
3/24/2009

1

Kai Tödter, Siemens Corporate Technology
Benjamin Pasero, IBM Rational

Download the Tutorial Material from
http://max-server.myftp.org/mp3m/
download/mp3m-downloads.html

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 23/24/2009

3/24/2009

2

 Open Source
 Licensed under EPL
 Project Goal

 Provide show cases and best practices for many
common use cases in RCP based applications

 Project Homepage

 http://max-server.myftp.org/trac/mp3m

 Anonymous svn access

 Trac wiki and issue tracking

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 33/24/2009

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 43/24/2009

http://max-server.myftp.org/trac/mp3m
http://max-server.myftp.org/trac/mp3m
http://max-server.myftp.org/trac/mp3m

3/24/2009

3

 Every complicated application has to be open
for extension

 Generally good practice

 Better integration with other technologies

 More business opportunities

 Way to avoid “proprietary closed application”
FUD (Fear, Uncertainty & Doubt)

53/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Two approaches:

 Extensible applications

▪ E.g. Photoshop, MS Office, Mozilla

▪ Full size application core
with extension interface

 Extension based platforms

▪ i.e. Emacs, Auto CAD, Eclipse

▪ Minimalistic runtime,
that includes extension mechanism
▪ High level language

▪ Extension points mechanism

3/24/2009 6© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

4

 Application core acts as a container for
extensions

 All functionality is implemented inside
extension modules

 In case of Eclipse those are Plug-ins (Bundles)

 Advantages

 More open and transparent

▪ Core functionality developers and those who extend
applications share same programming approach

▪ Easy to replace functionality

73/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Two ways for Eclipse based applications:

 Extension registry

 OSGi Services (whiteboard pattern)

 First one is standard in case of Eclipse
 What to choose depends on actual

requirements and use cases

83/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

5

 Do not hesitate to define own application
specific extension points

 Use your own extension points

 Avoid “backdoors”

 Put some effort into documenting extension
points

 This will help contributors a lot!

 Take care of compatibility

 Extension point definitions are contracts between
you and those who extend. Respect them!

93/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 OSGi => modules for the Java platform

 Highly dynamic and flexible

 Loose coupling of Java modules

 Modular Component Architecture, based on:

 OSGi Bundles (= Eclipse Plug-ins)

 Eclipse Features

▪ For deployment options

▪ For product lines

▪ For different customer brandings

▪ For different platforms

103/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

6

 Open questions:

 What should be the size of a Bundle?

 What functionality should be provided by a
Bundle?

 When to separate functionality into different
Bundles?

 How to organize Features?

113/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 It depends…
 If you don’t have much experience:

 Start monolithic, then

 Separate functionality into different Bundles

▪ If it is a self-contained block
▪ e.g. domain model, Help, Views, Editors

▪ If it has the potential of reuse
▪ e.g. Update, Views, Editors

▪ If it should be updated separately

 Separate core and UI functionality into different
Bundles

123/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

7

 These suggestions are not always the best
solution, but might help to get started:
 Plug-ins which are providing the basic

functionality of your RCP application should be
grouped in their own Feature

 Plug-ins with additional / optional functionality
should be grouped into separate Features
▪ E.g. create a separate Help Feature (see bug 202160,

resolved in Eclipse 3.4 )

 Create different Features for different product
brandings
▪ Create the .product configuration in the Feature project

133/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Through its Plug-in architecture RCP lets you:

 Decompose your code into loosely coupled units

 Extend (and update) your product incrementally

 Enforce contracts between groups in your
organization

 Play nicely with components from other vendors

 Allow even customers to extend your product

143/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

8

 Feature: com.siemens.ct.mp3m.feature.base
 Plug-in: com.siemens.ct.mp3m
 Plug-in: com.siemens.ct.mp3m.model
 Plug-in: com.siemens.ct.mp3m.ui.views.physical
 Plug-in: com.siemens.ct.mp3m.ui.views.logical
 Plug-in: com.siemens.ct.mp3m.ui.editors.id3.databinding
 Plug-in: de.ueberdosis.mp3info (third party ID3 tag library)

 Feature: com.siemens.ct.mp3m.feature.branding.blue
 Plug-in: com.siemens.ct.mp3m.branding.bue

 Feature: com.siemens.ct.mp3m.feature.player
 Plug-in: net.javazoom.jlayer (third party MP3 player library)
 Plug-in: com.siemens.ct.mp3m.ui.player

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 153/24/2009

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 163/24/2009

3/24/2009

9

 Let JFace viewers be SelectionProvider, so
other views can deal with selections not
knowing the selection origin

