3 Technical Approach

Object Models Query Object
Feature Extraction Feature Extraction
Object-Feature el Datab
Corr: l =1 Model
Analysis
+ - Inktial Retrievals
Cluster Analysis Mutual information
in based
Faotor Space Ranking
* ‘ Top 10 Retrievals
Key-object
based Display
Indexing
t Retrieval Phase
........... '

1]
! Model Databasei——
L, 1

Database Construction
Phase

Figure 1: Overview of our database-retrieval ori-
ented approach for object recognition.

Figure 1 illustrates our conceptual approach. There
are two phases: (1) Database construction phase,
and (2) Retrieval phase. In the database construc-
tion phase, the model objects are processed by an
invariant feature extraction module. This represents
the model objects in a feature space. It is processed
by an object-feature CA module which projects both
objects and features in a common reduced-dimension
factor space. These projections are further ana-
lyzed and clusters of objects are formed in the factor

“space. For each cluster, a set of key objects are com-

puted to enable TI based indexing of the objects in
the factor space. Finally, the model information —
the model objects, factors, clusters, key objects for
each cluster, distances of model objects from key
objects in each cluster — is assembled to generate
the model database. In the retrieval phase, an un-
known (query) object is processed by the invariant
feature extraction module to represent it in the fea-
ture space. Then its features are input to the model
database to index and retrieve a set of candidate
models which are further ranked by the mutual in-
formation module to output only the top 10 ranked
retrievals as the most probable matches to the input
query object.
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3.1 Database Construction Phase

The first step in this phase is the extraction of a set
of invariant features for the model objects to repre-
sent them in the feature domain. In our case of SAR
target databases, we have used translation invariant
features [1]. We present details about these features
in Sec. 4.

3.1.1 Object-feature Correspondence
Analysis

Like any factor analysis method, CA provides a com-
pact representation in a low dimension factor space
of large sets of numerical data It shares the linear
algebra of finding the factor azes with other factor
analysis methods. However, in CA, the coordinates
of the data points are defined so that the usual Eu-
clidean metric in the factor space corresponds to the
x? distance between the points. Thus, the analysis
is in terms of the independence of the data. Further-
more, unlike other factor analysis methods, CA as-
signs symmetric roles to rows (objects) and columns
(features). This permits simultaneous representa-
tion of both objects and features in a common factor
space which not only helps interpretation of the fac-
tor space but also makes clustering of objects easier
(see Sec. 3.1.2). In the following, we describe CA as
relevant to the analysis of objects and features.

Let there be M model objects and N features for
each object. For large number of model objects,
N &« M. The model objects and their features
are represented as the matrix D = [d;;], 1 < i <
M,1 < N, where, the rows identify the model ob-
jects and the columns identify the features. For
CA, D is processed using the following sequence
of steps: 1: Compute the normalized data ma-
tix K = [kigl, 1<i<M, 1<j<N
using k;; = -\7‘(-’;-‘:1'-‘1-; where df = E;\;] d;; and
dy = ¥, dij; 2: Compute® the x2 matrix H =
KT K where KT stands for transpose of a matrix
K. Note that H is a N x N matrix and its ele-
ments in terms of original data matrix D are §}'ven by
heg = \/d:( - M d"'"‘il‘i""; where dr = .0, dij,
dg = XM, di, and dp = M, diy; 3: Compute
Singular Value Decomposition of H to find the eigen-
values A;,1 < i < N and eigenvectors V;,1 <i< N
of H. Note that ); is always 1 because of normaliza-

2This is actually a simplified, computationally less
expensive version of the full x* matrix; however, there is
no difference as far the analysis is concerned since this
matrix has the same eigen-structure as the full x? matrix,
except that the largest eigenvalue becomes trivial.

tion of the data and A\; > A; if ¢ < j,2<4,j < N.
The eigenvalues Ay to Ay determine the variance
of the system and their corresponding eigenvectors
(Va to V) determine the factor space and hence are
called factors. Let F; = V;41,1 <i < N —1 be the
factors; 4: Compute the ratio r;,2 < i < N by using

i = ff)‘—)v These ratios indicate the percentage

j=2
of the total variance of the system that each factor
F; explains. Note that only a few factors can explain
up to 90% of the total variance of the system. Let P
denote that number, where P < N —1; 5: Project
the model objects O;,1 < i < M along each factor

