Applying 4+1 View Architecture with UML 2
White Paper

Software Services

Copyright ©2007 FCGSS, all rights reserved.
www.fcgss.com

Introduction

Unified Modeling Language (UML) has been available since 1997, and UML 2 was
released in 2004, building on an already successful UML 1.x standard. UML 2 comes
with 13 basic diagram types to support Model Driven Architecture (MDA) and Model
Driven Development (MDD).

Philippe Kruchten originally presented the 4+1 View Model to describe the architecture of
software-intensive systems. This approach uses multiple views to separate stakeholders’
concerns. The 4+1 View Approach is widely accepted by the software industry to
represent application architecture blueprints. However, the industry has not yet
completely embraced UML 2. IT architects are continuing with UML 1.x artifacts to
represent architecture and are consequently missing out on the powerful benefits of the
improvements made in UML 2.

This article presents the approach for 4+1 View Architecture using UML 2 diagrams. It
enhances the original concept of the approach using the current modeling standards and
techniques, and aims to encourage Application Architects to adapt relevant UML 2
artifacts. This article discusses each of the views and allocates the UML 2 diagrams to
these views. It does nat, however, teach semantics and modeling using UML 2 notations.
The audience is expected to have a basic understanding of UML and to be able to refer to
UML 2 for further details.

UML 2 Diagrams
Let us briefly review the diagrams available in UML 2 Specification.

UML 2 Superstructure Specification divides the 13 basic diagram types into two key
categories:

e Part | — Structural Diagrams: These diagrams are used to define static architecture.
They comprise static constructs such as classes, objects, and components, and the
relationships between these elements. There are six structural diagrams: Package
Diagrams, Class Diagrams, Object Diagrams, Composite Structure Diagrams,
Component Diagrams and Deployment Diagrams.

e Part Il — Behavioral Diagrams: These diagrams are used to represent dynamic
architecture. They comprise behavioral constructs such as activities, states, timelines
and the messages that run between different objects. These diagrams are used to
represent the interactions among various model elements and instantaneous states aver
a time period. There are seven behavioral diagrams: Use Case Diagrams, Activity
Diagrams, State Machine Diagrams, Communication Diagrams, Sequence Diagrams,
Timing Diagrams and Interaction Overview Diagrams.

UML 2 has introduced Composite Structure, Object, Timing and Interaction Overview
diagrams. The remaining diagrams were borrowed from UML 1.x, although some of them
were changed significantly.

4+1 \liew Architecture
The fundamental organization of a software system can be represented by:

e Structural elements and their interfaces that comprise or form a system
e Behavior represented by collaboration among the structural elements
e Composition of Structural and Behavioral elements into larger subsystems

Such compositions are guided by desired abilities (non-functional requirements) like
usability, resilience, performance, re-use, comprehensibility, economic and technology
constraints and trade-offs etc. Also, there are cross-cutting concerns (like security and
transaction management) that apply across all the functional elements

Architecture also means different things to different stakeholders. For example, a
Network Engineer would only be interested in the hardware and network configuration of
the system; a Project Manager in the key components to be developed and their
timelines; a Developer in classes that make up a component; and a Tester in scenarios.
So we need multiple view points for distinct stakeholders’ needs, showing what is relevant
while masking the details that are irrelevant.

The 4+1 View Approach is an ‘architecture style’ to organize an application’s architecture
representations into views to meet individual stakeholder’s needs. Figure 1 shows the
views in the 4+1 View Architecture.

CONCEPTUAL PHYSICAL

Logical View E Implementation View

Configuration

Functionality Management

Use Case View
Scenarios

Process View [Deployment View

Performance
Scalability
Throughput

Figure 1: 4+1 View Model

Logical View (Object Oriented Decomposition)

This view focuses on realizing an application’s functionality in terms of structural
elements, key abstractions and mechanisms, separation of concerns and distribution of
responsibilities. Architects use this view for functional analysis.

The logical architecture is represented at different levels of abstraction and progressively
evolves in iterations.

1. Vertical and horizontal divisions

— The application can be vertically divided into significant functional areas (i.e.,
order capture subsystems, order processing subsystems).

— Or, it can be horizontally divided into a layered architecture distributing
responsibilities among these layers (i.e., presentation layers, services layers,
business logic layers, and data access layers).