 Example:

treeViewer = new TreeViewer(parent, SWT.BORDER |

SWT.V_SCROLL);
getSite().setSelectionProvider(treeViewer);

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 173/24/2009

 ViewParts that should react on selections just

 Implement ISelectionListener:

public void selectionChanged(IWorkbenchPart sourcePart,

ISelection selection) {

// we ignore our own selections

if (sourcePart != this) {

// do something with the selection

}

}

 Register themselves as selection listener:

getSite().getWorkbenchWindow().getSelectionService().

addSelectionListener(this);

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 183/24/2009

3/24/2009

10

 If you reuse the org.eclipse.ui.editors
extension point, use the “extension” attribute

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 193/24/2009

static public IEditorPart[] getMp3Editors() {

IConfigurationElement[] editors = Platform.getExtensionRegistry()

.getConfigurationElementsFor("org.eclipse.ui", "editors");

ArrayList<IEditorPart> editorParts =

new ArrayList<IEditorPart>();

for (IConfigurationElement editor : editors) {

try {

String extensions = editor.getAttribute("extensions");

if ("mp3".equals(extensions)) {

IEditorPart editorPart = (IEditorPart) editor

.createExecutableExtension("class");

// …

}

} catch (CoreException e) {

…

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 203/24/2009

3/24/2009

11

class Mp3DoubleclickListener implements IDoubleClickListener {

public void doubleClick(DoubleClickEvent event) {

// …

if (path != null) {

PathEditorInput pathEditorInput =

new PathEditorInput(path);

String editorId = EditorFactory.getDefaultMp3EditorId();

try {

getViewSite().getWorkbenchWindow().getActivePage().

openEditor(pathEditorInput, editorId);

} catch (Exception e) {

LogUtil.logError("com.siemens.ct.mp3m.ui.views.physical",

"cannot open editor with id: " + editorId);

}

}

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 213/24/2009

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 223/24/2009

3/24/2009

12

 Language specific strings
 Layout of data, like numbers, dates, etc.
 Colors
 Symbols, pictures, icons

 We focus on language specific strings and
images

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 233/24/2009

 Strings in application code
 Strings in plug-in XML contributions
 Strings/images in feature brandings
 Strings/images in product brandings

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 243/24/2009

3/24/2009

13

 Eclipse provides two mechanisms for string
externalization:

 Standard Java ResourceBundles

 Eclipse way

▪ Only present in the wizard if the project build path
contains the org.eclipse.osgi.util.NLS class

▪ Usually available in all plug-ins that have a dependency
to org.eclipse.core.runtime

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 253/24/2009

package com.siemens.ct.test.internationalization;

public class Test {

public Test() {

String color = "Color";

String help = "Help";

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 263/24/2009

3/24/2009

14

public class Messages {

private static final String BUNDLE_NAME =

“test.internationalization.messages"; //$NON-NLS-1$

private static final ResourceBundle RESOURCE_BUNDLE =

ResourceBundle.getBundle(BUNDLE_NAME);

private Messages() {}

public static String getString(String key) {

try {

return RESOURCE_BUNDLE.getString(key);

} catch (MissingResourceException e) {

return '!' + key + '!';

}

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 273/24/2009

import org.eclipse.osgi.util.NLS;

public class Messages extends NLS {

private static final String BUNDLE_NAME =

“test.internationalization.messages"; //$NON-NLS-1$

public static String Test_color;

public static String Test_help;

static {

// initialize resource bundle

NLS.initializeMessages(BUNDLE_NAME, Messages.class);

}

private Messages() {

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 283/24/2009

3/24/2009

15

 Standard way:
public class Test {

public Test() {

String color = Messages.getString("Test.color"); //$NON-NLS-1$

String help = Messages.getString("Test.help"); //$NON-NLS-1$

}

}

 Eclipse way:
public class Test {

public Test() {

String color = Messages.Test_color;

String help = Messages.Test_help;

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 293/24/2009

 Standard way:

Test.color=Color

Test.help=Help

 Eclipse way:
Test_color=Color

Test_help=Help

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 303/24/2009

3/24/2009

16

 Faster access and initialization
 Better memory footprint
 Easy detection of

 Missing or unused keys

 Typos in keys

 Drawback

 There are now 2 files to maintain and to keep in
sync (messages.properties and the Java file)

 More info at
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/
reference/ref-wizard-externalize-strings.htm