. . N i j
axis Fi,1 <k < P using O = %;Z: =1 %-d_-'; Sr,d

where Z = Y, S dij, df = T, dij, dy =
M dij and fi; is the j*h element of factor F.
The quantity O; represents the scalar coordinate
of the object O; along factor Fy; 6: Project the
features A;,1 < j < N along each factor axis
Fy,1 < k < P using A',k = m Ef_l_:l di;Oig
where dy = 3/, d;;. The quantity Aj s represents
the scalar coordinate of the feature A; along factor
Fy. After these steps, the objects and features are
both represented in a common, reduced dimension
factor space. In all the experiments examples re-
ported in this paper the first two factors determine
more than 70% of the total variance Thus, only the
first two dominant factors are considered in the clus-
tering and indexing phase.

3.1.2 Cluster Analysis in Factor Space

We first identify different “feature-groups” in the
factor space and then use their centroids as the seeds
for generating clusters of model objects. There are
two advantages of this: (1) the number of features
are far less the number of model objects; thus, de-
termining different groups of features in the factors
space is not computationally intensive; (2) feature-
groups, which act as the seeds around which objects
get clustered, also explain automatically why the ob-
ject cluster was formed.

3.1.3 Key-object based Indexing

Since the number of feature clusters is usually small
(there are just 4 to 6 clusters of features in our ex-
periments), there can be a large number of model
objects inside each cluster. In order to efficiently
index objects inside the clusters, we employ the
TI based indexing scheme. The TI based indexing
schemes rely on comparing a set of key objects to
the database objects according to a distance met-
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ric, and storing the computed distances. The ba-
sic idea is to exploit the TI at the retrieval time to
quickly compute the lower bounds on the distance
of each database object from the query. The reason
behind all these schemes is the fact that the distance
between two objects cannot be less than the differ-
ence of their distances to any other object. Mathe-
matically, if O is a database object, @ is a query
object and K is some key object, the inequality
d(0,Q) > |d(0, K) — d(Q, K)| always holds. Thus,
by comparing the database and query objects to a
third key object, a lower bound on the distance be-
tween the model and query objects can be obtained.
If a threshold 7" on the distance between a model and
query object is known (or given), this lower bound
can be compared to T to eliminate from any further
consideration all those models whose lower bound is
more than T. Note that, if the distances of all the
model objects from the key object are stored, the
only distance computation that needs to be done in
order to know all the lower bounds is that between
the query and key objects.

In our experiments, for simplicity, we have selected
the two furthest apart objects in a cluster as the
key objects. Thus the total number of keys used to
index the model database in our approach is twice
the number clusters.

3.1.4 Algorithm for Clustering and
Indexing

In the following, we describe the sequential steps
for clustering and indexing: 1: Consider the pro-
jections of M features along the first F dominant
factors. Closely projected features explain the sys-
tem similarly and are redundant. Group such closely
projected features into a “feature-group” represent-
ing a single feature class. Let there be C different
feature classes. Define the center of feature-group as

the centroid of the feature projections of that group;.

2: Generate C clusters of model objects using centers
of each feature-group as the seed and using nearest-
neighbor '(NN ) rule in the factor space; 3: For each
cluster, select two model objects k; and k2 which
are furthest apart in the cluster. They form two key
objects for the cluster; 4: For each cluster, compute
the distances of model objects in the factor space
with each of the key object; 5: For each cluster,
store (i) indices of the model objects, (i¢) indices
of the key objects and (i47) distances of the model
objects to key objects, in the model database.

____________ \
Original !
D':“ ' Modolx Images E
] 1 Correspondece
"""""" ! Analysis
r Faotors h_____l
Cluster Analysis 1 Eigenvectors  Eigenvalues '
and Indexing ST
r Clusters H
! Key-Objects  Distances 1 Emplrical Estimation
Losmsssesossoss-s- : of Entropy
~ "Empirical Entroples of |
1 Model Images: H(X'|) :‘
Model Database

Figure 2: Contents of the Model Database.

3.1.5 Building model database

Figure 2 shows in detail the contents of the model
database in our approach. The original model data
is stored in the model database, for when the mutual
information of the query object with each of the can-

didate model objects needs to be computed. Also,

the factors computed by the object-feature analysis
are stored to be used in the retrieval phase. The
stored clusters contain two main items: key-objects
and distances of all the model objects to all the
key-objects along with indices to the model objects.
Note that these distances are in the factor space.
Finally, the empirical entropies of all the model ob-
jects are computed a priori and stored as part of the
model database to speed-up the process of empirical
estimation of mutual information.