2. Representation of structural elements as classes or objects and their relationships.

Software Architecture is the
fundamental organization of
a system, embodied in its
components, their
relationships to each other
and the environment, and
the principles governing its
design and evolution.

— The definition of
Software Architecture as
per [EEE Becommended
Practice for Architectural
Description of Software-
Intensive Systems (IEEE
1471-2000)

UML 2 provides an elaborate set of diagrams to create a Logical View:

1. Class Diagrams or Structural Diagrams: These diagrams define the basic building
blocks of a model. They focus on each individual class, the main operations and
relationships to other classes’ associations, usage, composition, inheritance etc.

2. Object Diagrams: These diagrams show how instances of structural elements are
related. They help understand the class diagrams when the relationships are complex.
The object diagrams were informally used in the UML 1.x world; in UML 2 they are
formal artifacts.

3. Package Diagrams: These diagrams are used to divide the model into logical containers
or ‘packages’. They can be used to represent vertical and horizontal divisions as
packages.

4. Composite Structure Diagrams: These diagrams help in modeling the parts contained
by a class and the relationships between the parts. VWhen parts are related, such
diagrams significantly simplify the relationships between the classes. Ports are used to
represent how a class hooks into the environment. These diagrams support
collaborations that can be used to represent design patterns of cooperating objects.
UML 2 has introduced these diagrams as a major improvement over earlier structural
constructs.

5. State Machine Diagrams: These diagrams are necessary to understand the instant
states of an object defined by a class. These diagrams are optionally used when there
is a need to understand the possible states of a class.

The diagram notations are intentionally kept out of the scope of this document.
Please refer to Sparx Systems’ online tutorial to understand the notations
(http://sparxsystems.com/resources/uml2_tutorial/).

While modeling for the Logical View, start with the Class and Package diagrams and
expand as necessary. Figure 2 shows the modeling approach for the Logical View.
UML also provides profiles for data modeling using Entity Relationship (ER) Diagrams.
ER Diagrams can also be considered as another form of Logical View. Some Architects
prefer to capture ER Diagrams in a separate view called Data View.

MODELING LOGICAL VIEW WITH UML2

Composite
Structure
Diagrams

Package 1. Start with class diagrams to model the system

2. Use package diagrams to logically group diagrams

Diagrams

Optional use

3. Object diagrams when relationships between
classes need to be explained through instances

4. State Charts when internal states of a specific
class are to be explained

5. Composite Structures when parts of a class and
relationships between parts are to be modeled

Class
Diagrams

Object
Diagrams

State
Diagrams

Figure 2: Modeling Logical View

Process liew (Process Decomposition)

This view considers non-functional aspects such as performance, scalability and
throughput. It addresses the issues of concurrency, distribution and fault tolerance. It
shows the main abstractions from the Logical View executing over a thread as an
operation. A process is a group of tasks that form an executable unit; a software system
is partitioned into sets of tasks. Each task is a thread of control that executes with
collaboration among different structural elements (from the Logical View). Process View
also encompasses re-usable interaction patterns to solve recurring problems and to meet
non-functional service levels.

The process architecture can be represented at various levels of abstraction such as
interactions between systems, subsystems and objects etc. based on the need.

The Process view can be represented by the following UML 2 diagrams:

1. Sequence Diagrams: These diagrams show the sequence of messages passed between
the objects on a vertical timeline. UML 2 has made significant improvements on
Sequence diagram notations to aid Model Driven Development. The fragment types
such as loop, assert, break and alt help in diagramming to the level of detail that keeps
code and models in sync — not just in terms of structure, but also in behavior. Today's
modeling tools are yet to catch up on utilizing the power of UML 2 Sequence diagrams.

2. Communication Diagrams: These diagrams show communications between objects at
runtime during a collaboration instance. These diagrams are closely related to
Sequence diagrams. While Sequence diagrams are focused on the flow of messages
throughout an interaction over a timeline, the Communication diagrams focus on the
links between the participants; they were previously called Collaboration diagrams. In
addition to changing the name, UML 2 has made improvements relative to Sequence
diagrams.

3. Activity Diagrams: These diagrams are similar to flowcharts and have a wide range of
uses in different view points. In the process view, they can be used to depict the
program flows and complex business logic with actions, decision points, branching,
merging and parallel processing. UML 2 has made several improvements and
standardized the Activity Diagram constructs. Now you can also represent the time
events, external sending and receiving signals in the Activity Diagrams.