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 313/24/2009

 In plugin.xml

 Use localized strings for every attribute that is
presented to the end user

 Use the notion “%key” as attribute value

▪ E.g. name="%FileSystemView.title“

 Provide plugin_<locale>.properties for every
locale you want to support

 E.g. plugin_de.properties

 Use the keys and provide translations

 E.g. FileSystemView.title=Datei-System View

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 323/24/2009

http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm

3/24/2009

17

 … will be covered later in the Branding part

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 333/24/2009

 You could use a plug-in fragment to separate
all localization files from the “English” plug-in

 At runtime, all the files will be merged with
the host plug-in

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 343/24/2009

3/24/2009

18

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 353/24/2009

 Restart the workbench via
PlatformUI.getWorkbench().restart()

 No API to specify parameters*, some issues with
EXIT.RELAUNCH and “eclipse.exitdata” property

 Workaround:

 Modify <product>.ini file: Add/modify two lines:

▪ -nl

▪ <locale>, e.g. de

 Benefit: Makes the language change persistent

 Drawback: Does not work with IDE launcher
*See Bug 222023

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 363/24/2009

3/24/2009

19

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 373/24/2009

3/24/2009 38© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

20

 In object-oriented software systems, an adapter
simply adapts (converts) an object of type A to
another object of relevant type B

 Eclipse provides the interface IAdaptable to
address the adaption of an object:
public interface IAdaptable {

public Object getAdapter(Class adapter);

}

 Since model objects should not depend on Eclipse,
Adapter-Factories can adapt all objects. They
don’ have to implement IAdaptable…

 How does this work?

39© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

 Every JFace viewer relies on

 A LabelProvider

 A ContentProvider

 Example: Tree

 A class implementing ITreeContentProvider

 A class extending LabelProvider

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 403/24/2009

3/24/2009

21

private final Object[] EMPTY = new Object[] {};

public Object[] getChildren(Object parent) {

if (parent instanceof Artist) {

return ((Artist) parent).getAlbums().toArray();

} else if (parent instanceof Album) {

return ((Album) parent).getSongs().toArray();

}

// Songs have no children

return EMPTY;

}

A ContentProvider has to deal with all kinds of
domain objects that built up the tree structure

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 413/24/2009

 An AdapterFactory can be registered with the
platform

 The factory provides adapters for a given base class

 This base class does NOT have to implement IAdaptable

 Often, domain specific classes could be handled by
IWorkBenchAdapters

 IWorkbenchAdapter is a combination of Label &
ContentProvider

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 423/24/2009

3/24/2009

22

treeViewer = new TreeViewer(parent, SWT.BORDER |

SWT.MULTI | SWT.V_SCROLL);

IAdapterFactory adapterFactory = new AdapterFactory();

Platform.getAdapterManager().registerAdapters(

adapterFactory, Mp3File.class);

treeViewer.setLabelProvider(

new WorkbenchLabelProvider());

treeViewer.setContentProvider(
new BaseWorkbenchContentProvider());

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 433/24/2009

private IWorkbenchAdapter entryAdapter = new IWorkbenchAdapter() {

public Object getParent(Object o) {

return ((Mp3File) o).getDirectory();

}

public String getLabel(Object o) {

Mp3File entry = ((Mp3File) o);

return entry.getName();

}

public ImageDescriptor getImageDescriptor(Object object) {

return AbstractUIPlugin.imageDescriptorFromPlugin(ID,

IImageKeys.MP3);

}

public Object[] getChildren(Object o) {

return new Object[0];

}

};

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 443/24/2009

3/24/2009

23

public Object getAdapter(Object adaptableObject, Class adapterType) {

if (adapterType == IWorkbenchAdapter.class

&& adaptableObject instanceof Mp3Directory)

return directoryAdapter;

if (adapterType == IWorkbenchAdapter.class

&& adaptableObject instanceof Mp3File)

return entryAdapter;

if (adapterType == IPropertySource.class

&& adaptableObject instanceof Mp3File)

return new Mp3PropertySource((Mp3File)adaptableObject);

return null;

}

public Class[] getAdapterList() {

return new Class[] { IWorkbenchAdapter.class, IPropertySource.class

};

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 453/24/2009

 Loose coupling of domain objects with UI
related objects

 No need to explicitly write ContentProviders
and LabelProviders

 Reuse of

 WorkbenchLabelProvider

 BaseWorkbenchContentProvider

 AdapterFactory might provide several
different adapters like IWorkbenchAdapter or
IPropertySource

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 463/24/2009

3/24/2009

24

 Create a new project
com.siemens.ct.mp3m.mytreeview

 Reuse the tree model from the project
com.siemens.ct.mp3m.model

 Implement a Mp3AdapterFactory with

adapters for all tree model elements
 Create a JFace TreeViewer and test both the
AdapterFactory approach vs. the
standard Label- and ContentProvider
mechanism