3.2 Retrieval Phase

In this phase, a new observation is given in the
form of a query object which is processed as follows:
1: Compute the same invariant features as done for
each model object. Let Q@ = [g1,¢2, - *,qn] be the
query features; 2: Project the @ along each factor
axis Fy,1 < k < P using Qx = Z T, %= fus
where Z, dj, fi,; come from the stored factor de-
tails in the model database and G = z;-\;l gj- The
quantity @y represents the scalar coordinate of the
query @ along factor Fp; 3: Consider the query
projections Qg in the factor space spanned by the
first few dominant factors used for clustering and
indexing. Classify the query to one of the clusters
based on nearest-neighbor classification. Let Cp,
be the cluster; 4: Consider the two key objects of
the cluster C,,. Compute the distance (in factor
space) of the query object from each of these two
key objects. Using these distances and the stored
distances of the other model objects from the two
key objects, retrieve the model objects whose TI-
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Figure 3: Left: Projection of 11 features (features 10, 11 and 12 are not used; see text for explanation) in
factor space spanned by first two dominant factors for the entire Database 1 (see Table 2). Right: Projection
of both objects and feature-groups in the same factor space for Database 1. The features are marked x
and the objects (targets) are marked by + in the factor space. Note that the objects appear to be almost
randomly spread out in the factor space. The four feature-groups are used as the seeds for forming four
clusters of objects using nearest-neighborhood approach.

based lower bounds are less than a threshold Th3.
These initial retrievals form candidate matching ob-
jects to the query. The candidate models are further
ranked using their mutual information (MI) with the
query object [8].

4 Experimental Results

In this section, we present the experimental results
on the MSTAR public real SAR image databases.
Various model databases consist of SAR images
of (i) objects at a particular depression angle, or
(#%) objects of a particular configuration, or (i) ob-
jects at a particular articulation. The corresponding
test data consists of SAR images of () objects at a
different depression angle, or (i) objects of a dif-
ferent configuration, or (ii¢) objects at a different
articulation. In each case, test data is an indepen-
dently acquired one from which query objects are
selected randomly.

The set of features we have used to represent each
object in CA are listed in Table 1, where HRD is
histogram of relative distances between scatterers,
wdia is diameter of the object along width of the
image, HI is histogram of intensity values and hdia
is diameter of the object along height.

The first nine features are computed on the his-
togram of relative distance between scatterrers.
Since the relative distances are used, the first nine

3This threshold can be a priori estimated as the av-
erage distance in factor space between pairs of similar
objects, by considering a large set of similar object pairs.

Table 1: 14 features used to represent SAR
targets in correspondence analysis.

Feature Number | Feature Description
1 mean of HRD
2 std of HRD
3 max of HRD
4 mode of HRD
5 median of HRD
6 skewness of HRD
7 kurtosis of HRD
8 energy of HRD
9 entropy of HRD

10 meanyy
11 stdur
12 IMaXH T
13 wdia,
14 hdia

features are translation invariant. The next three
features are computed on the gray level histogram
of the SAR image pixels within ROI. While we com-
pute the features 10 to 12 based on histogram of
intensity values and use them in CA, we do not con-
sider them in clustering and indexing. This is be-
cause they are computed based on gray level values
of only the top scatterers which may be unreliable.
The last two features are also translation invariant.
In all our experiments, we consider only 11 of the 14
features (discounting features 10 to 12) from Table 1,
for clustering and indexing.

Figure 3 (left) shows the projections of features in
the factor space spanned by the first two domi-
nant factors for Database 1 (see Table 2). Note
that the mean, std, maz and median fall closely in
factor space and are redundant for describing the
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Table 2: Results on various SAR databases