4. Timing Diagrams: Timing Diagrams specifically address modeling for performance.
They depict the amount of time allowed for a participant to receive events and switch
between the states, and how long a participant can stay in a specific state. These
diagrams were introduced in UML 2 and can be used for performance design.

5. Interaction Overview Diagrams: These diagrams provide an overview of how several
interactions work together to implement a system concern. They are a fusion of
Activity, Sequence and Timing Diagrams. Each part of an interaction could be
represented by a distinct diagram type. UML 2 introduces these diagrams and they
can be used to aid high-level overviews and understand the overall system behavior.

While modeling for Process View, you can start with either Sequence or Communication
diagrams. Both these diagrams can be created from each other, so it is merely a
personal preference on which one to use. As the scenarios get complex, you can use
other diagrams. Figure 3 shows the order of modeling for Process View with

UML 2 diagrams.

MODELING PROCESS VIEW WITH UML2

Activity
Diagrams

1. Use either Sequence or Communication Diagrams

- for modeling simple interactions in use case
SEGUEED H Comiite realizations
Diagrams on Diagrams

Optional use

Diagrams

2. Add Activity diagrams to realize scenarios where

business logic is a sequence of actions and
involves branching and parallel processing

3. Add timing diagrams when modeling for

Interaction
Overview
Diagrams

performance

4. For complex scenarios, that can be composed
of other scenarios, use Interaction overview
diagrams

Figure 3: Modeling Process View

Implementation or Development View (Subsystem Decomposition)

This is a view of a system'’s architecture that encompasses the components used to
assemble and release a physical system. This view focuses on configuration management
and actual software module organization in the development environment. The software is
actually packaged into components that can be developed and tested by the development
team. While the Logical View is at the conceptual level, the diagrams in this view
represent the physical-level artifacts that are built by the team.

Component Diagrams are used to represent the Implementation View. These diagrams
show different components, the ports available and the dependencies on the environment
in terms of provided and required interfaces. UML 2 has improved the Component
Diagrams specifically with the interfaces and ports. The components can be tied to the
classes and composite structures that realize these components. These diagrams can
now be used to precisely represent the software components built in a system and their
dependencies both in black-box and white-box views.

Deployment or Physical View (Mapping Software to Hardware)
This view encompasses the nodes that form the system’s hardware topology on which the
system executes; it focuses on distribution, communication and provisioning.

The software executes on a network of computers, or processing nodes. The various
elements such as processes, tasks and objects need to be mapped to the nodes on which
they execute. These physical configurations can differ between production, development
and testing environments. The software should be built to be flexible to scale across
these hardware changes. Hence, this view accommodates the non-functional
requirements such as availability, reliability, performance, throughput and scalability.

This view provides all possible hardware configurations, and maps the components from
the Implementation View to these configurations.

Deployment Diagrams show the physical disposition of the artifacts in the real-world
setting. UML provides constructs to represent Nodes such as devices, execution
environment and middleware; artifacts such as jar files and connections; and
dependencies between these devices. The nodes can be embedded, for example,
representing the application server running within the physical device. UML uses very
simple notation for nodes and artifacts. However, the current modeling tools allow you to
import external images to depict these nodes.

Use Case lView or Scenarios [putting all together)

In addition to the four views discussed above, this is the central view for capturing
scenarios. The Use Case View encompasses the use cases that describe the behavior of
the system as seen by its end users and other stakeholders. Although traditionally
discussed as the last view, this is the first view created in the system development
lifecycle.

This view represents the scenarios that tie the four views together, and forms the reason
why all the other views exist. With all other views in place, this view seems redundant
(hence +1). However it represents the architecturally significant requirements in the form
of scenarios. It also aids to verify that all the required scenarios are met.

UML 2 provides the Use Case Diagrams to represent this view. These diagrams are
comprised of use cases and actors. They are closely tied to detailed scenario
descriptions in text. As an architecture view, we are only interested in significant use
cases that need to be modeled.

Activity Diagrams can also be used to represent scenarios and business processes.

The current UML tools are well geared to generate the business process automation
code from activity diagrams. So the activity diagrams can be used to both represent the
requirements in the Use Case View and executable processes in the Process View.

Figure 4 shows the UML diagrams allocated to the views on the 4+1 View Model.