473/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Create a IPropertySource
implementation for Mp3File

 Hint: Take a look at Mp3PropertySource

 Add an adapter for IPropertySource and
Mp3File to your Mp3AdapterFactory

 Add the standard Properties View to the
contacts manager application

 Hint: Add the project org.eclipse.ui.views to
your mp3m.product launch configuration

483/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

25

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 493/24/2009

 Challenges in many applications:

 Huge amount of domain specific data has to be
displayed in a tree or table

 Data for the whole tree or table needs either too
much memory or takes too much time to create
upfront (or even both)

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 503/24/2009

3/24/2009

26

 Solution:

 Create model data and tree/table items only
when they are really needed (e.g. displayed)

 Keep only the part of the data in memory that is
currently displayed

 Free model data und tree/table items if they are
no longer displayed

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 513/24/2009

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 523/24/2009

3/24/2009

27

public void createPartControl(Composite parent) {

TableViewer tableViewer =

new TableViewer(parent, SWT.VIRTUAL | SWT.BORDER |

SWT.V_SCROLL);

Table table = tableViewer.getTable();

// …

TableColumn column = new TableColumn(table, SWT.NONE, 0);

column.setText("No");

column.setWidth(50);

tableViewer.setItemCount(100000);

tableViewer.setContentProvider(new LazyContentProvider());

tableViewer.setLabelProvider(new TableLabelProvider());

tableViewer.setUseHashlookup(true);

tableViewer.setInput(null);

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 533/24/2009

class LazyContentProvider implements ILazyContentProvider {

public void inputChanged(Viewer viewer, Object oldInput,

Object newInput) {

this.viewer = (TableViewer) viewer;

this.viewer.getTable().addListener(SWT.SetData, new Listener() {

public void handleEvent(Event event) {

TableItem item = (TableItem) event.item;

// compute top and bottom index and clear portions

// of the table to clean up memory

}

}

}

public void updateElement(int index) {

// get mp3Info from domain model

viewer.replace(new Song(index, mp3Info), index);

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 543/24/2009

3/24/2009

28

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 553/24/2009

public void createPartControl(Composite parent) {

treeViewer = new TreeViewer(parent, SWT.VIRTUAL);

treeViewer.setLabelProvider(new WorkbenchLabelProvider());

treeViewer.setContentProvider(

new TreeContentProvider(treeViewer));

treeViewer.setUseHashlookup(true);

Mp3Directory root = new Mp3Directory("root");

// Some initializations…

treeViewer.setInput(root);

treeViewer.setChildCount(root, roots.length);

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 563/24/2009

3/24/2009

29

class TreeContentProvider implements ILazyTreeContentProvider {

public void updateElement(Object parent, int index) {

Mp3Directory parentDir = (Mp3Directory) parent;

Mp3File mp3File = parentDir.getMp3Files()[index];

if (mp3File instanceof Mp3Directory) {

PrefetchModelJob job = new PrefetchModelJob(

"Update Model", parentDir, index,

(Mp3Directory) mp3File);

job.schedule();

}

treeViewer.replace(parent, index, mp3File);

treeViewer.setChildCount(mp3File, 0);

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 573/24/2009

 Create a virtual table to display a huge list of
mp3 files

 Hint: replicate the existing mp3s in the table

 Implement a Content Provider that
implements ILazyContent-Provider

 Implement the updateElement() method
properly

583/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

30

 Implement the handleEvent() method in your
LazyContent-Provider to clean up table
elements that are no longer needed

 Hint: Take a look at the class VirtualTableView in
project com.siemens.ct.mp3m.ui.views.logical.

593/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 603/24/2009

3/24/2009

31

 Product branding gives your application a
specific high-level visual appearance

 Can be used for

 Vendor-specific appearance

 Product families

 Various different editions of the same software
basis

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 613/24/2009

 Launcher’s icon
 Splash screen with progress bar
 Title bar text
 The image the operating system associates

with the product
 About dialog image
 About dialog text
 UI presentation style (see Presentation part)

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 623/24/2009

3/24/2009

32

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 633/24/2009

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 643/24/2009

3/24/2009

33

 Create a new product configuration

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 653/24/2009

 You can create separate branding plug-ins

 Including product configuration

 Including all branding resources and information

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

Blue Branding Orange Branding

663/24/2009

3/24/2009

34

Approach 1:
1. Create a feature for each branding
2. Include all plug-ins, that define your product

in that feature
3. Place the product configuration in that

feature
4. In the product configuration include only the

branding feature!

