1. Carbon flow

flow	magnitude 1012 kg(C)/yr
CO ₂ flux to the atmosphere from decomposi-	50
tion and combustion of terrestrial organic	
matter and from animal respiration	v'
[This flow is nearly exactly balanced by a	
flow of inorganic carbon from the atmo-	
sphere to terrestrial living biomass in net pri-	
mary productivity.]	
inorganic carbon production in the oceanic	20
mixed layer from decomposition of oceanic	
organic matter and animal respiration	
[This and the subsequent flow are nearly ex-	
actly balanced by a flow of inorganic carbon	
from seawater to living organisms in oceanic	
net primary productivity.]	
inorganic carbon production in the deep ocean	5.0
from decomposition of oceanic organic matter	
net upwelling of inorganic carbon from deep	5.0
ocean to the mixed oceanic layer	
CO ₂ flux to the atmosphere from fossil fuel	6,5
burning and cement manufacturing (2006)	
river flow of organic carbon to the oceans	0.2
deposition of carbon to oceanic sediment from	0.1
sinking oceanic detritus	
consumption of H ₂ CO ₃ from weathering	0.1
of rock and sediment	

^{*}Anthropogenic flows are believed to be known to within $\pm 15\%$. Natural flows are often only crudely known. Most are uncertain to $\pm 50\%$; and some, like the global biological nitrogen fixation rate, could be wrong by a factor of three (i.e., a value of 3 has a range of uncertainty from 1 to 9). Stocks in organic matter and in soil, rock, fuel, and sediments are believed to be known to within a factor of two. Atmospheric CO₂ and N₂ stocks are known to better than $\pm 1\%$.