CONCEPTUAL PHYSICAL

Logical View Implementation View

Class, Object, Package,
Composite Structure,

. Component
State Machine Use Case View
Use Case, Activity
Process View Deployment View
Sequence,
Communication,
Activity , Timing, Daployment

Interaction Overview

Figure 4: 4+1 View Model with UML2

Relationships hetween Views

The Logical View and the Process View are at a conceptual level and are used from
analysis to design. The Implementation View and the Deployment View are at the physical
level and represent the actual application components built and deployed.

The Logical View and the Implementation View are tied closer to functionality. They depict
how functionality is modeled and implemented. The Process View and Deployment View
realizes the non-functional aspects using behavioral and physical modeling.

Use Case View leads to structural elements being analyzed in the Logical View and
implemented in the Development View. The scenarios in the Use Case View are realized
in the Process View and deployed in the Physical View.

Conclusion

UML 2 has made significant improvements in its constructs that affect the
representations in Logical and Process Views. Architects today have additional diagrams
to model the functional and non-functional aspects and communicate them to the teams.

Typically, the views in the 4+1 View approach are sufficient to model the Application
Architecture. Additional views such as Security View and Data View could be added
based on the specific application’s requirements. It should also be noted that the 4+1
View Approach is best suited to represent the Application Architecture. More complex
view points are necessary if you need to depict the Enterprise Architecture for an entire
organization.

References and Further Reading

1. Philippe Kruchten's original publication on 4+1 View Approach,
www.win.tue.nl/~mchaudro/sa2004/Kruchtend+1.pdf

2. UML 2 Superstructure Specification from OMG,
http://www.omg.org/technology/documents/modeling_spec_catalog.htm

3. Grady Booch's presentation on Software Architecture,
www.booch.com/architecture/blog/artifacts/Software%20Architecture.ppt

4. Learning UML 2.0 (O'Reilly), Russ Miles & Kim Hamilton

. UML 2.0 in a Nutshell (O'Reilly), Dan Pilone and Neil Pitman

6. UML 2 Tutorials from Sparx Systems,
(http://sparxsystems.com/resources/uml2_tutorial/)

[$)

Acknowledgements

My acknowledgements to Martin Israelsen, Director of Technology and Architecture, FCG
Software Services, for his technical review and invaluable inputs on this article. Special
thanks to Suzanne Cain, Marketing Specialist, FCG Software Services, for editing this
document and Papia Roy, First Consulting Group, for designing and finalizing it.

About the Author

Veer Muchandi is a Senior Technical Architect with FCG Software Services. He has been
providing IT Solutions for over 14 years. His areas of expertise include requirements,
business modeling and solution architecture. He is a Sun Certified Enterprise Architect
and OMG Certified UML Professional. Veer lives in Atlanta, Georgia.

About FCG Software Services

FCG Software Services (FCGSS), a division of First Consulting Group, is a
U.S. software development company that has provided on-site/offshore
software development and other [T-enabled services for over ten years.
Assessed at CMMI Level 5, FCGSS has offshore development centers
located in Bangalore, India, and Ho Chi Minh City, Vietnam. FCGSS'
experienced personnel work on-site with organizations to define
requirements, design software solutions and coordinate the activities of the
offshore development teams. Through a combination of qualified resources,
a sound development methodology and a wide domain of technical expertise,
FCGSS delivers high quality products at significantly reduced rates.

Ahout the Publisher

Sparx Systems is a software development company specializing in high
performance, and highly productive and scalable visual tools for the planning,
design and construction of software-intensive systems. \With customers in
industries ranging from aerospace and automotive engineering to finance,
defense, government, entertainment and telecommunications, Sparx
Systems is a leading vendor of innovative solutions based on the Unified
Modeling Language (UML) and its related specifications. A Contributing
Member of the Object Management Group (OMG), Sparx Systems is
committed to realizing the potential of model-driven development based on
open standards. The company’s flagship product, Enterprise Architect, has
received numerous accolades since its commercial release in August, 2000.
Now at version 6.5, Enterprise Architect is the design tool of choice for
over 100,000 registered users in more than 60 countries worldwide.

©2007 FCGSS_US_WP_Applying 4+1 w_UML2

™

Software Services

11675 Great Oaks Way, Suite 144
Alpharetta, GA 30022
www.fcgss.com

678-229-1100