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 673/24/2009

Approach 2:
1. Create a base feature with your application

base plug-ins
2. Create a separate feature that contains only

the specific branding plug-in
3. Include the application feature in your

branding feature

 Use the “Included Features” tab in the feature.xml
editor

4. In the product configuration include only the
branding feature!

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 683/24/2009

3/24/2009

35

 Useful for internationalize product versions

 Splash screen, images and “about text”

 Can easily be implemented using plug-in
fragments

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 693/24/2009

 Create a file structure in your localized
branding plug-in:

 nl/<locale>/splash.bmp

 When deploying, use a customized config.ini
file, and modify:

 osgi.splashPath=
platform:/base/plugins/<original branding plug-in> ,
platform:/base/plugins/<localized branding plug-in>

 Then both plug-ins are in the splash screen search
path at startup

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 703/24/2009

3/24/2009

36

 Since Eclipse 3.3 there is a new
extension point org.eclipse.ui.splashHandlers

 Available templates

▪ A simulated log-in session

▪ An embedded HTML browser

▪ A dynamic set of image contributions

 Create a SplashHandler Java class

 Extend BasicSplashHandler

 Take a Look at org.eclipse.ui.internal.splash.
EclipseSplashHandler

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 713/24/2009

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

Product Version in Custom Splash Handler

723/24/2009

3/24/2009

37

 Every feature can refer to a branding plug-in

 The feature’s branding data are in the files
about.ini and about.properties

 For internationalized feature brandings
create plug-in fragments of the branding
plug-in

 Provide the directory structure nl/<locale>

▪ E.g. nl/de

 Provide both about.ini and about.properties for
each locale

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 733/24/2009

 about.ini:

aboutText=%blurb

featureImage=icon32x32.gif

 about.properties:
blurb=MP3 Manager (English)\n\

\n\

Version: {featureVersion} \n\

\n\

(c) Copyright Siemens AG 2008. All rights reserved.

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 743/24/2009

3/24/2009

38

 nl/de/about.ini:

aboutText=%blurb

featureImage=icon32x32_de.gif

 nl/de/about.properties:
blurb=MP3 Manager (Deutsch)\n\

\n\

Version: {featureVersion}\n\

\n\

(c) Copyright Siemens AG 2008. Alle Rechte vorbehalten.

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 753/24/2009

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 763/24/2009

3/24/2009

39

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

feature brandings in the About dialog

773/24/2009

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 783/24/2009

3/24/2009

40

 Launch the MP3 manager with

 Blue branding

 Orange branding

 Blue branding in German

79© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 803/24/2009

3/24/2009

41

 Looks great 
 But: Looks a bit like the Eclipse IDE

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 813/24/2009

 Looks differently compared to the Eclipse IDE
 Customized for better application usability

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 823/24/2009

3/24/2009

42

 Usually RCP apps contain views and editors
 These views and editors are called parts
 The presentation customizes the layout and

Look&Feel of areas containing one or more
parts

 Drawback: Not the whole application's look & feel
can be customized with the Presentations API

 No Look & Feel skinning like in Swing

 Presentation can provide custom widgets and
behavior

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 833/24/2009

 Control layout and visibility of

 Parts

 Menus & Toolbars

 Drag&Drop regions

 Create the Look & Feel for part stacks

 Tabs

 Title

 Buttons (Close, Maximize, Minimize)

 Borders

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 843/24/2009

3/24/2009

43

 Go to “General/Appearance” in the
Preferences

 Choose a presentation (e.g. “2.1 Style”)
 Restart Eclipse

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 853/24/2009

 Create .ini file with content:
org.eclipse.ui/presentationFactoryId=<ID>

 ID is the presentation id, e.g.:
org.eclipse.ui.internal.r21presentationFactory

 Specify program arguments:
-plugincustomization <presentation.ini file>

 Or create default .ini file:
plugin_customization.ini

 Advantage: Will be detected by the launcher
automatically

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 863/24/2009

3/24/2009

44

 A presentation that only displays a part

 No Borders, Tabs, Menus

 Only the top part of the stack is shown

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 873/24/2009

 Create a presentation factory
 Extend org.eclipse.ui.presentationFactories
 Provide class, id and name of your

presentation

<extension

point= "org.eclipse.ui.presentationFactories" >

<factory

class="presentation.MinimalPresentationFactory"

id="presentation.MinimalPresentationFactory"

name="Minimal Presentation"/>

</extension>

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 883/24/2009

3/24/2009

45

public abstract class AbstractPresentationFactory {

public abstract StackPresentation createEditorPresentation(
Composite parent, IStackPresentationSite site);

public abstract StackPresentation createViewPresentation(
Composite parent, IStackPresentationSite site);

public abstract StackPresentation createStandaloneViewPresentation(
Composite parent, IStackPresentationSite site,
boolean showTitle);