Model/Test Total no. | Total no. | % of total vari- No. of Avg. no. of | No. of cases
Data of model of test ance explained by | random test retrievals with correct
Differences objects objects first 2 factors queries after indexing ID
Depr. angle
differences
(Database 1) 1621 1351 85.31 200 84 (5.18%) 185 (92.5%)
Configuration
differences
(Database 2) 694 1621 70.84 200 64 (9.22%) 170 (85%)
Articulation
differences
(Database 3) 606 239 78.29 200 96 (15.84%) | 139 (69.5%)

target database, whereas, the mode, wdia and hdia
fall distant to any other feature and hence form in-
dependent descriptors of the database. The other
features look smeared in the factor space and so
we do not use them in clustering. Thus, we form
four independent feature-groups: the first consists
of (mean, std, maz and median), and the rest con-
sist of just one feature each (mode, wdia and hdia,
respectively). Figure 3 (right) shows the projections
of both objects and the feature-groups in the fac-
tor space spanned by the first two dominant fac-
tors for the same databases. The centroids of the
four feature-groups are used as the seeds for nearest-
neighbor clustering of the objects. The results of
using our approach are summarized in Table 2.

5 Conclusions

We have presented a database-retrieval oriented ap-
proach to model-based object recognition, for large
model databases. We have presented detailed results
on several real SAR target databases to demonstrate
our approach. These are difficult databases since
feature invariance may be small (20% to 50% [1]).
The technique is general and has other interactive
object recognition applications involving large model
databases. It also helps interactive discovery and ac-
quisition of new models to update database.

Currently, mutual information based ranking takes
more than 99% of the time during recognition (re-
trieval) phase. The performance of our approach
could be further improved by: (a) efficient compu-
tation of mutual information between a query and a
candidate model object using a coarse-to-fine strat-
egy, (b) overlapped boundaries in nearest-neighbor
clustering method, and (c) efficient methods to
adapt factors to dynamically changing databases.
We are currently investigating along these direc-
tions. '
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Abstract

Performance prediction is a crucial step for trans-
forming the field of object recognition from an art
to a science. In this paper, we address this prob-
lem in the context of a vote-based approach for ob-
ject recognition using 2-D point features. A method
is presented for predicting tight lower and upper
bounds on fundamental performance of the selected
recognition approach. Performance bounds are pre-
dicted by considering data-distortion factors, which
are uncertainty, occlusion and clutter, in addition
to model structural similarity. Given a statistical
model of data uncertainty, the structural similar-
ity between every pair of model objects is com-
puted as a function of the relative transformation
between them. Model-similarity information is then
used along with statistical data-distortion models to
predict bounds on the probability of correct recog-
nition. Validity of the method is experimentally
demonstrated using MSTAR public SAR data.

1 Introduction

The problem of object recognition is concerned with
identifying and localizing model objects from scene
data. It involves searching for a consistent corre-
spondence between scene features, and those of a
model object. Performance of such a process de-
pends on a large number of factors, which are associ-
ated with either scene data (e.g., sensor noise, miss-
ing and spurious features), or model objects (e.g.,
size of model database, similarity of model objects,
articulation of model parts). Predicting the perfor-

*This work was supported in part by DARPA/AFOSR
grant F49620-97-1-0184; the contents and information do not
reflect positions or policies of the U.S. Government.
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mance of object recognition as a function of these
factors is a challenging task.

In this paper, we address the problem of perfor-
mance prediction in the context of an approach for
object recognition using 2-D point features. Such
an approach uses a vote-based matching criterion,
which ranks object/pose hypotheses based on the
number of model features (votes) that are consis-
tent with scene features. We predict recognition
performance of this approach, by considering the
following factors: 1) Scene-Data Factors: uncer-
tainty (due to sensor noise and imperfections of the
feature-extraction process), occlusion (missing fea-
tures), and clutter (extraneous features), 2) Model-
Object Factors: similarity (degree of structural over-
lap between pairs of model objects), and number of
model objects (this factor is implicitly considered in
our handling of object similarity).

Problem Definition: OQur performance-prediction
problem can be defined as follows. We are given:
a) a set of model objects, M = {M;}, where each
object M; is represented by a set of 2-D point fea-
tures, {Fit}, that are discretized at some resolution,
b) statistical models for data distortion (uncertainty,
occlusion, and clutter), and c) a class of applicable
transformations, 7~ (e.g., translation, rigid, affine).
Our objective is to predict tight lower and up-
per bounds on the probability-of-correct-recognition
(PCR) plot, as a function of occlusion and clutter
rates (assuming a fixed uncertainty model). The
performance predicted by our method is fundamen-
tal, since it is obtained by analyzing the amount of
information provided by both scene data and model
objects, independent of the vote-based recognition
algorithm used. Thus, it sets an upper bound on
performance that is achievable by any recognition
algorithm that uses the same matching criterion.
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