// …
}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 893/24/2009

public class MinimalPresentationFactory

extends AbstractPresentationFactory {

public StackPresentation createEditorPresentation(

Composite parent, IStackPresentationSite site) {

return new MinimalPresentation(parent, site);

}

public StackPresentation createViewPresentation(

Composite parent, IStackPresentationSite site) {

return new MinimalPresentation(parent, site);

}

public StackPresentation createStandaloneViewPresentation(

Composite parent, IStackPresentationSite site,

boolean showTitle) {

return new MinimalPresentation(parent, site);

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 903/24/2009

3/24/2009

46

 Widget hierarchy

 The parts are not children of the presentation!

 Parts and part toolbars are parented by the
workbench

Allows moving parts between stacks

 A presentation should not use the part’s
control

 It should use instead: IPresentablePart.setBounds()
and IPresentablePart.setVisible()

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 913/24/2009

 For details, checkout:

 Eclipse CVS repository

 Host: dev.eclipse.org

 CVS-Root: /cvsroot/eclipse

 Server: pserver

 Project: org.eclipse.ui.examples.presentation

 User: anonymous

 eclipsecon2005-presentationsAPI.ppt slides are
included 

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 923/24/2009

3/24/2009

47

 Useful for:

 Corporate design or Look&Feel

 Product branding & product families

 Application usability

 Think of

 Drawing borders, visible focus

 Buttons (Close, Minimize, Maximize)

 Tab Look & Feel

 Menus (System, View and Part)

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 933/24/2009

Design Goals:
 Title area with no icons, but gradient fill
 Image-based close button for closable parts
 Button-like tabs, with whole part width

 Different gradient fills for selections

 Roll-over effect

 Better usability for MP3 Manager application

 Since we have a title area, tabs should only be
visible if there’s more than one tab

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 943/24/2009

3/24/2009

48

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 953/24/2009

 Start the MP3 Manager with

 Default presentation

▪ Hint: presentation id =
org.eclipse.ui.presentations.default

 MP3M presentation

 Eclipse 3.0 presentation

▪ Hint: presentation id = org.eclipse.ui.presentations.r30

96© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

3/24/2009

49

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 973/24/2009

 P2 is the new Eclipse provisioning system
 Introduced with version 3.4
 Replaced the old update manager
 Fixes many of the update manager’s flaws
 Has many new features (see next slides)

98© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

3/24/2009

50

 Cleaner end-user workflows
 Faster downloads through multi-threadding
 Installers can be run as a regular Java

application or using Java Web Start
 Can manage complete installation

(.exe, .ini, etc.)
 Can manage and update an Eclipse/RCP

instance without running it

99© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

 Automatically picks the best available mirror
 Automatic retry of downloads
 Sharing of plug-ins across multiple eclipse

instances (bundle pooling)
 Easy creation of headless and custom update

user interfaces
 Validates plug-in inter-dependencies

100© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

3/24/2009

51

 Common Use Cases:

 Install an RCP application from a p2 repository

 An RCP application uses p2 metadata and artifact
repositories to update itself

101© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

Recipe for p2-enabling the mail demo:

1. Create the mail demo (project p2-maildemo)
2. Create a product configuration p2-

maildemo.product
3. Add 3 plug-ins to both launcher and product

configuration (and added required plug-ins)
- org.eclipse.equinox.p2.exemplarysetup
- org.eclipse.equinox.p2.ui.sdk
- org.eclipse.equinox.simpleconfigurator.manipulator

3/24/2009 102© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

52

5. To get the final update work in the installed
product, it is also necessary to include the
following 3 plug-ins with dependencies in the
product configuration:
- org.eclipse.ecf.provider.filetransfer
- org.eclipse.equinox.p2.touchpoint.eclipse
- org.eclipse.equinox.p2.touchpoint.natives

6. Export the product and the metadata/artifact
repositories to c:/java/RCP/p2-maildemo

3/24/2009 103© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

7. Use the director app to install the mail demo from the repository,
with the following Program arguments:
-application org.eclipse.equinox.p2.director.app.application
-metadataRepository file:c:/java/RCP/p2-maildemo/repository
-artifactRepository file:c:/java/RCP/p2-maildemo/repository
-installIU p2_maildemo.product
-version 1.0.0
-destination c:/java/RCP/p2-maildemo/install
-profile MaildemoProfile
-bundlepool c:/java/RCP/p2-maildemo/install
-profileProperties org.eclipse.update.install.features=true
-p2.os win32
-p2.ws win32
-p2.arch x86
-roaming
-consoleLog

VM arguments:
-Declipse.p2.data.area=c:/java/RCP/p2-maildemo/install/p2

104© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

3/24/2009

53

8. Start the installed mail demo in c:/java/RCP/p2-
maildemo/install

9. Select Help/Software Updates…:
Shows the P2 UI with installed product in
version 1.0.0

10. Now you want to create a new version 1.0.1 of
the product and update the installed version
1.0.0:

11. Update main mail demo plug-in to version 1.0.1
12. Update product version to 1.0.1
13. Export the new product version 1.0.1 in the

SAME location, to update the metadata/artifact
repositories

3/24/2009 105© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

14. But, the installed app 1.0.0 does not find any
updates... So, add the repository
c:/java/RCP/p2-maildemo/repository
manually as a new site => the new version
1.0.1 is displayed and ready for update.

15. When you want to install the update, the P2
dialog tells you correctly: “RCP Product is
already installed, so an update will be
performed instead.”

16. And now, when you click finish, the new
version will be installed properly!!!

3/24/2009 106© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

54

3/24/2009 107© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 P2 Eclipse Wiki:
http://wiki.eclipse.org/Equinox_p2

 Equinox/p2/Adding Self-Update to an RCP
Application:
http://wiki.eclipse.org/Equinox/p2/Adding_Se
lf-Update_to_an_RCP_Application

 Kai Tödter’s blog about p2-enabling of an
RCP application:
http://toedter.com/blog/?p=27

3/24/2009 108© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

http://wiki.eclipse.org/Equinox_p2
http://wiki.eclipse.org/Equinox/p2/Adding_Self-Update_to_an_RCP_Application
http://wiki.eclipse.org/Equinox/p2/Adding_Self-Update_to_an_RCP_Application
http://wiki.eclipse.org/Equinox/p2/Adding_Self-Update_to_an_RCP_Application
http://wiki.eclipse.org/Equinox/p2/Adding_Self-Update_to_an_RCP_Application
http://toedter.com/blog/?p=27

3/24/2009

55

 Take a look at the mp3m.product in the
project com.siemens.ct.mp3m.feature.blue
regarding the dependencies

 Deploy the product and create p2
repositories

 Install the MP3 Manager product using the
director application

 Hint: Use the preconfigured launcher “MP3
Manager Director”

 Add a local p2 repository for update

3/24/2009 109© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Implement new functionality

 Update bundle version

 Update feature version

 Update product version

 Re-deploy the product to the same location
 Update your previously installed MP3

Manager

3/24/2009 110© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

56

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 1113/24/2009

 PDE build provides the infrastructure for a
headless RCP build

 Many templates and scripts of PDE build can
be re-used for your own headless RCP build

 Unfortunately, setting up an headless RCP
build is not trivial

3/24/2009 112© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

57

3/24/2009 113© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

RCP App

Features

Plug-ins

build.properties

Ant Script
Generator

Ant Scripts

customTargets.xml

Features

Eclipse Platform

Features

Plug-ins

Plug-ins

Products

P2 Repositories

Build Config OutputPDE BuildInput

 The build.properties file specifies common
properties needed for the build:

 product: the location of the product configuration file

 baseLocation: the location of an eclipse install
containing all the pre-built features and plug-ins that
the product requires in features/ and plugins/
subdirectories. The RCP delta pack is mandatory!

 buildDirectory: directory the build will take place in

 configs: list the configurations for which you want
your product to be built

 archivePrefix: the name of the directory of your
product once installed on disk

3/24/2009 114© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

58

 The custom targets are hooks that are
invoked during the build by the main script.

 Examples are:

 clean

 prefetch, postfetch

 preGenerate, postGenerate

 preProcess, postProcess

 preAssemble, postAssemble

 prePackage, postPackage

 test

3/24/2009 115© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Create a new plug-in <namespace>.build for the
build configuration files

 Copy the files build.properties and
customTargets.xml from
plugins/org.eclipse.pde.build\
<version>/templates/headless-build/ into build/

 Edit build/build.properties.

 product

 archivePrefix

 buildDirectory

 baseLocation

 baseos, basews and basearch

3/24/2009 116© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

59

 Precondition for the build: If plug-ins are not fetched
from CVS/Subversion, source plug-ins and features
must be located in the following structure.

buildDirectory/

features/

feature-1/

feature-2/

...

plugins/

plugin-1/

plugin-2/

...

3/24/2009 117© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 To run the build, execute

java -jar <eclipse>/plugins/\
org.eclipse.equinox.launcher_<version>.jar

-application org.eclipse.ant.core.antRunner

-buildfile <eclipse>/plugins/org.eclipse.pde.build_\
<version>/scripts/productBuild/productBuild.xml

3/24/2009 118© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

60

 Add the following properties to the
build.properties:

generate.p2.metadata = true

p2.metadata.repo=file:${buildDirectory}/repo

p2.artifact.repo=file:${buildDirectory}/repo

p2.flavor=tooling

p2.publish.artifacts=true

mp3mVersion=3.4.1

3/24/2009 119© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Edit/Add the following targets to the
customTargets.xml:

 postBuild

 runDirector

3/24/2009 120© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

61

<target name="postBuild">

<antcall target="gatherLogs" />

<property file="${buildDirectory}/product.version"/>

<mkdir dir="${buildDirectory}/result/tmp" />

<antcall target="run.director">

<param name="p2.director.install.path"

value="${buildDirectory}/result/tmp/eclipse"/>

<param name="p2.os" value="win32"/>

<param name="p2.ws" value="win32"/>

<param name="p2.arch" value="x86"/>

<param name="p2.IU"

value="com.siemens.ct.mp3m.branding.blue.product" />

<param name="p2.version" value="${mp3mVersion}"/>

</antcall>

<zip destfile="${buildDirectory}/result/MP3M-p2-RCP-win32-${mp3mVersion}.zip"

basedir="${buildDirectory}/result/tmp" />

<delete dir="${buildDirectory}/result/tmp" />
</target>

3/24/2009 121© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

<target name="run.director">

<exec executable="${eclipseLocation}/eclipsec" failonerror="false" timeout="900000">

<arg line="-application org.eclipse.equinox.p2.director.app.application" />

<arg line="-nosplash" />

<arg line="--launcher.suppressErrors" />

<arg line="-consoleLog" />

<arg line="-flavor ${p2.flavor}" />

<arg line="-installIU ${p2.IU}" />

<arg line="-version ${p2.version}" />

<arg line="-p2.os ${p2.os}" />

<arg line="-p2.ws ${p2.ws}" />

<arg line="-p2.arch ${p2.arch}" />

<arg line="-roaming" />

<arg line="-profile MP3MProfile" />

<arg line="${p2.director.extraArgs}" />

<arg line="-metadataRepository ${p2.metadata.repo}" />

<arg line="-artifactRepository ${p2.artifact.repo}" />

<arg line="-destination ${p2.director.install.path}" />

<arg line="-bundlepool ${p2.director.install.path}" />

<arg line="-profileProperties org.eclipse.update.install.features=true" />

<arg line="-vmargs" />

<arg line="-Declipse.p2.data.area=${p2.director.install.path}/p2" />

</exec>

<!-- delete the metadata cache as well as the artifacts for unzipped bundles -->

<delete failonerror="false" includeEmptyDirs="true"

dir="${p2.director.install.path}/p2/org.eclipse.equinox.p2.core/cache" />
</target>

3/24/2009 122© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

62

 Install the RCP delta pack to your target
platform

 Create a new project
com.siemens.ct.mp3m.mybuild

 Create copy the files build.properties,
customtargets.xml and build.xml from
com.siemens.ct.mp3m.build

 Adopt build.properties to your environment
 Run the headless build
 Unzip and run the p2-ed MP3 Manager

3/24/2009 123© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 http://help.eclipse.org/help32/index.jsp?topic
=/org.eclipse.pde.doc.user/guide/tasks/pde_p
roduct_build.htm

 Andrew Niefer’s blog how to integrate p2 into
the build of an RCP application:
http://aniefer.blogspot.com/2008/06/exampl
e-headless-build-for-rcp-product.html

3/24/2009 124© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.pde.doc.user/guide/tasks/pde_product_build.htm
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.pde.doc.user/guide/tasks/pde_product_build.htm
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.pde.doc.user/guide/tasks/pde_product_build.htm
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html

3/24/2009

63

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 1253/24/2009

 This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works
3.0 Germany License

 See http://creativecommons.org/licenses/by-nc-
nd/3.0/de/deed.en_US

 Some slides are based on material of the Eclipse Training
Alliance, see http://www.eclipse-training.net

126© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en_US
http://www.eclipse-training.net/
http://www.eclipse-training.net/
http://www.eclipse-training.net/

